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State Dependency of Formula Evaluation

Closed FOL formula is either valid or not wrt model M

Consider M = (D, δ,I) to be static part of snapshot , ie state

Let x be program (local) variable or attribute

Execution of program p may change state, ie value of x
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State Dependency of Formula Evaluation

Closed FOL formula is either valid or not wrt model M

Consider M = (D, δ,I) to be static part of snapshot , ie state

Let x be program (local) variable or attribute

Execution of program p may change state, ie value of x

Example

Executing x = 3; results in M such that M |= x
.
= 3

Executing x = 4; results in M such that M 6|= x
.
= 3
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State Dependency of Formula Evaluation

Closed FOL formula is either valid or not wrt model M

Consider M = (D, δ,I) to be static part of snapshot , ie state

Let x be program (local) variable or attribute

Execution of program p may change state, ie value of x

Example

Executing x = 3; results in M such that M |= x
.
= 3

Executing x = 4; results in M such that M 6|= x
.
= 3

Need a logic to capture state before/after program executio n
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Rigid versus Flexible Symbols

Signature of program logic defined as in FOL, but :

In addition there are program variables, attributes, etc.

Rigid versus Flexible
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Rigid versus Flexible Symbols

Signature of program logic defined as in FOL, but :

In addition there are program variables, attributes, etc.

Rigid versus Flexible

Rigid symbols, same interpretation in all execution states

Needed, for example, to hold initial value of program variab le

Logical variables and built-in functions/predicates are rigid
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Rigid versus Flexible Symbols

Signature of program logic defined as in FOL, but :

In addition there are program variables, attributes, etc.

Rigid versus Flexible

Rigid symbols, same interpretation in all execution states

Needed, for example, to hold initial value of program variab le

Logical variables and built-in functions/predicates are rigid

Non-rigid (or flexible ) symbols, interpretation depends on state

Needed to capture state change after program execution

Functions modeling program variables and attributes are flexible
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Signature of Dynamic Logic (Simple Version)

Given type hierarchy Tq = {int, boolean, ⊤}

Signature Σ = (VSym , PSym , FSym , PVSym , α)

Variable Symbols VSym = {xi | i ∈ IN}

Rigid Predicate Symbols PSym r = {>, >=, . . . ,}

Rigid Function Symbols FSym r = {+, −, ∗, 0, 1, TRUE, FALSE}

Non-rigid Function Symbols FSym nr = {i, j, k, . . . , p, q, r, . . .}
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Signature of Dynamic Logic (Simple Version)

Given type hierarchy Tq = {int, boolean, ⊤}

Signature Σ = (VSym , PSym , FSym , PVSym , α)

Variable Symbols VSym = {xi | i ∈ IN}

Rigid Predicate Symbols PSym r = {>, >=, . . . ,}

Rigid Function Symbols FSym r = {+, −, ∗, 0, 1, TRUE, FALSE}

Non-rigid Function Symbols FSym nr = {i, j, k, . . . , p, q, r, . . .}

Typing function α for all symbols:

α(j) ∈ {int, boolean} for all j ∈ FSymnr

When b :→ boolean, write boolean b, etc.;, use as program variable

Standard typing for rigid function/predicate symbols

For example, TRUE :→ boolean, > : int,int
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Terms

First-order terms may contain rigid and non-rigid symbols

Different syntactic categories: FSym r ∩ FSymnr = ∅

Program variables are non-rigid (=flexible) constants

Emphasize distinction to variables VSym: call them logical variables

A term containing at least one flexible symbol is flexible , otherwise rigid
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Terms

First-order terms may contain rigid and non-rigid symbols

Different syntactic categories: FSym r ∩ FSymnr = ∅

Program variables are non-rigid (=flexible) constants

Emphasize distinction to variables VSym: call them logical variables

A term containing at least one flexible symbol is flexible , otherwise rigid

Examples

VSym = {x : int, b : boolean}
FSymnr = {int j, boolean p}

Well-formed terms: j+x, j, b

Ill-formed terms: j+ b, j+ p

– p.5/30



Atomic Programs

Atomic Programs Π0

Assignments j = t with:
z j ∈ FSymnr, t term of type z without logical variables
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Atomic Programs

