
Program Verification
Automated Test Case Generation, Part II

Reiner Hähnle

30 November 2007

ProgVer: ATCG II 071130 1 / 19

Vous Êtes Ici

Specification-Based Test Case Generation

! Systematic test case generation from JML contracts: Black Box
guided by Test Generation Principles

! Make precondition true, consistent with class invariant

! Disjunctive analysis

! Choose representative values from large equivalence classes

! Generation principles for datatypes of unbound variables

Remaining Problems of ATCG

1. How to automate specification-based test generation?

2. Generated test cases have no relation to implementation

1. Tools jml-junit and jtest discussed in Exercises

2. Code-based test generation that uses symbolic execution of IUT

ProgVer: ATCG II 071130 2 / 19

Vous Êtes Ici

Specification-Based Test Case Generation

! Systematic test case generation from JML contracts: Black Box
guided by Test Generation Principles

! Make precondition true, consistent with class invariant

! Disjunctive analysis

! Choose representative values from large equivalence classes

! Generation principles for datatypes of unbound variables

Remaining Problems of ATCG

1. How to automate specification-based test generation?

2. Generated test cases have no relation to implementation

1. Tools jml-junit and jtest discussed in Exercises

2. Code-based test generation that uses symbolic execution of IUT

ProgVer: ATCG II 071130 2 / 19

Vous Êtes Ici

Specification-Based Test Case Generation

! Systematic test case generation from JML contracts: Black Box
guided by Test Generation Principles

! Make precondition true, consistent with class invariant

! Disjunctive analysis

! Choose representative values from large equivalence classes

! Generation principles for datatypes of unbound variables

Remaining Problems of ATCG

1. How to automate specification-based test generation?

2. Generated test cases have no relation to implementation

1. Tools jml-junit and jtest discussed in Exercises

2. Code-based test generation that uses symbolic execution of IUT

ProgVer: ATCG II 071130 2 / 19

Recap

Ideas common to systematic (automated) test generation

! Formal analysis of specification and/or code yields enough
information to produce test cases

! Systematic algorithms give certain coverage guarantees

! Post conditions can be turned readily into test oracles

! Mechanic reasoning technologies achieve automation:
constraint solving, deduction, symbolic execution, model finding

ProgVer: ATCG II 071130 3 / 19

Code-Based Test Generation

Generate test cases from symbolic execution of code of IUT

! White box technology

! All available tools are academic and more or less experimental:
Symstra, Java PathFinder, Korat, PEX, SpecExplorer, Kiasan, KeY

! Very dynamic development, industrial strength in 2–3 years

! Mostly Java, but also bytecode

! No formal specification/system model required

ProgVer: ATCG II 071130 4 / 19

What is Symbolic Execution?

Execute a program with symbolic (abstract) initial values

Assume we could write a Java program such as this:

int target = t0;
int [] array = a0;
return search(array , target);

where t0 and a0 are arbitrary start values.

Can view t0 and a0 as first-order terms whose value is fixed by a model

ProgVer: ATCG II 071130 5 / 19

Symbolic Execution by Example

int target = t0; Execute this statement
int [] array = a0;
int low = 0;
int high = array.length -1;

while (low <= high) {
int mid = (low + high) / 2 ;
i f (target < array[mid]) {

high = mid - 1;
} e l se i f (target > array[mid]) {

low = mid + 1;
} e l se {

return mid;
}

}
return -1;

ProgVer: ATCG II 071130 6 / 19

Symbolic Execution by Example

{target := t0} Symbolic Program State

int [] array = a0; First Active Statement (Program Counter)

int low = 0;
int high = array.length -1;

while (low <= high) {
int mid = (low + high) / 2 ;
i f (target < array[mid]) {

high = mid - 1;
} e l se i f (target > array[mid]) {

low = mid + 1;
} e l se {

return mid;
}

}
return -1;
ProgVer: ATCG II 071130 6 / 19

Symbolic Execution by Example

{target := t0 | array := a0}

int low = 0;
int high = array.length -1;

while (low <= high) {
int mid = (low + high) / 2 ;
i f (target < array[mid]) {

high = mid - 1;
} e l se i f (target > array[mid]) {

low = mid + 1;
} e l se {

return mid;
}

}
return -1;

