
Program Verification
Automated Test Case Generation, Part I

Reiner Hähnle

27 November 2007

ProgVer: ATCG I 071127 1 / 28

Introduction

Now we can formally specify program behavior. How to make use of it?

Automated Test Case Generation (ATCG)

! tool support for creating test cases

! ensuring test case coverage methodically

View JML-annotated code as formal description of all anticipated runs

ATCG Principle

! Specialize contract/code to representative selection of concrete runs

! Turn these program runs into executable test cases

ProgVer: ATCG I 071127 2 / 28

Introduction

Now we can formally specify program behavior. How to make use of it?

Automated Test Case Generation (ATCG)

! tool support for creating test cases

! ensuring test case coverage methodically

View JML-annotated code as formal description of all anticipated runs

ATCG Principle

! Specialize contract/code to representative selection of concrete runs

! Turn these program runs into executable test cases

ProgVer: ATCG I 071127 2 / 28

Introduction

Now we can formally specify program behavior. How to make use of it?

Automated Test Case Generation (ATCG)

! tool support for creating test cases

! ensuring test case coverage methodically

View JML-annotated code as formal description of all anticipated runs

ATCG Principle

! Specialize contract/code to representative selection of concrete runs

! Turn these program runs into executable test cases

ProgVer: ATCG I 071127 2 / 28

Ideas Behind Automated Test Generation

Ideas common to systematic (automated) test generation

! Formal analysis of specification and/or code yields enough
information to produce test cases

! Systematic algorithms give certain coverage guarantees

! Post conditions can be turned readily into test oracles

! Mechanic reasoning technologies achieve automation:
constraint solving, deduction, symbolic execution, model finding

ProgVer: ATCG I 071127 3 / 28

Automated Test Generation Framework: Unit Tests

Test a single method or function, the implementation under test (IUT)

Create test case for popular Java unit test framework: Junit

Test Cases in Unit Testing

! Initialisation of test data (test fixture/preamble):
create program state from which IUT is started

! Invoke IUT

! Inspection of result: test oracle:
tell whether test succeeded: PASS or FAIL

ProgVer: ATCG I 071127 4 / 28

Black box vs White Box Testing

Black box testing

The IUT is unknown, test data generated from spec, randomly, etc.

White box testing

The IUT is analyzed to generate test data for it

Specific Pros and Cons

! White box testing can use additional information from code

" White box testing does require source code

! Black box testing does not require source code

" Black box testing can be irrelevant/insufficient for IUT

ProgVer: ATCG I 071127 5 / 28

Black box vs White Box Testing

Black box testing

The IUT is unknown, test data generated from spec, randomly, etc.

White box testing

The IUT is analyzed to generate test data for it

Specific Pros and Cons

! White box testing can use additional information from code

" White box testing does require source code

! Black box testing does not require source code

" Black box testing can be irrelevant/insufficient for IUT

ProgVer: ATCG I 071127 5 / 28

Black box vs White Box Testing

Black box testing

The IUT is unknown, test data generated from spec, randomly, etc.

White box testing

The IUT is analyzed to generate test data for it

Specific Pros and Cons

! White box testing can use additional information from code

" White box testing does require source code

! Black box testing does not require source code

" Black box testing can be irrelevant/insufficient for IUT

ProgVer: ATCG I 071127 5 / 28

Black box vs White Box Testing

Black box testing

The IUT is unknown, test data generated from spec, randomly, etc.

White box testing

The IUT is analyzed to generate test data for it

Specific Pros and Cons

! White box testing can use additional information from code

" White box testing does require source code

! Black box testing does not require source code

" Black box testing can be irrelevant/insufficient for IUT

ProgVer: ATCG I 071127 5 / 28

Program States and JML Expressions

Reminder

A given program state S makes a boolean JML expression true or false

Example

Assume that int[] arr has value {1,2} in S

Then “arr.length==2 && search(arr, 1)==0” is true in S

ProgVer: ATCG I 071127 6 / 28

Program States and Test Cases

A desired program state can be reached by suitable test case preamble

Example

Assume that int[] arr has value {1,2} in S
This state can be reached by the following preamble:

int [] arr = {1,2};