Atomic Programs Π0

Assignments j = t with:
z j ∈ FSymnr, t term of type z without logical variables

Examples

VSym = {x : int, b : boolean}
FSymnr = {int j, boolean p}

Well-formed atomic programs: j = j+ 1, j = 0, p = FALSE

Ill-formed atomic programs: j = j+x, x= 1, j
.
= j, p = 0
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Dynamic Logic (Simple Version) Programs

Programs Π

If π is an atomic program, then π; is a program

If p and q are programs, then pq is a program

If b is a variable-free term of type boolean, p and q programs, then

i f (b) {p} el se {q};

is a program

If b is a variable-free term of type boolean, p a program, then

while (b) {p};

is a program

Programs contain no logical variables
– p.7/30



Dynamic Logic Syntax Example

Given signature

PSymr = {<}

FSymr = {0, +, −}

FSymnr = {int i, int r, int n}

An admissible DL program p:

i=0;

r=0;

while (i<n) {

i=i+1;

r=r+i;

};

r=r+r-n;

What does p compute?
– p.8/30



Dynamic Logic (Simple Version) Formulas

Dynamic Logic Formulas (DL Formulas)

Each FOL formula is a DL formula

DL formulas closed under FOL operators and connectives

If p is a program and φ a DL formula then
〈p〉φ is a DL formula

[p]φ is a DL-Formula

Program variables are constants: never bound in quantifiers

Programs contain no logical variables

The operators 〈 〉 and [ ] can be arbitrarily nested

– p.9/30



Dynamic Logic Syntax Example

Check for syntactic well-formedness and derive the signatu re

∀y. ((〈x = 1;〉x
.
= y) <-> (〈x = 1 ∗ 1;〉x

.
= y)) Syntax ?
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Dynamic Logic Syntax Example

Check for syntactic well-formedness and derive the signatu re

∀y. ((〈x = 1;〉x
.
= y) <-> (〈x = 1 ∗ 1;〉x

.
= y)) ok (y : int)
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Dynamic Logic Syntax Example

Check for syntactic well-formedness and derive the signatu re

∀y. ((〈x = 1;〉x
.
= y) <-> (〈x = 1 ∗ 1;〉x

.
= y)) ok (y : int)

∃x. ([x = 1;] (x
.
= 1)) Syntax ?
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Dynamic Logic Syntax Example

Check for syntactic well-formedness and derive the signatu re

∀y. ((〈x = 1;〉x
.
= y) <-> (〈x = 1 ∗ 1;〉x

.
= y)) ok (y : int)

∃x. ([x = 1;] (x
.
= 1)) bad

x cannot be logical variable , because it occurs in program

x cannot be program variable , because it is quantified
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Dynamic Logic Syntax Example

Check for syntactic well-formedness and derive the signatu re

∀y. ((〈x = 1;〉x
.
= y) <-> (〈x = 1 ∗ 1;〉x

.
= y)) ok (y : int)

∃x. ([x = 1;] (x
.
= 1)) bad

x cannot be logical variable , because it occurs in program

x cannot be program variable , because it is quantified

〈x = 1;〉 ([while (true) {}] false) Syntax ?