ProgVer: ATCG II 071130 6 / 19

Symbolic Execution by Example

{target := t0 | array := a0 | low := 0}

int high = array.length -1;

while (low <= high) {
int mid = (low + high) / 2 ;
i f (target < array[mid]) {

high = mid - 1;
} e l se i f (target > array[mid]) {

low = mid + 1;
} e l se {

return mid;
}

}
return -1;

ProgVer: ATCG II 071130 6 / 19

Symbolic Execution by Example

{target := t0 | array := a0 | low := 0}

int high = a0.length -1; Execution depends on a0!=nul l

while (low <= high) {
int mid = (low + high) / 2 ;
i f (target < array[mid]) {

high = mid - 1;
} e l se i f (target > array[mid]) {

low = mid + 1;
} e l se {

return mid;
}

}
return -1;

ProgVer: ATCG II 071130 6 / 19

Symbolic Execution by Example

a0!=null Path Condition
{target := t0 | array := a0 | low := 0 | high := a0.length-1}

while (low <= high) {
int mid = (low + high) / 2 ;
i f (target < array[mid]) {

high = mid - 1;
} e l se i f (target > array[mid]) {

low = mid + 1;
} e l se {

return mid;
}

}
return -1;

ProgVer: ATCG II 071130 6 / 19

Symbolic Execution by Example

a0!=null
{target := t0 | array := a0 | low := 0 | high := a0.length-1}

while (low <= high) { depends on a0.length >0
int mid = (low + high) / 2 ;
i f (target < array[mid]) {

high = mid - 1;
} e l se i f (target > array[mid]) {

low = mid + 1;
} e l se {

return mid;
}

}
return -1;

ProgVer: ATCG II 071130 6 / 19

Symbolic Execution by Example

a0!=null && a0.length > 0
{target := t0 | array := a0 | low := 0 | high := a0.length-1}

int mid = (low + high) / 2 ;
i f (target < array[mid]) {

high = mid - 1;
} e l se i f (target > array[mid]) {

low = mid + 1;
} e l se {

return mid;
}
while (low <= high) {
...

}
return -1;

ProgVer: ATCG II 071130 6 / 19

Symbolic Execution by Example

a0!=null && a0.length > 0
{target := t0 | array := a0 | low := 0 | high := a0.length-1 |
mid := (a0.length-1)/2}

i f (target < array[mid]) {
high = mid - 1;

} e l se i f (target > array[mid]) {
low = mid + 1;

} e l se {
return mid;

}
while (low <= high) {
...

}
return -1;

ProgVer: ATCG II 071130 6 / 19

Symbolic Execution by Example

a0!=null && a0.length > 0
{target := t0 | array := a0 | low := 0 | high := a0.length-1 |
mid := (a0.length-1)/2}

i f (t0 < a0[(a0.length-1)/2]) { No exception thrown!
high = mid - 1;

} e l se i f (target > array[mid]) {
low = mid + 1;

} e l se {
return mid;

}
while (low <= high) {
...

}
return -1;

ProgVer: ATCG II 071130 6 / 19

Symbolic Execution by Example

a0!=null && a0.length > 0
{target := t0 | array := a0 | low := 0 | high := a0.length-1 |
mid := (a0.length-1)/2}

i f (t0 < a0[(a0.length-1)/2]) { let t0==a0[(a0.length-1)/2]
high = mid - 1;

} e l se i f (target > array[mid]) {
low = mid + 1;

} e l se {
return mid;

}
while (low <= high) {
...

}
return -1;

ProgVer: ATCG II 071130 6 / 19

Symbolic Execution by Example

a0!=null && a0.length > 0 && t0==a0[a0.length-1)/2]
{target := t0 | array := a0 | low := 0 | high := a0.length-1 |
mid := (a0.length-1)/2}

i f (target > array[mid]) {
low = mid + 1;

} e l se {
return mid;

}
while (low <= high) {
...

}
return -1;

ProgVer: ATCG II 071130 6 / 19

Symbolic Execution by Example

a0!=null && a0.length > 0 && t0==a0[a0.length-1)/2]
{target := t0 | array := a0 | low := 0 | high := a0.length-1 |
mid := (a0.length-1)/2}

i f (t0 > a0[(a0.length-1)/2]) { false!
low = mid + 1;

} e l se {
return mid;

}
while (low <= high) {
...

}
return -1;

ProgVer: ATCG II 071130 6 / 19

Symbolic Execution by Example

a0!=null && a0.length > 0 && t0==a0[a0.length-1)/2]
{target := t0 | array := a0 | low := 0 | high := a0.length-1 |
mid := (a0.length-1)/2}

return mid;
while (low <= high) {
...