Assume we can compute such initialization code automatically

ProgVer: ATCG I 071127 7 / 28

Program States and Test Cases

A desired program state can be reached by suitable test case preamble

Example

Assume that int[] arr has value {1,2} in S
This state can be reached by the following preamble:

int [] arr = {1,2};

Assume we can compute such initialization code automatically

ProgVer: ATCG I 071127 7 / 28

Program States and Test Cases

A desired program state can be reached by suitable test case preamble

Example

Assume that int[] arr has value {1,2} in S
This state can be reached by the following preamble:

int [] arr = {1,2};

Assume we can compute such initialization code automatically

ProgVer: ATCG I 071127 7 / 28

Specification-Based Test Generation

Generate test cases from analysing
formal specification or formal model of IUT

! Black box technology with according pros and cons

! Many tools, commercial as well as academic:
JMLUnit, BZ-TT, JML-TT, UniTesK, JTest,
TestEra, Cow Suite, UTJML, . . .

! Various specification languages: B, Z, Statecharts, JML, . . .

! Detailed formal specification/system model required

ProgVer: ATCG I 071127 8 / 28

Test Generation Principle

View JML contract as formal description of all anticipated runs

Specification-Based Test Generation Principle

! Specialize JML contract to representative selection of concrete runs

! Turn these program runs into executable test cases

ProgVer: ATCG I 071127 9 / 28

Contracts and Test Cases

/*@
@ Pre;
@ Post;
@*/

m() { ... };

All prerequisites for intended behavior contained in requires clause

Unless doing robustness testing, consider unintended behavior irrelevant

Test Generation Principle 1

Test data must make required precondition true

ProgVer: ATCG I 071127 10 / 28

Contracts and Test Cases

/*@
@ Pre;
@ Post;
@*/

m() { ... };

All prerequisites for intended behavior contained in requires clause

Unless doing robustness testing, consider unintended behavior irrelevant

Test Generation Principle 1

Test data must make required precondition true

ProgVer: ATCG I 071127 10 / 28

Multi-Part Contracts and Test Cases

/*@
@ Pre1;
@ Post1;
@
@ ...
@
@
@ Pren;
@ Postn;
@*/

m() { ... };

Test Generation Principle 2

There must be at least one test case for each operation contract

ProgVer: ATCG I 071127 11 / 28

Example

Traffic {
/*@ @*/ red, green, yellow;
/*@ @*/ drive, brake, halt;

/*@
@ red || yellow || green;
@ (red) ==> halt &&
@ (yellow) ==> brake;
@*/

setAction() {
// implementation

}
}

Which test cases should be generated?

ProgVer: ATCG I 071127 12 / 28

Data-Driven Test Case Generation

Generate a test case for each possible value of each input variable

" Combinatorial explosion (already 25 cases for our simple example)

" Infinitely many test cases for unbounded data structures

" Test cases unrelated to specification or IUT

Restriction to test cases that satisfy precondition?

Insufficient (still too many), but gives the right clue!

ProgVer: ATCG I 071127 13 / 28

Data-Driven Test Case Generation

Generate a test case for each possible value of each input variable

" Combinatorial explosion (already 25 cases for our simple example)

" Infinitely many test cases for unbounded data structures

" Test cases unrelated to specification or IUT

Restriction to test cases that satisfy precondition?

Insufficient (still too many), but gives the right clue!

ProgVer: ATCG I 071127 13 / 28

Data-Driven Test Case Generation

Generate a test case for each possible value of each input variable

" Combinatorial explosion (already 25 cases for our simple example)

" Infinitely many test cases for unbounded data structures

" Test cases unrelated to specification or IUT

Restriction to test cases that satisfy precondition?

Insufficient (still too many), but gives the right clue!