– p.10/30



Dynamic Logic Syntax Example

Check for syntactic well-formedness and derive the signatu re

∀y. ((〈x = 1;〉x
.
= y) <-> (〈x = 1 ∗ 1;〉x

.
= y)) ok (y : int)

∃x. ([x = 1;] (x
.
= 1)) bad

x cannot be logical variable , because it occurs in program

x cannot be program variable , because it is quantified

〈x = 1;〉 ([while (true) {}] false) ok (int x)

Program formulas can appear nested

– p.10/30



More Examples of DL Formulas

1. x
.
= i & y

.
= j -> 〈z = x;x = y;y = x; 〉x

.
= j & y

.
= i

2. x
.
= 3 | y

.
= −2 -> 〈y = x ∗ x− x+ 6; 〉y

.
= 0

3. 〈if 0 <= a then {} else {a = −a;}〉0 <= a

4. 〈while (c <= n− 1) {p = p+ m;c = c+ 1;}〉 p
.
= m ∗ m

– p.11/30



Dynamic Logic Semantics: States

First-order model can be considered as (execution) state

Interpretation of non-rigid symbols can vary from state to state

(eg, program variables)

Interpretation of rigid symbols is the same in all states

(eg, built-in functions and predicates)

State = First-order model :

M = s = (D, δ,I) over FSym = FSymr ∪ FSymnr

Set of all states s is S

– p.12/30



Dynamic Logic Semantics: Kripke Structure

Kripke structure K = (S,ρ)

State (model) s = (D, δ,I) ∈ S and ρ : Π → (S → S) ρ(p), ρ(q)
a

a

s1 s2

s4

s5 s6 s3

q

p q

q

p
q

p

a

Each state is first-order model s = (D, δ,I) over same domain D
– p.13/30



Dynamic Logic Semantics: Program Formulas

s,β |= 〈p〉φ iff ρ(p)(s), β |= φ and ρ(p)(s) defined

p terminates and φ is true in the final state after execution

a

a

s1 s2

s4

s5 s6 s3

q

p q

q

p
q

p

a
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Dynamic Logic Semantics: Program Formulas

s,β |= 〈p〉φ iff ρ(p)(s), β |= φ and ρ(p)(s) defined

p terminates and φ is true in the final state after execution

s,β |= [p]φ iff ρ(p)(s), β |= φ whenever ρ(p)(s) defined

If p terminates then φ is true in the final state after execution

a

a

s1 s2

s4

s5 s6 s3

q

p q

q

p
q

p

a
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Dynamic Logic Semantics Example

Boolean program variables

FSymnr = {boolean a, boolean b, boolean c, . . .}
a

a

s1
a, b

s2
c

s4
a

s5 s6 s3

q

p q

q

p
q

p

a
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Dynamic Logic Semantics Example

Boolean program variables

FSymnr = {boolean a, boolean b, boolean c, . . .}
a

a

s1
a, b

s2
c

s4
a

s5 s6 s3

q

p q

q

p
q

p

a

s1 |= 〈p〉a
.
= TRUE ?
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Dynamic Logic Semantics Example

Boolean program variables

FSymnr = {boolean a, boolean b, boolean c, . . .}
a

a

s1
a, b

s2
c

s4
a

s5 s6 s3

q

p q

q

p
q

p

a

s1 |= 〈p〉a
.
= TRUE (ok) ,

– p.15/30



Dynamic Logic Semantics Example

Boolean program variables

FSymnr = {boolean a, boolean b, boolean c, . . .}
a

a

s1
a, b

s2
c

s4
a

s5 s6 s3

q

p q

q

p
q

p

a

s1 |= 〈p〉a
.
= TRUE (ok) , s1 |= 〈q〉a

.
= TRUE ?
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Dynamic Logic Semantics Example

Boolean program variables

FSymnr = {boolean a, boolean b, boolean c, . . .}
a

a

s1
a, b

s2
c

s4
a

s5 s6 s3

q

p q

q

p
q

p

a

s1 |= 〈p〉a
.
= TRUE (ok) , s1 |= 〈q〉a

.
= TRUE (—)
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Dynamic Logic Semantics Example