}
return -1;

ProgVer: ATCG II 071130 6 / 19

Symbolic Execution by Example

a0!=null && a0.length > 0 && t0==a0[a0.length-1)/2]
{target := t0 | array := a0 | low := 0 | high := a0.length-1 |
mid := (a0.length-1)/2}

return (a0.length-1)/2;

ProgVer: ATCG II 071130 6 / 19

Result of Symbolic Execution

Conclusion to be drawn from symbolic execution:

All execution paths for test cases (states) that validate path condition:

array!=null && array.length>0 && target==array[array.length-1)/2]

return the result

(array.length-1)/2

ProgVer: ATCG II 071130 7 / 19

Result of Symbolic Execution

Conclusion to be drawn from symbolic execution:

All execution paths for test cases (states) that validate path condition:

array!=null && array.length>0 && target==array[array.length-1)/2]

return the result

(array.length-1)/2

Important Properties

! One symbolic execution path corresponds to ∞ many test runs

! Only one symbolic execution path shown in example
need to explore others as well!

! Programs with loops or recursion usually have ∞ many symbolic
execution paths

ProgVer: ATCG II 071130 7 / 19

Result of Symbolic Execution

Conclusion to be drawn from symbolic execution:

All execution paths for test cases (states) that validate path condition:

array!=null && array.length>0 && target==array[array.length-1)/2]

return the result

(array.length-1)/2

Main Property of Symbolic Execution

Even symbolic execution cannot cover all execution paths

But symbolic execution covers all execution paths to finite depth

ProgVer: ATCG II 071130 7 / 19

Elements of Symbolic Execution

Components of a State during Symbolic Execution

Path condition — when is this execution path taken?

Symbolic program state — like Variables compartment in Debugger

Program counter — next executable source code statement

Program state and Program counter also present in Debuggers

State of Symbolic Execution ⇒ node in Symbolic Execution Tree

ProgVer: ATCG II 071130 8 / 19

Elements of Symbolic Execution

Components of a State during Symbolic Execution

Path condition — when is this execution path taken?

Symbolic program state — like Variables compartment in Debugger

Program counter — next executable source code statement

Program state and Program counter also present in Debuggers

State of Symbolic Execution ⇒ node in Symbolic Execution Tree

ProgVer: ATCG II 071130 8 / 19

Symbolic Execution Tree

int target = t0; ...

{target := t0 | ... }int high = a0.length-1; ...

{...}throw ...

a0==null

{...}while ...

{...}return -1;

a0.length==0

{...}int mid = ...

{mid := (a0.length-1)/2 | ...}return mid;

a0.length>0

a0!=null

normal termination

exceptional
termination

ProgVer: ATCG II 071130 9 / 19

From Symbolic Execution to Test Cases

Code-Based Test Case Generation

1. Create symbolic execution tree for IUT until finite depth

2. For each terminating node (normal/exceptional) create test case:
2.a Let PC be path condition of execution branch
2.b Turn PC into quantifier-free first-order logic formula pc
2.c Find a model M for pc that validates it
2.d From M extract concrete values of variables for test case

Example (Code-Based Test Case Generation)

1. See previous slide

2. Choose right-most terminating path

2.a PC: a0!=null && a0.length>0 && t0==a0[a0.length-1)/2]
2.b pc ≡ ¬a0 = null ∧ length(a0) > 0 ∧ t0 = a0[length(a0)− 1]÷ 2
2.c M(length(a0)) = 2, M(a0) = {17, 42}, M(t0) = M(a0[0]) = 17

2.d int target = 17; int [] array = {17 ,42};

ProgVer: ATCG II 071130 10 / 19

From Symbolic Execution to Test Cases

Code-Based Test Case Generation

1. Create symbolic execution tree for IUT until finite depth

2. For each terminating node (normal/exceptional) create test case:
2.a Let PC be path condition of execution branch
2.b Turn PC into quantifier-free first-order logic formula pc
2.c Find a model M for pc that validates it
2.d From M extract concrete values of variables for test case

Example (Code-Based Test Case Generation)

1. See previous slide

2. Choose right-most terminating path
2.a PC: a0!=null && a0.length>0 && t0==a0[a0.length-1)/2]

2.b pc ≡ ¬a0 = null ∧ length(a0) > 0 ∧ t0 = a0[length(a0)− 1]÷ 2
2.c M(length(a0)) = 2, M(a0) = {17, 42}, M(t0) = M(a0[0]) = 17