ProgVer: ATCG I 071127 13 / 28

Disjunctive Partitioning

/*@
@ red || yellow || green;
@ (red) ==> halt &&
@ (yellow) ==> brake;
@*/

Disjunctive analysis suggests at least three test cases related to
precondition

ProgVer: ATCG I 071127 14 / 28

Disjunctive Normal Form

Disjunctive Normal Form (DNF)

Assume the requires clause has the form

C1 || C2 || · · · || Cn

where each Ci does not contain an explicit or implicit disjunction.

Test Generation Principle 3

For each disjunct of precondition in DNF create test case making it true

ProgVer: ATCG I 071127 15 / 28

Disjunctive Normal Form

Disjunctive Normal Form (DNF)

Assume the requires clause has the form

C1 || C2 || · · · || Cn

where each Ci does not contain an explicit or implicit disjunction.

Test Generation Principle 3

For each disjunct of precondition in DNF create test case making it true

ProgVer: ATCG I 071127 15 / 28

Disjunctive Normal Form

Disjunctive Normal Form (DNF)

Assume the requires clause has the form

C1 || C2 || · · · || Cn

where each Ci does not contain an explicit or implicit disjunction.

Test Generation Principle 3

For each disjunct of precondition in DNF create test case making it true

Example

red || yellow || green;

Gives rise to three test cases red=true; yellow=green=false;, etc.

ProgVer: ATCG I 071127 15 / 28

Disjunctive Normal Form

Disjunctive Normal Form (DNF)

Assume the requires clause has the form

C1 || C2 || · · · || Cn

where each Ci does not contain an explicit or implicit disjunction.

Test Generation Principle 3

For each disjunct of precondition in DNF create test case making it true

Importance of Establishing DNF

Implicit disjunctions must be made explicit by computing DNF:

Replace A ==> B with !A || B, etc.

ProgVer: ATCG I 071127 15 / 28

Test Coverage Criteria

Example

red || yellow || green;

is true even for red=yellow=green=true;

Possible to generate a test case for each state making precondition true

(Specification-based) Test Coverage Criterion

How many different test cases to create that make precondition true?

! At least one (Decision Coverage)

! . . .

! All (Multiple Condition Coverage)

ProgVer: ATCG I 071127 16 / 28

Test Coverage Criteria

Example

red || yellow || green;

is true even for red=yellow=green=true;

Possible to generate a test case for each state making precondition true

(Specification-based) Test Coverage Criterion

How many different test cases to create that make precondition true?

! At least one (Decision Coverage)

! . . .

! All (Multiple Condition Coverage)

ProgVer: ATCG I 071127 16 / 28

Test Coverage Criteria

Example

red || yellow || green;

is true even for red=yellow=green=true;

Possible to generate a test case for each state making precondition true

(Specification-based) Test Coverage Criterion

How many different test cases to create that make precondition true?

! At least one (Decision Coverage)

! . . .

! All (Multiple Condition Coverage)

ProgVer: ATCG I 071127 16 / 28

Consistent Test Cases

Example (Class invariant specified in JML)

Traffic {
/*@ (red ==> !green && !yellow) &&
@ (yellow ==> !green && !red) &&
@ (green ==> !yellow && !red);
@*/

/*@ @*/ red, green, yellow;

/*@
@ red || yellow || green;
@ ...

The program state red=yellow=green=true; violates the class invariant

ProgVer: ATCG I 071127 17 / 28

Consistent Test Cases

Example (Class invariant specified in JML)

Traffic {
/*@ (red ==> !green && !yellow) &&
@ (yellow ==> !green && !red) &&
@ (green ==> !yellow && !red);
@*/

/*@ @*/ red, green, yellow;

/*@
@ red || yellow || green;
@ ...

The program state red=yellow=green=true; violates the class invariant

If the class invariant always holds when a method is called, there is no
point to generate test cases from program states violating it

ProgVer: ATCG I 071127 17 / 28

Consistent Test Cases

Example (Class invariant specified in JML)

Traffic {
/*@ (red ==> !green && !yellow) &&
@ (yellow ==> !green && !red) &&
@ (green ==> !yellow && !red);
@*/

/*@ @*/ red, green, yellow;

/*@
@ red || yellow || green;
@ ...