Boolean program variables

FSymnr = {boolean a, boolean b, boolean c, . . .}
a

a

s1
a, b

s2
c

s4
a

s5 s6 s3

q

p q

q

p
q

p

a

s1 |= 〈p〉a
.
= TRUE (ok) , s1 |= 〈q〉a

.
= TRUE (—)

s5 |= 〈q〉a
.
= TRUE ? – p.15/30



Dynamic Logic Semantics Example

Boolean program variables

FSymnr = {boolean a, boolean b, boolean c, . . .}
a

a

s1
a, b

s2
c

s4
a

s5 s6 s3

q

p q

q

p
q

p

a

s1 |= 〈p〉a
.
= TRUE (ok) , s1 |= 〈q〉a

.
= TRUE (—)

s5 |= 〈q〉a
.
= TRUE (—), – p.15/30



Dynamic Logic Semantics Example

Boolean program variables

FSymnr = {boolean a, boolean b, boolean c, . . .}
a

a

s1
a, b

s2
c

s4
a

s5 s6 s3

q

p q

q

p
q

p

a

s1 |= 〈p〉a
.
= TRUE (ok) , s1 |= 〈q〉a

.
= TRUE (—)

s5 |= 〈q〉a
.
= TRUE (—), s5 |= [q]a

.
= TRUE? – p.15/30



Dynamic Logic Semantics Example

Boolean program variables

FSymnr = {boolean a, boolean b, boolean c, . . .}
a

a

s1
a, b

s2
c

s4
a

s5 s6 s3

q

p q

q

p
q

p

a

s1 |= 〈p〉a
.
= TRUE (ok) , s1 |= 〈q〉a

.
= TRUE (—)

s5 |= 〈q〉a
.
= TRUE (—), s5 |= [q]a

.
= TRUE (ok) – p.15/30



Program Correctness

s,β |= 〈p〉φ

p totally correct (with respect to φ) in s,β

– p.16/30



Program Correctness

s,β |= 〈p〉φ

p totally correct (with respect to φ) in s,β

s,β |= [p]φ

p partially correct (with respect to φ) in s,β
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Program Correctness

s,β |= 〈p〉φ

p totally correct (with respect to φ) in s,β

s,β |= [p]φ

p partially correct (with respect to φ) in s,β

Duality 〈p〉φ iff ! [p] !φ

Exercise: justify this with semantic definitions
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Program Correctness

s,β |= 〈p〉φ

p totally correct (with respect to φ) in s,β

s,β |= [p]φ

p partially correct (with respect to φ) in s,β

Duality 〈p〉φ iff ! [p] !φ

Exercise: justify this with semantic definitions

Implication if 〈p〉φ then [p]φ

Total correctness implies partial correctness
(holds only for deterministic programs)

– p.16/30



Semantics of Sequents

Let Γ = {φ1, . . . , φn} ⊆ For and ∆ = {ψ1, . . . ,ψm} ⊆ For

Recall: s |= (Γ ==> ∆) iff s |= (φ1& · · ·&φn) -> (ψ1| · · · |ψm)

Semantics of DL sequents should be defined identically with s emantics
of FOL sequents (assume Γ, ∆ are sets of closed DL formulas):

Γ ==> ∆ is valid iff s |= (Γ ==> ∆) in all states s
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Semantics of Sequents

Let Γ = {φ1, . . . , φn} ⊆ For and ∆ = {ψ1, . . . ,ψm} ⊆ For

Recall: s |= (Γ ==> ∆) iff s |= (φ1& · · ·&φn) -> (ψ1| · · · |ψm)

Semantics of DL sequents should be defined identically with s emantics
of FOL sequents (assume Γ, ∆ are sets of closed DL formulas):

Γ ==> ∆ is valid iff s |= (Γ ==> ∆) in all states s

Consequence for program variables

In valid formulas they represent any possible value of their type

– p.17/30



Initial States

How to restrict validity to set of initial states S0 ⊆ S ?

