Contents

- Overview of KeY
- UML and its semantics
- Introduction to OCL
- Specifying requirements with OCL
- Modelling of Systems with Formal Semantics
- Propositional & First-order logic, sequent calculus
- OCL to Logic, horizontal proof obligations, using KeY
- Dynamic logic, proving program correctness
- Java Card DL
- Vertical proof obligations, using KeY
- Wrap-up, trends

Closed FOL formula is either valid or not wrt model \mathcal{M} Consider $\mathcal{M} = (\mathcal{D}, \delta, \mathcal{I})$ to be static part of snapshot, ie state

Let x be program (local) variable or attribute

Execution of program p may change state, ie value of \boldsymbol{x}

Closed FOL formula is either valid or not wrt model \mathcal{M} Consider $\mathcal{M} = (\mathcal{D}, \delta, \mathcal{I})$ to be static part of snapshot, ie state

Let x be program (local) variable or attribute Execution of program p may change state, ie value of x

Example

Executing x = 3; results in \mathcal{M} such that $\mathcal{M} \models x \doteq 3$

Executing x = 4; results in \mathcal{M} such that $\mathcal{M} \not\models x \doteq 3$

Closed FOL formula is either valid or not wrt model \mathcal{M} Consider $\mathcal{M} = (\mathcal{D}, \delta, \mathcal{I})$ to be static part of snapshot, ie state

Let x be program (local) variable or attribute Execution of program p may change state, ie value of x

Example

Executing x = 3; results in \mathcal{M} such that $\mathcal{M} \models x \doteq 3$

Executing x = 4; results in \mathcal{M} such that $\mathcal{M} \not\models x \doteq 3$

Need a logic to capture state before/after program execution

Signature of program logic defined as in FOL, **but**:

In addition there are program variables, attributes, etc.

Rigid versus Flexible

Signature of program logic defined as in FOL, **but**:

In addition there are program variables, attributes, etc.

Rigid versus Flexible

Rigid symbols, same interpretation in all execution states Needed, for example, to hold initial value of program variable

Logical variables and built-in functions/predicates are rigid

Signature of program logic defined as in FOL, **but**:

In addition there are program variables, attributes, etc.

Rigid versus Flexible

Rigid symbols, same interpretation in all execution states Needed, for example, to hold initial value of program variable

Logical variables and built-in functions/predicates are rigid

Non-rigid (or flexible) symbols, interpretation depends on state
 Needed to capture state change after program execution

Functions modeling program variables and attributes are flexible

Signature of Dynamic Logic (Simple Version)

Given type hierarchy $\mathcal{T}_q = \{ \texttt{int}, \texttt{boolean}, \top \}$

Signature $\Sigma = (\text{VSym}, \text{PSym}, \text{FSym}, \text{PVSym}, \alpha)$

Variable Symbols Rigid Predicate Symbols Rigid Function Symbols Non-rigid Function Symbols

$$\begin{split} \mathbf{VSym} &= \{x_i \mid i \in I\!\!N\} \\ \mathbf{PSym}_r &= \{>, >=, \dots, \} \\ \mathbf{FSym}_r &= \{+, -, *, 0, 1, \text{TRUE}, \text{FALSE}\} \\ \mathbf{FSym}_{nr} &= \{i, j, k, \dots, p, q, r, \dots\} \end{split}$$

Signature of Dynamic Logic (Simple Version)

Typing function α for all symbols:

- $\alpha(j) \in \{int, boolean\}$ for all $j \in FSym_{nr}$ When $b : \rightarrow boolean$, write boolean b, etc.;, use as program variable
- Standard typing for rigid function/predicate symbols For example, TRUE : → boolean, >: int, int

First-order terms may contain rigid and non-rigid symbols Different syntactic categories: $FSym_r \cap FSym_{nr} = \emptyset$

Program variables are non-rigid (=flexible) constants

Emphasize distinction to variables VSym: call them logical variables

A term containing at least one flexible symbol is flexible, otherwise rigid

First-order terms may contain rigid and non-rigid symbols Different syntactic categories: $FSym_r \cap FSym_{nr} = \emptyset$

Program variables are non-rigid (=flexible) constants

Emphasize distinction to variables VSym: call them logical variables

A term containing at least one flexible symbol is flexible, otherwise rigid

Examples

$$\begin{split} \mathbf{VSym} &= \{x:\texttt{int}, b:\texttt{boolean}\}\\ \mathbf{FSym}_{nr} &= \{\texttt{int j}, \texttt{boolean p}\} \end{split}$$