2.d int target = 17; int [] array = {17 ,42};

ProgVer: ATCG II 071130 10 / 19

From Symbolic Execution to Test Cases

Code-Based Test Case Generation

1. Create symbolic execution tree for IUT until finite depth

2. For each terminating node (normal/exceptional) create test case:
2.a Let PC be path condition of execution branch
2.b Turn PC into quantifier-free first-order logic formula pc
2.c Find a model M for pc that validates it
2.d From M extract concrete values of variables for test case

Example (Code-Based Test Case Generation)

1. See previous slide

2. Choose right-most terminating path
2.a PC: a0!=null && a0.length>0 && t0==a0[a0.length-1)/2]
2.b pc ≡ ¬a0 = null ∧ length(a0) > 0 ∧ t0 = a0[length(a0)− 1]÷ 2

2.c M(length(a0)) = 2, M(a0) = {17, 42}, M(t0) = M(a0[0]) = 17

2.d int target = 17; int [] array = {17 ,42};

ProgVer: ATCG II 071130 10 / 19

From Symbolic Execution to Test Cases

Code-Based Test Case Generation

1. Create symbolic execution tree for IUT until finite depth

2. For each terminating node (normal/exceptional) create test case:
2.a Let PC be path condition of execution branch
2.b Turn PC into quantifier-free first-order logic formula pc
2.c Find a model M for pc that validates it
2.d From M extract concrete values of variables for test case

Example (Code-Based Test Case Generation)

1. See previous slide

2. Choose right-most terminating path
2.a PC: a0!=null && a0.length>0 && t0==a0[a0.length-1)/2]
2.b pc ≡ ¬a0 = null ∧ length(a0) > 0 ∧ t0 = a0[length(a0)− 1]÷ 2
2.c M(length(a0)) = 2, M(a0) = {17, 42}, M(t0) = M(a0[0]) = 17

2.d int target = 17; int [] array = {17 ,42};

ProgVer: ATCG II 071130 10 / 19

From Symbolic Execution to Test Cases

Code-Based Test Case Generation

1. Create symbolic execution tree for IUT until finite depth

2. For each terminating node (normal/exceptional) create test case:
2.a Let PC be path condition of execution branch
2.b Turn PC into quantifier-free first-order logic formula pc
2.c Find a model M for pc that validates it
2.d From M extract concrete values of variables for test case

Example (Code-Based Test Case Generation)

1. See previous slide

2. Choose right-most terminating path
2.a PC: a0!=null && a0.length>0 && t0==a0[a0.length-1)/2]
2.b pc ≡ ¬a0 = null ∧ length(a0) > 0 ∧ t0 = a0[length(a0)− 1]÷ 2
2.c M(length(a0)) = 2, M(a0) = {17, 42}, M(t0) = M(a0[0]) = 17

2.d int target = 17; int [] array = {17 ,42};

ProgVer: ATCG II 071130 10 / 19

Coverage

Coverage criteria guaranteed by the resulting test suites
depend on which nodes/edges contained in symbolic execution tree

All of finitely many symbolic execution paths

Feasible Path Coverage — Rare to have only finitely many paths!

As above, but methods approximated by JML contracts

Top Level Feasible Path Coverage

Each control-dependency in code occurs on some symbolic path

Feasible Branch Coverage — Achieved by unwinding loops often enough

Each statement occurs on some execution path

Feasible Statement Coverage — Achieved by unwinding each loop once

ProgVer: ATCG II 071130 11 / 19

Coverage

Coverage criteria guaranteed by the resulting test suites
depend on which nodes/edges contained in symbolic execution tree

All of finitely many symbolic execution paths

Feasible Path Coverage — Rare to have only finitely many paths!

As above, but methods approximated by JML contracts

Top Level Feasible Path Coverage

Each control-dependency in code occurs on some symbolic path

Feasible Branch Coverage — Achieved by unwinding loops often enough

Each statement occurs on some execution path

Feasible Statement Coverage — Achieved by unwinding each loop once

ProgVer: ATCG II 071130 11 / 19

Coverage

Coverage criteria guaranteed by the resulting test suites
depend on which nodes/edges contained in symbolic execution tree

All of finitely many symbolic execution paths

Feasible Path Coverage — Rare to have only finitely many paths!