1. Design closed FOL formula Init with

s |= Init iff s ∈ S0

2. Use sequent Γ, Init ==> ∆

Later: simple method for specifying initial value of program variables

– p.18/30



Dynamic Logic Semantics: States, Updates

States s = (D, δ,I) all have

• the same domain D (all objects present from start)

• the same typing function δ (dynamic type never changes)

May assume ρ(p) works on interpretations I

Define I, β |= φ as s,β |= φ, where s = (D, δ,I)

Program variables j as flexible constants in s with value I(j)
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Dynamic Logic Semantics: States, Updates

States s = (D, δ,I) all have

• the same domain D (all objects present from start)

• the same typing function δ (dynamic type never changes)

May assume ρ(p) works on interpretations I

Define I, β |= φ as s,β |= φ, where s = (D, δ,I)

Program variables j as flexible constants in s with value I(j)

Modified state update of I at j of type z with d ∈ Dz

Id
j (x) =











I(x) x 6= j

d x = j

Cf. modified variable assignment
– p.19/30



Operational Semantics of Programs

State transformation ρ defines semantics of programs

Same ρ for all programs, so not part of s

ρ(x = t;)(I) = I
valI,β(t)
x (can ignore β)
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Operational Semantics of Programs

State transformation ρ defines semantics of programs

Same ρ for all programs, so not part of s

ρ(x = t;)(I) = I
valI,β(t)
x (can ignore β)

ρ(if (b) {p} else {q};)(I) =











ρ(p)(I) I |= b
.
= TRUE

ρ(q)(I) otherwise
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Operational Semantics of Programs

State transformation ρ defines semantics of programs

Same ρ for all programs, so not part of s

ρ(x = t;)(I) = I
valI,β(t)
x (can ignore β)

ρ(if (b) {p} else {q};)(I) =











ρ(p)(I) I |= b
.
= TRUE

ρ(q)(I) otherwise

ρ(pq)(I) = ρ(q)(ρ(p)(I)), if ρ(p)(I) defined, undefined otherwise
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Operational Semantics of Programs

State transformation ρ defines semantics of programs

Same ρ for all programs, so not part of s

ρ(x = t;)(I) = I
valI,β(t)
x (can ignore β)

ρ(if (b) {p} else {q};)(I) =











ρ(p)(I) I |= b
.
= TRUE

ρ(q)(I) otherwise

ρ(pq)(I) = ρ(q)(ρ(p)(I)), if ρ(p)(I) defined, undefined otherwise

ρ(while (b) {p};)(I) = I ′ iff there are I = I0, . . . ,In = I ′ such that
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Operational Semantics of Programs

State transformation ρ defines semantics of programs

Same ρ for all programs, so not part of s

ρ(x = t;)(I) = I
valI,β(t)
x (can ignore β)

ρ(if (b) {p} else {q};)(I) =











ρ(p)(I) I |= b
.
= TRUE

ρ(q)(I) otherwise

ρ(pq)(I) = ρ(q)(ρ(p)(I)), if ρ(p)(I) defined, undefined otherwise

ρ(while (b) {p};)(I) = I ′ iff there are I = I0, . . . ,In = I ′ such that

• Ij , β |= b
.
= TRUE for 0 ≤ j < n
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Operational Semantics of Programs

State transformation ρ defines semantics of programs

Same ρ for all programs, so not part of s

ρ(x = t;)(I) = I
valI,β(t)
x (can ignore β)

ρ(if (b) {p} else {q};)(I) =











ρ(p)(I) I |= b
.
= TRUE

ρ(q)(I) otherwise

ρ(pq)(I) = ρ(q)(ρ(p)(I)), if ρ(p)(I) defined, undefined otherwise

ρ(while (b) {p};)(I) = I ′ iff there are I = I0, . . . ,In = I ′ such that

• Ij , β |= b
.
= TRUE for 0 ≤ j < n

• ρ(p)(Ij) = Ij+1 for 0 ≤ j < n
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Operational Semantics of Programs