Well-formed terms: j+x, j, bIll-formed terms: j+b, j+p

Atomic Programs Π_0

Atomic Programs Π_0

Examples

$$\begin{split} \mathbf{VSym} &= \{x:\texttt{int}, b:\texttt{boolean}\}\\ \mathbf{FSym}_{nr} &= \{\texttt{int j},\texttt{boolean p}\} \end{split}$$

Well-formed atomic programs: j = j + 1, j = 0, p = FALSE

III-formed atomic programs: j = j + x, x = 1, $j \doteq j$, p = 0

Programs Π

- If π is an atomic program, then π ; is a program
- \checkmark If p and q are programs, then pq is a program
- If b is a variable-free term of type boolean, p and q programs, then if (b) {p} else {q};

is a program

If b is a variable-free term of type boolean, p a program, then

while (b) {p};

is a program

Programs contain no logical variables

Given signature

 $\mathbf{PSym}_r = \{<\}$

```
FSym_r = \{0, +, -\}
```

 $\mathbf{FSym}_{nr} = \{\texttt{int i}, \texttt{int r}, \texttt{int n}\}$

An admissible DL program **p**:

```
i=0;
r=0;
while (i<n) {
    i=i+1;
    r=r+i;
};
r=r+r-n;
```

What does \boldsymbol{p} compute?

Dynamic Logic Formulas (DL Formulas)

Each FOL formula is a DL formula

DL formulas closed under FOL operators and connectives

 \checkmark If p is a program and ϕ a DL formula then

 $\langle \mathbf{p} \rangle \phi$ is a DL formula

 $[p] \phi$ is a DL-Formula

Program variables are constants: never bound in quantifiers Programs contain no logical variables

The operators $\langle \ \rangle$ and $[\]$ can be arbitrarily nested

$$\forall y. ((\langle \mathbf{x} = \mathbf{1}; \rangle \mathbf{x} \doteq y) < > (\langle \mathbf{x} = \mathbf{1} * \mathbf{1}; \rangle \mathbf{x} \doteq y))$$
 Syntax ?

$$\forall y. ((\langle \mathbf{x} = \mathbf{1}; \rangle \mathbf{x} \doteq y) \triangleleft (\langle \mathbf{x} = \mathbf{1} \ast \mathbf{1}; \rangle \mathbf{x} \doteq y)) \qquad \qquad \mathsf{ok} (y: \mathsf{int})$$

$$\forall y. ((\langle \mathbf{x} = \mathbf{1}; \rangle \mathbf{x} \doteq y) \triangleleft \langle \mathbf{x} = \mathbf{1} \ast \mathbf{1}; \rangle \mathbf{x} \doteq y))$$
 ok (y : int)
$$\exists \mathbf{x}. ([\mathbf{x} = \mathbf{1};] (\mathbf{x} \doteq 1))$$
 Syntax ?

$$\forall y. ((\langle \mathbf{x} = \mathbf{1}; \rangle \mathbf{x} \doteq y) \triangleleft (\langle \mathbf{x} = \mathbf{1} \ast \mathbf{1}; \rangle \mathbf{x} \doteq y)) \qquad \qquad \mathsf{ok} (y: \mathsf{int})$$

 $\exists x. ([x = 1;] (x \doteq 1))$ bad

- *x* cannot be logical variable, because it occurs in program
- *x* cannot be program variable, because it is quantified

$$\forall y. ((\langle \mathbf{x} = \mathbf{1}; \rangle \mathbf{x} \doteq y) \triangleleft (\langle \mathbf{x} = \mathbf{1} \ast \mathbf{1}; \rangle \mathbf{x} \doteq y)) \qquad \qquad \mathsf{ok} (y: \mathsf{int})$$

 $\exists x. ([x = 1;] (x \doteq 1))$ bad

- *x* cannot be logical variable, because it occurs in program
- *x* cannot be program variable, because it is quantified

$$\langle x = 1; \rangle$$
 ([while (true) { }] false) Syntax ?

$$\forall y. ((\langle \mathbf{x} = \mathbf{1}; \rangle \mathbf{x} \doteq y) \triangleleft (\langle \mathbf{x} = \mathbf{1} \ast \mathbf{1}; \rangle \mathbf{x} \doteq y)) \qquad \qquad \mathsf{ok} (y: \mathsf{int})$$