As above, but methods approximated by JML contracts

Top Level Feasible Path Coverage

Each control-dependency in code occurs on some symbolic path

Feasible Branch Coverage — Achieved by unwinding loops often enough

Each statement occurs on some execution path

Feasible Statement Coverage — Achieved by unwinding each loop once

ProgVer: ATCG II 071130 11 / 19

Coverage

Coverage criteria guaranteed by the resulting test suites
depend on which nodes/edges contained in symbolic execution tree

All of finitely many symbolic execution paths

Feasible Path Coverage — Rare to have only finitely many paths!

As above, but methods approximated by JML contracts

Top Level Feasible Path Coverage

Each control-dependency in code occurs on some symbolic path

Feasible Branch Coverage — Achieved by unwinding loops often enough

Each statement occurs on some execution path

Feasible Statement Coverage — Achieved by unwinding each loop once

ProgVer: ATCG II 071130 11 / 19

Coverage

Coverage criteria guaranteed by the resulting test suites
depend on which nodes/edges contained in symbolic execution tree

All of finitely many symbolic execution paths

Feasible Path Coverage — Rare to have only finitely many paths!

As above, but methods approximated by JML contracts

Top Level Feasible Path Coverage

Each control-dependency in code occurs on some symbolic path

Feasible Branch Coverage — Achieved by unwinding loops often enough

Each statement occurs on some execution path

Feasible Statement Coverage — Achieved by unwinding each loop once

ProgVer: ATCG II 071130 11 / 19

Preconditions: Pruning Infeasible Execution Paths

Example (Binary search with precondition (requires clause))

/*@
@ array != && ... ;
@*/

search(array[], target) { ... }

int target = t0; ...

{array := a0 | ... }int high = a0.length-1; ...

{...}throw ...

a0==null

{...}while ...

a0!=null

execution branch
contradicts precondition

ProgVer: ATCG II 071130 12 / 19

Preconditions: Pruning Infeasible Execution Paths

Example (Binary search with precondition (requires clause))

/*@
@ array != && ... ;
@*/

search(array[], target) { ... }

int target = t0; ...

{array := a0 | ... }int high = a0.length-1; ...

{...}throw ...

a0==null

{...}while ...

a0!=null

execution branch
contradicts precondition

ProgVer: ATCG II 071130 12 / 19

Postconditions: Synthesizing Test Oracle Code

Oracle Problem in Automated Testing
How to determine automatically whether a test run succeeded?

The “ensures” clause of a JML contract tells exactly that
provided that “requires” clause is true for given test case

Guarded JML quantifiers as executable Java code

JML:

\ i; guard(i) ==> test(i)

Equivalent executable Java code:

for (int i = lowerBound; guard(i); i++) {
i f (!test(i)) { return f a l s e ; }

} return true;

ProgVer: ATCG II 071130 13 / 19

Combining Specification- and Code-Based ATCG

(Specification-Based) Test Generation Principle 1

Test data must make required precondition true

(Specification-Based) Test Generation Principle 8

Use “ensures” clauses (postconditions) of JML contracts as test oracles

(Specification-Based) Test Generation Principle 3

For each disjunct of precondition in DNF create test case making it true

(Code-Based) Test Generation Principle

Create test case for each terminating node in symbolic execution tree

ProgVer: ATCG II 071130 14 / 19

Combining Specification- and Code-Based ATCG

(Specification-Based) Test Generation Principle 1

Test data must make required precondition true

(Specification-Based) Test Generation Principle 8

Use “ensures” clauses (postconditions) of JML contracts as test oracles

(Specification-Based) Test Generation Principle 3

For each disjunct of precondition in DNF create test case making it true

(Code-Based) Test Generation Principle

Create test case for each terminating node in symbolic execution tree

ProgVer: ATCG II 071130 14 / 19

Combined Coverage

(Combined) Test Generation Principle

Create test case for each disjunct of precondition in DNF
AND
Create test case for each terminating node in symbolic execution tree

Resulting test cases fulfill both coverage criteria

Disjunctive analysis of precondition

Code-based analysis: path conditions

Choosing class representatives

ProgVer: ATCG II 071130 15 / 19

Combined Coverage

(Combined) Test Generation Principle

Create test case for each disjunct of precondition in DNF
AND
Create test case for each terminating node in symbolic execution tree

Resulting test cases fulfill both coverage criteria

Disjunctive analysis of precondition

Code-based analysis: path conditions

Choosing class representatives

ProgVer: ATCG II 071130 15 / 19

Combined Coverage

(Combined) Test Generation Principle

Create test case for each disjunct of precondition in DNF
AND
Create test case for each terminating node in symbolic execution tree