State transformation ρ defines semantics of programs

Same ρ for all programs, so not part of s

ρ(x = t;)(I) = I
valI,β(t)
x (can ignore β)

ρ(if (b) {p} else {q};)(I) =











ρ(p)(I) I |= b
.
= TRUE

ρ(q)(I) otherwise

ρ(pq)(I) = ρ(q)(ρ(p)(I)), if ρ(p)(I) defined, undefined otherwise

ρ(while (b) {p};)(I) = I ′ iff there are I = I0, . . . ,In = I ′ such that

• Ij , β |= b
.
= TRUE for 0 ≤ j < n

• ρ(p)(Ij) = Ij+1 for 0 ≤ j < n

• In, β |= b
.
= FALSE undefined otherwise

– p.20/30



Proof by Symbolic Program Execution

Need to have rules for program formulas: but which?

What corresponds to top-level connective in sequential program?
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Proof by Symbolic Program Execution

Need to have rules for program formulas: but which?

What corresponds to top-level connective in sequential program?

Idea: follow natural program control flow
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Proof by Symbolic Program Execution

Need to have rules for program formulas: but which?

What corresponds to top-level connective in sequential program?

Idea: follow natural program control flow

Sound and complete rule for conclusions with main formulas:

〈ξq〉φ, [ξq]φ

ξ one single admissible program statement, q remaining program

– p.21/30



Proof by Symbolic Program Execution

Need to have rules for program formulas: but which?

What corresponds to top-level connective in sequential program?

Idea: follow natural program control flow

Sound and complete rule for conclusions with main formulas:

〈ξq〉φ, [ξq]φ

ξ one single admissible program statement, q remaining program

Rules execute symbolically the first active statement

Proof corresponds to symbolic program execution

– p.21/30



Dynamic Logic Calculus

CONCATENATE
Γ ==> 〈p〉 (〈q〉φ) ,∆

Γ ==> 〈pq〉φ,∆

– p.22/30



Dynamic Logic Calculus

CONCATENATE
Γ ==> 〈p〉 (〈q〉φ) ,∆

Γ ==> 〈pq〉φ,∆

IF
Γ, b

.
= TRUE ==> 〈p〉φ,∆ Γ, b

.
= FALSE ==> 〈q〉φ,∆

Γ ==> 〈if (b) {p} else {q}; 〉φ,∆
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Dynamic Logic Calculus

CONCATENATE
Γ ==> 〈p〉 (〈q〉φ) ,∆

Γ ==> 〈pq〉φ,∆

IF
Γ, b

.
= TRUE ==> 〈p〉φ,∆ Γ, b

.
= FALSE ==> 〈q〉φ,∆

Γ ==> 〈if (b) {p} else {q}; 〉φ,∆

ASSIGN
{x/xold}Γ, x

.
= {x/xold}t ==> φ, {x/xold}∆

Γ ==> 〈x = t; 〉φ,∆

xold new program variable that “rescues” old value of x
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Dynamic Logic Calculus

CONCATENATE
Γ ==> 〈p〉 (〈q〉φ) ,∆

Γ ==> 〈pq〉φ,∆

IF
Γ, b

.
= TRUE ==> 〈p〉φ,∆ Γ, b

.
= FALSE ==> 〈q〉φ,∆

Γ ==> 〈if (b) {p} else {q}; 〉φ,∆

ASSIGN
{x/xold}Γ, x

.
= {x/xold}t ==> φ, {x/xold}∆

Γ ==> 〈x = t; 〉φ,∆

xold new program variable that “rescues” old value of x

UNWIND
Γ, b

.
= FALSE ==> φ,∆ Γ, b

.
= TRUE ==> 〈p〉〈while (b) {p}; 〉φ,∆

Γ ==> 〈while (b) {p}; 〉φ,∆

– p.22/30



Dynamic Logic Examples

Partial correctness assertion (Hoare formula)

{ψ} p {φ}

If p is started in a state satisfying ψ and terminates,
then its final state satisfies φ