The program state red=yellow=green=true; violates the class invariant

Test Generation Principle 4

Generate test cases from states that do not violate the class invariant

ProgVer: ATCG I 071127 17 / 28

Dealing with Large Datatypes (First-Order Logic)

Example (Square root)

/*@
@ (r; r >= 0 && r*r == n);
@ * == n;
@*/

sqrt(n) { ... }

ProgVer: ATCG I 071127 18 / 28

Dealing with Large Datatypes (First-Order Logic)

Example (Square root)

/*@
@ (r; r >= 0 && r*r == n);
@ * == n;
@*/

sqrt(n) { ... }

Where is the disjunction?

ProgVer: ATCG I 071127 18 / 28

Dealing with Large Datatypes (First-Order Logic)

Example (Square root)

/*@
@ (r; r >= 0 && r*r == n);
@ * == n;
@*/

sqrt(n) { ... }

Existential quantifier as disjunction

! Existentially quantified expression (\exists int r; P(r))

! Rewrite as: P(MIN_VALUE)|| ... || P(0)|| ... || P(MAX_VALUE)

! Get rid of those P(i) that are false: P(0) || ... || P(MAX_VALUE)

ProgVer: ATCG I 071127 18 / 28

Equivalence Classes on Input Domains

Example (Square root)

/*@
@ (r; r >= 0 && r*r == n);
@ * == n;
@*/

sqrt(n) { ... }

ProgVer: ATCG I 071127 19 / 28

Equivalence Classes on Input Domains

Example (Square root)

/*@
@ (r; r >= 0 && r*r == n);
@ * == n;
@*/

sqrt(n) { ... }

Too many test cases from existential quantifier!
n = 0*0;, n = 1*1;, . . . , n = MAX_VALUE*MAX_VALUE;

ProgVer: ATCG I 071127 19 / 28

Equivalence Classes on Input Domains

Example (Square root)

/*@
@ (r; r >= 0 && r*r == n);
@ * == n;
@*/

sqrt(n) { ... }

Partition large/infinite domains in finitely many equivalence classes

MIN VALUE negative values 0 positive values MAX VALUE

−231 −17 0 42 231 − 1

. . . and create test case for only one representative of each

ProgVer: ATCG I 071127 19 / 28

Boundary Values

Example (Square root)

/*@
@ (r; r >= 0 && r*r == n);
@ * == n;
@*/

sqrt(n) { ... }

Choice of r=MAX_VALUE exhibits defective spec for overflow

Test Generation Principle 5

Include boundary values of ordered domains as class representatives

ProgVer: ATCG I 071127 20 / 28

Boundary Values

Example (Square root)

/*@
@ (r; r >= 0 && r*r == n);
@ * == n;
@*/

sqrt(n) { ... }

Choice of r=MAX_VALUE exhibits defective spec for overflow

Test Generation Principle 5

Include boundary values of ordered domains as class representatives

ProgVer: ATCG I 071127 20 / 28

Boundary Values

Example (Square root)

/*@
@ (r; r >= 0 && r*r == n)
@ && n <= MAX_VALUE;
@ * == n;
@*/

sqrt(n) { ... }

Choosing exact boundary value for n amounts to computing result
Computing exact boundary values can be difficult or impossible!

Test Generation Principle 5

Include boundary values of ordered domains as class representatives

ProgVer: ATCG I 071127 20 / 28

Implicit Disjunctions, Part I

Example (Binary search, target not found)

/*@
@ (i; 0 < i && i < array.length
@ ==> array[i-1] <= array[i]);
@ (i; 0 <= i && i < array.length
@ ==> array[i] != target);
@ == -1;
@*/

search(array[], target) { ... }

ProgVer: ATCG I 071127 21 / 28

Implicit Disjunctions, Part I

Example (Binary search, target not found)

/*@
@ (i; 0 < i && i < array.length
@ ==> array[i-1] <= array[i]);
@ (i; 0 <= i && i < array.length
@ ==> array[i] != target);
@ == -1;
@*/

search(array[], target) { ... }

No disjunction in precondition!?