Resulting test cases fulfill both coverage criteria

Disjunctive analysis of precondition

Code-based analysis: path conditions

Choosing class representatives

ProgVer: ATCG II 071130 15 / 19

Combined Coverage

(Combined) Test Generation Principle

Create test case for each disjunct of precondition in DNF
AND
Create test case for each terminating node in symbolic execution tree

Resulting test cases fulfill both coverage criteria

Disjunctive analysis of precondition

Code-based analysis: path conditions

Choosing class representatives

ProgVer: ATCG II 071130 15 / 19

Combined Test Case Generation: Overview

.java IUT
Code annotated
with JML

.java API
Signature with
JML contracts

Select
Test cases

Combined
ATCG

.java IUT′

Java Code

.java JUnit
Unit Tests
Java Code

User input

— Library — Automatically Generated

ProgVer: ATCG II 071130 16 / 19

Combined Test Case Generation: Overview

.java IUT
Code annotated
with JML

.java API
Signature with
JML contracts

Select
Test cases

Combined
ATCG

.java IUT′

Java Code

.java JUnit
Unit Tests
Java Code

User input — Library

— Automatically Generated

ProgVer: ATCG II 071130 16 / 19

Combined Test Case Generation: Overview

.java IUT
Code annotated
with JML

.java API
Signature with
JML contracts

Select
Test cases

Combined
ATCG

.java IUT′

Java Code

.java JUnit
Unit Tests
Java Code

User input — Library

— Automatically Generated

ProgVer: ATCG II 071130 16 / 19

Combined Test Case Generation: Overview

.java IUT
Code annotated
with JML

.java API
Signature with
JML contracts

Select
Test cases

Combined
ATCG

.java IUT′

Java Code

.java JUnit
Unit Tests
Java Code

User input — Library

— Automatically Generated

ProgVer: ATCG II 071130 16 / 19

Combined Test Case Generation: Overview

.java IUT
Code annotated
with JML

.java API
Signature with
JML contracts

Select
Test cases

Combined
ATCG

.java IUT′

Java Code

.java JUnit
Unit Tests
Java Code

User input — Library — Automatically Generated

ProgVer: ATCG II 071130 16 / 19

Demo: Test Generation

Stand-alone test generation tool KeY Unit Test Generator
Demo: javaws

! export CLASSPATH=/usr/share/java/junit.jar:.

! javaws http://www.key-project.org/download/testing/KeYTest.jnlp

! Load Examples/NatNumWrap/NaturalNumberWrapper.java

! Explain class

! Generate tests

! Run created JUnit test cases

! Inspect generated test cases to see failure-inducing test case

Inspect the failed test case file to see initial values

The bug is found even though it is not covered in the spec!

ProgVer: ATCG II 071130 17 / 19

Demo: Test Generation

Stand-alone test generation tool KeY Unit Test Generator
Demo: javaws

! export CLASSPATH=/usr/share/java/junit.jar:.

! javaws http://www.key-project.org/download/testing/KeYTest.jnlp

! Load Examples/NatNumWrap/NaturalNumberWrapper.java

! Explain class

! Generate tests

! Run created JUnit test cases

! Inspect generated test cases to see failure-inducing test case

Inspect the failed test case file to see initial values

The bug is found even though it is not covered in the spec!

ProgVer: ATCG II 071130 17 / 19

Summary

! Black box vs White box testing

! Black box testing ∼ Specification-based Test Generation

! White box testing ∼ Code-based Test Generation

! Systematic test case generation from Java code
guided by Symbolic Execution

! Symbolic Execution:
Path Condition + Symbolic State + Program Counter

! Test cases are models of path conditionsin terminating paths

! Coverage criteria, feasible branch coverage

! Postconditions of contract provide test oracle

! Combine Specification-based and Code-based Test Generation

ProgVer: ATCG II 071130 18 / 19

What Next?

Central Remaining Problem

! When does a program have no more bugs?
How to prove correctness without executing ∞ many paths?

Final Topic of Course

! Formally Verifying Program Correctness

ProgVer: ATCG II 071130 19 / 19

What Next?

Central Remaining Problem

! When does a program have no more bugs?
How to prove correctness without executing ∞ many paths?

Final Topic of Course

! Formally Verifying Program Correctness

ProgVer: ATCG II 071130 19 / 19