In DL ψ -> [p]φ
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Dynamic Logic Examples

Partial correctness assertion (Hoare formula)

{ψ} p {φ}

If p is started in a state satisfying ψ and terminates,
then its final state satisfies φ

In DL ψ -> [p]φ

Valid formulas

[x = 1;] (x
.
= 1)
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Dynamic Logic Examples

Partial correctness assertion (Hoare formula)

{ψ} p {φ}

If p is started in a state satisfying ψ and terminates,
then its final state satisfies φ

In DL ψ -> [p]φ

Valid formulas

[x = 1;] (x
.
= 1) [while (true) {x = x;}; ] false
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then its final state satisfies φ

In DL ψ -> [p]φ

Valid formulas

[x = 1;] (x
.
= 1) [while (true) {x = x;}; ] false

Validity depends on p, q

∀y. ((〈p〉x
.
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= y)) meaning ?
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Dynamic Logic Examples

Partial correctness assertion (Hoare formula)

{ψ} p {φ}

If p is started in a state satisfying ψ and terminates,
then its final state satisfies φ

In DL ψ -> [p]φ

Valid formulas

[x = 1;] (x
.
= 1) [while (true) {x = x;}; ] false

Validity depends on p, q

∀y. ((〈p〉x
.
= y) <-> (〈q〉x

.
= y)) p, q equivalent relative to x

∃y.(x
.
= y -> 〈p〉true) p terminates for some initial value of x

– p.23/30



Induction Rule

Motivation

UNWIND-rule only works if number of loop iterations small & known

Properties of inductive FO data structures unprovable

(numbers, lists, trees, etc.)
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Induction Rule

Motivation

UNWIND-rule only works if number of loop iterations small & known

Properties of inductive FO data structures unprovable

(numbers, lists, trees, etc.)

Induction Rule (over natural numbers)

Γ ==> [n/0]φ,∆ Γ, [n/n′]φ ==> [n/n′+1]φ,∆ Γ,∀n.φ ==> ∆

Γ ==> ∆

Where n logical variable, n′ constant of type int not occurring in Γ,∆
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Induction Rule Example

Definition of even (unary predicate on int):

==> even(0)

==>∀x.(even(x) -> even(x+ 2))

How to prove ==> even(2 ∗ 7) ?
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Induction Rule Example

Definition of even (unary predicate on int):

==> even(0)

==>∀x.(even(x) -> even(x+ 2))

How to prove ==> even(2 ∗ 7) ?

1. Apply definition 7 times

2. Use induction rule with induction hypothesis φ = even(2 ∗ n)
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Induction Rule Example

Definition of even (unary predicate on int):

==> even(0)

==>∀x.(even(x) -> even(x+ 2))

How to prove ==> even(2 ∗ 7) ?

1. Apply definition 7 times

2. Use induction rule with induction hypothesis φ = even(2 ∗ n)

==> even(2∗0) even(2∗n′)==> even(2∗(n′+1)) ∀n.even(2∗n)==> even(2∗7)

==> even(2∗7)

Demo in dlIntro/ind.key
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Quantifying over Program Variables

What if induction hypothesis contains program?

Cannot quantify over program variables!

How to express validity for arbitrary initial value of progr am variable?
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What if induction hypothesis contains program?

Cannot quantify over program variables!

How to express validity for arbitrary initial value of progr am variable?

Not allowed: ∀i.〈p(i)〉φ (program 6= logical variable)

Not intended: ==> 〈p(i)〉φ (Validity of sequents:
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As previous: ∀n.(n
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Quantifying over Program Variables

What if induction hypothesis contains program?

Cannot quantify over program variables!

How to express validity for arbitrary initial value of progr am variable?