ProgVer: ATCG I 071127 21 / 28

Implicit Disjunctions, Part I

Example (Binary search, target not found)

/*@
@ (i; 0 < i && i < array.length
@ ==> array[i-1] <= array[i]);
@ (i; 0 <= i && i < array.length
@ ==> array[i] != target);
@ == -1;
@*/

search(array[], target) { ... }

We can freely choose array in precondition!

ProgVer: ATCG I 071127 21 / 28

Data Generation Principles

Test Generation Principle 6

Values of variables without explicit quantification can be freely chosen

Systematic enumeration of values by data generation principle

Assume declaration: int[] ar;, then the array ar is

1. either the null array: int[] ar = null;

2. or the empty array of type int: int[] ar = new int[0];
3. or an int array with one element

3.a int[] ar = { MIN VALUE };
3.b . . .
3.ω int[] ar = { MAX VALUE };

4. or an int array with two elements . . .

n. or an int array with n elements . . .

ProgVer: ATCG I 071127 22 / 28

Data Generation Principles

Test Generation Principle 6

Values of variables without explicit quantification can be freely chosen

Systematic enumeration of values by data generation principle

Assume declaration: int[] ar;, then the array ar is

1. either the null array: int[] ar = null;

2. or the empty array of type int: int[] ar = new int[0];
3. or an int array with one element

3.a int[] ar = { MIN VALUE };
3.b . . .
3.ω int[] ar = { MAX VALUE };

4. or an int array with two elements . . .

n. or an int array with n elements . . .

ProgVer: ATCG I 071127 22 / 28

Combining the Test Generation Principles

Example (Binary search, target found)

(\ i; 0 <= i && i < array.length
&& array[i] == target) &&

(\ i; 0 < i && i < array.length
==> array[i-1] <= array[i]);

Apply test generation principles

! Use data generation principle for int arrays

! Choose equivalence classes and representatives of int, int[]:
empty array, singleton, two elements
0, 1

! Generate all test cases that make precondition true

ProgVer: ATCG I 071127 23 / 28

Combining the Test Generation Principles

Example (Binary search, target found)

(\ i; 0 <= i && i < array.length
&& array[i] == target) &&

(\ i; 0 < i && i < array.length
==> array[i-1] <= array[i]);

! empty array: precondition cannot be made true, no test case

! singleton array, target must be only array element
array = { 0 }; target = 0;
array = { 1 }; target = 1;

! two-element sorted array, target occurs in array, four tests
array = { 0,0 }; target = 0;
array = { 0,1 }; target = 0;
etc.

ProgVer: ATCG I 071127 23 / 28

Implicit Disjunctions, Part II

Example (Copy)

/*@
@ src != && dst != ;
@ ...
@*/

java.util.Collections.copy (List src,List dst)

ProgVer: ATCG I 071127 24 / 28

Implicit Disjunctions, Part II

Example (Copy)

/*@
@ src != && dst != ;
@ ...
@*/

java.util.Collections.copy (List src,List dst)

Aliasing and Exceptions

In Java object references src, dst can be aliased, ie, src==dst

! Admission of aliasing often unintended in contract

Forgotten protection against runtime exceptions
src.length <= dst.length

ProgVer: ATCG I 071127 24 / 28

Implicit Disjunctions, Part II

Example (Copy)

/*@
@ src != && dst != ;
@ ...
@*/

java.util.Collections.copy (List src,List dst)

Test Generation Principle 7

Generate separate test cases that enforce aliasing and raising exceptions

ProgVer: ATCG I 071127 24 / 28

The Postcondition as Test Oracle

Oracle Problem in Automated Testing
How to determine automatically whether a test run succeeded?

The “ensures” clause of a JML contract tells exactly this
provided that “requires” clause is true for given test case

Test Generation Principle 1

Test data must make required precondition true

Test Generation Principle 8

Use “ensures” clauses (postconditions) of JML contracts as test oracles

ProgVer: ATCG I 071127 25 / 28

The Postcondition as Test Oracle

Oracle Problem in Automated Testing
How to determine automatically whether a test run succeeded?

