
Introduction to LUSTRE
and LUKE

22c181 Spring 2008

Background

 Developed in 1980’s at Verimag (Fr)
 Currently used by Estrel Technologies in

Scade development tools
 Airbus, nuclear power plants

Synchronous Dataflow

 Lustre is a synchronous dataflow
language
 Synchronous – outputs are “instantaneous”

 Designed to quickly react to environment
 "Realtime” or “reactive”
 Ex: Esterel, Statecharts

 Dataflow – changes force propagation
 Ex: Spreadsheets

 Simple, modular, functional

Language

 Nodes
 Programs or subprograms
 Collections of flow definitions

 Flows (or streams)
 infinite sequence of values
 Defined equationally (no cycles)

Program Structure

node name (parameters) returns
(return_vals);

[var local_variable_list;]
let

flow definition;
flow definition;

 …
tel

Basic Types

 bool
 and, or, not, xor

 int
 real

 +, -, *, /, div, mod, =, <>, <, <=, >, >=, int,real

 Tuples
 Arbitrary combinations of bool, int, real, & tuple

terms
 Used to return multiple values

Luke Tool

 Command line simulator & verifier
 Fragment of lustre(v4) language

 does not support arrays, const, assert, #,
when, current, real

 allows nonstandard structures
 nodes with no inputs
 =, <> can be used on type bool

 Outputs simulations & counterexamples
to javascript webpage

Luke Usage

 Simulation:
luke --node top_node filename

 Verification:
luke --node top_node --verify filename
 returns either “Valid. All checks succeeded.

Maximal depth was n” or “Falsified output
‘X’ in node ‘Y' at depth n” along with a
counterexample.

Other Operators

 pre (previous)
 pre X :: previous value of X

 -> (followed by)
 X -> Y :: value of X in first step, then the value of

Y
 Generally used together:

 X = Y -> pre Z

 if … then … else
 -- :: single-line comment

Clocks

 Used to delay
sampling, execution

 current, when
 X = current (Y when B)

is not always equivalent to
X = if B then Y else pre X

 Not supported by
Luke

4

-

0

5

1001B

4111current X

4--1X= Y
when B

4321Y

Odds & Ends

(Not supported by Luke)
 assert(X);

 When verifying, this statement restricts flows to
abide by the Boolean statement X

 Put known limits on input values

 const
 declare (global) constants

 # :: at most one element of a tuple is true
 External functions

SCADE Operators

 SCADE operators (not in version 4):
 case :: switching
 fby(x,n,i) :: initialize with i, delay x by n steps

 Guarded delay
 i -> pre (i -> … pre (x))

 z = condact(b, n, x, i)
 Guarded clock change
 z = i -> if b then current n(x when b) else pre z

Arrays,Recursion

 Supported as syntactic sugar
 See “A Tutorial of Lustre” for more

information

Synchronous Observers

 Another program which observes the
behavior of the base code

 “Tester node”
 Contains code to determine if properties

are true or not

Traffic Light Example

 Pedestrian crossing with a traffic light
 RGY light, walk/don’t walk sign
 Behavior should be…

Traffic Light Properties

 Cars & pedestrians not allowed at the
same time

 Only one light color at a time
 Only walk or don’t walk at a time
 Y must come between R & G
 Others…?

Edge Example

 Compare two implementations of
FallingEdge node