Not allowed: ∀i.〈p(i)〉φ (program 6= logical variable)

Not intended: ==> 〈p(i)〉φ (Validity of sequents:
quantification over all states)

As previous: ∀n.(n
.
= i -> 〈p(i)〉φ)

Not allowed: ∀n.〈p(n)〉φ (no logical variables in programs)

Solution

Use explicit construct to record state change information

Update ∀n.({i := n}〈p(i)〉φ)
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Explicit State Updates

Updates record computation state in which we evaluate a form ula
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Explicit State Updates

Updates record computation state in which we evaluate a form ula

Syntax

If v is program variable, t, t′ FOL terms, and φ any DL formula, then
{v := t}φ is DL formula and {v := t}t′ is DL term
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Explicit State Updates

Updates record computation state in which we evaluate a form ula

Syntax

If v is program variable, t, t′ FOL terms, and φ any DL formula, then
{v := t}φ is DL formula and {v := t}t′ is DL term

Semantics

I, β |= {v := t}φ iff I
valI,β(t)
v , β |= φ

Semantics identical to assignment, may depend on logical va riables in t

Updates work like “lazy” assignments

Updates are not assignments : may contain logical variable

Updates are not equations : change interpretation of non-rigid terms
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Computing Effect of Updates (Automatic)

Update followed by program variable by logical variable

{x := t}y ; y

{x := t}x ; t

{x := t}w ; w
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Computing Effect of Updates (Automatic)

Update followed by program variable by logical variable

{x := t}y ; y

{x := t}x ; t

{x := t}w ; w

Update followed by complex term

{x := t}f(t1, . . . , tn) ; f({x := t}t1, . . . ,{x := t}tn)
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Computing Effect of Updates (Automatic)

Update followed by program variable by logical variable

{x := t}y ; y

{x := t}x ; t

{x := t}w ; w

Update followed by complex term

{x := t}f(t1, . . . , tn) ; f({x := t}t1, . . . ,{x := t}tn)

Update followed by first-order formula

{x := t}(φ&ψ) ; {x := t}φ & {x := t}ψ etc.

{x := t}(∀y.φ) ; ∀y.({x := t}φ) etc.
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Computing Effect of Updates (Automatic)

Update followed by program variable by logical variable

{x := t}y ; y

{x := t}x ; t

{x := t}w ; w

Update followed by complex term

{x := t}f(t1, . . . , tn) ; f({x := t}t1, . . . ,{x := t}tn)

Update followed by first-order formula

{x := t}(φ&ψ) ; {x := t}φ & {x := t}ψ etc.

{x := t}(∀y.φ) ; ∀y.({x := t}φ) etc.

Update followed by program formula

{x := t}(〈p〉φ) ; {x := t}(〈p〉φ) unchanged!

Update computation delayed until p symbolically executed
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Assignment Rule Using Updates

ASSIGN
Γ ==> {x := t}φ,∆

Γ ==> 〈x = t;〉φ,∆

Avoids renaming of program variables

Works as long as t has no side effects (ok in simple DL)

But: rules dealing with programs need to account for updates
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Solution: rules work on first active statement
after updates and prefix , followed by postfix (remaining code)

Explicit concatenation rule not longer useful
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Assignment Rule Using Updates

ASSIGN
Γ ==> {x := t}φ,∆

Γ ==> 〈x = t;〉φ,∆

Avoids renaming of program variables

Works as long as t has no side effects (ok in simple DL)

But: rules dealing with programs need to account for updates

Solution: rules work on first active statement
after updates and prefix , followed by postfix (remaining code)

Explicit concatenation rule not longer useful

General form of conclusion in rule for symbolic execution

Γ ==> U〈 π ξ; ω 〉φ, ∆

Prefix Active statement Postfix
– p.29/30



Example Proof

\programVariables { // program variables in FSym

int x;

}

\problem {

\exists int y; (x = y -> // y logical variable

\<{while (x > 0) {x = x-1;}}\> true)

// modal brackets written as \<, \>

}

Intuitive Meaning? Satisfiable? Valid?

Demo
dlIntro/term.key
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