The “ensures” clause of a JML contract tells exactly this
provided that “requires” clause is true for given test case

Test Generation Principle 1

Test data must make required precondition true

Test Generation Principle 8

Use “ensures” clauses (postconditions) of JML contracts as test oracles

ProgVer: ATCG I 071127 25 / 28

The Postcondition as Test Oracle

Oracle Problem in Automated Testing
How to determine automatically whether a test run succeeded?

The “ensures” clause of a JML contract tells exactly this
provided that “requires” clause is true for given test case

Test Generation Principle 1

Test data must make required precondition true

Test Generation Principle 8

Use “ensures” clauses (postconditions) of JML contracts as test oracles

ProgVer: ATCG I 071127 25 / 28

Executable JML Expressions

How to determine whether a JML expression is true in a program state?

Example

\ i; 0 <= i && i < ar.length && ar[i] == target

is of the form

\ i; guard(i) && test(i)

! guard() is Java guard expression with fixed upper/lower bound

! test() is executable Java expression

ProgVer: ATCG I 071127 26 / 28

Executable JML Expressions

How to determine whether a JML expression is true in a program state?

Example

\ i; 0 <= i && i < ar.length && ar[i] == target

is of the form

\ i; guard(i) && test(i)

! guard() is Java guard expression with fixed upper/lower bound

! test() is executable Java expression

ProgVer: ATCG I 071127 26 / 28

Executable JML Expressions

How to determine whether a JML expression is true in a program state?

Example

\ i; 0 <= i && i < ar.length && ar[i] == target

is of the form

\ i; guard(i) && test(i)

! guard() is Java guard expression with fixed upper/lower bound

! test() is executable Java expression

Guarded existential JML quantifiers as Java (Example)

for (int i = 0; 0 <= i && i < ar.length; i++) {
i f (ar[i]== target) { return true; }

} return f a l s e ;

ProgVer: ATCG I 071127 26 / 28

Executable JML Expressions

How to determine whether a JML expression is true in a program state?

Example

\ i; 0 <= i && i < ar.length && ar[i] == target

is of the form

\ i; guard(i) && test(i)

! guard() is Java guard expression with fixed upper/lower bound

! test() is executable Java expression

Guarded existential JML quantifiers as Java (General)

for (int i = lowerBound; guard(i); i++) {
i f (test(i)) { return true; }

} return f a l s e ;

ProgVer: ATCG I 071127 26 / 28

Executable JML Expressions

How to determine whether a JML expression is true in a program state?

Example

\ i; 0 <= i && i < ar.length && ar[i] == target

is of the form

\ i; guard(i) && test(i)

! guard() is Java guard expression with fixed upper/lower bound

! test() is executable Java expression

Guarded JML quantifiers as Java

! Universal quantifiers treated similarly (exercise)

! Alternative JML syntax for quantifiers ok as well:

\ i; guard(i) ; test(i)

ProgVer: ATCG I 071127 26 / 28

Summary

! Black box vs White box testing

! Black box testing ∼ Specification-based Test Generation

! Systematic test case generation from JML contracts
guided by Test Generation Principles

! Only generate test cases that make precondition true

! Each operation contract and each disjunction in precondition
gives rise to a separate test case

! Coverage criteria, decision coverage

! Large/infinite datatypes represented by class representatives

! Values of free variables supplied by Data Generation Principle

! Create separate test cases for potential aliases and exceptions

! Postconditions of contract provide test oracle

! Turn pre- and postconditions into executable Java code

ProgVer: ATCG I 071127 27 / 28

What Next?

Remaining Problems of ATCG

1. How to automate specification-based test generation?

2. Generated test cases have no relation to implementation

1. Tools jml-junit and jtest discussed in Exercises

2. Code-based test generation that uses symbolic execution of IUT

ProgVer: ATCG I 071127 28 / 28

What Next?

Remaining Problems of ATCG

1. How to automate specification-based test generation?

2. Generated test cases have no relation to implementation

1. Tools jml-junit and jtest discussed in Exercises

2. Code-based test generation that uses symbolic execution of IUT

ProgVer: ATCG I 071127 28 / 28