 $\exists x. ([x = 1;] (x \doteq 1))$ bad

- *x* cannot be logical variable, because it occurs in program
- *x* cannot be program variable, because it is quantified

$$\langle x = 1; \rangle ([while (true) { }] false)$$
 ok (int x)

Program formulas can appear nested

More Examples of DL Formulas

1.
$$x \doteq i$$
 & $y \doteq j$ -> $\langle z = x; x = y; y = x; \rangle x \doteq j$ & $y \doteq i$

2.
$$x \doteq 3 \mid y \doteq -2 \Rightarrow \langle y = x * x - x + 6; \rangle y \doteq 0$$

3.
$$(if 0 \le a then \{\} else \{a = -a; \}) < = a$$

4. (while
$$(c \le n - 1) \{ p = p + m; c = c + 1; \} \rangle p \doteq m * m$$

First-order model can be considered as (execution) state

Interpretation of non-rigid symbols can vary from state to state (eg, program variables)

Interpretation of rigid symbols is the same in all states (eg, built-in functions and predicates)

State = First-order model:

 $\mathcal{M} = s = (\mathcal{D}, \delta, \mathcal{I}) \text{ over FSym} = \mathrm{FSym}_r \cup \mathrm{FSym}_{nr}$

Set of all states s is S

Dynamic Logic Semantics: Kripke Structure

Kripke structure $K = (S, \rho)$

State (model) $s = (\mathcal{D}, \delta, \mathcal{I}) \in S$ and $\rho : \Pi \to (S \to S) \quad \rho(\mathbf{p}), \ \rho(\mathbf{q})$

Each state is first-order model $s = (\mathcal{D}, \delta, \mathcal{I})$ over same domain \mathcal{D}

Dynamic Logic Semantics: Program Formulas

- $\textbf{ } \textbf{ } s,\beta\models\langle \textbf{p}\rangle\phi \quad \text{iff} \quad \rho(\textbf{p})(s),\beta\models\phi \ \text{ and } \rho(\textbf{p})(s) \text{ defined }$
 - **p** terminates and ϕ is true in the final state after execution

Dynamic Logic Semantics: Program Formulas

- $\textbf{ s}, \beta \models \langle \mathbf{p} \rangle \phi \quad \text{iff} \quad \rho(\mathbf{p})(s), \beta \models \phi \text{ and } \rho(\mathbf{p})(s) \text{ defined}$
 - **p** terminates and ϕ is true in the final state after execution
- $s, \beta \models [p] \phi$ iff $\rho(p)(s), \beta \models \phi$ whenever $\rho(p)(s)$ defined

If p terminates then ϕ is true in the final state after execution

Dynamic Logic Semantics Example

Boolean program variables

 $FSym_{nr} = \{boolean a, boolean b, boolean c, ...\}$

 $FSym_{nr} = \{boolean a, boolean b, boolean c, ...\}$

 $s_1 \models \langle \mathbf{p} \rangle \mathbf{a} \doteq \mathsf{TRUE}$?

 $\mathbf{FSym}_{nr} = \{ \texttt{boolean a, boolean b, boolean c, } \ldots \}$

 $s_1 \models \langle \mathbf{p} \rangle \mathbf{a} \doteq \mathsf{TRUE}$ (ok),

 $FSym_{nr} = \{boolean a, boolean b, boolean c, ...\}$

 $s_1 \models \langle \mathbf{p} \rangle \mathbf{a} \doteq \mathsf{TRUE}$ (ok), $s_1 \models \langle \mathbf{q} \rangle \mathbf{a} \doteq \mathsf{TRUE}$?

 $FSym_{nr} = \{boolean a, boolean b, boolean c, ...\}$

 $s_1 \models \langle \mathbf{p} \rangle \mathbf{a} \doteq \mathsf{TRUE}$ (ok), $s_1 \models \langle \mathbf{q} \rangle \mathbf{a} \doteq \mathsf{TRUE}$ (--)

 $FSym_{nr} = \{boolean a, boolean b, boolean c, ...\}$

 $s_1 \models \langle \mathbf{p} \rangle \mathbf{a} \doteq \mathsf{TRUE}$ (ok), $s_1 \models \langle \mathbf{q} \rangle \mathbf{a} \doteq \mathsf{TRUE}$ (---) $s_5 \models \langle \mathbf{q} \rangle \mathbf{a} \doteq \mathsf{TRUE}$?

 $FSym_{nr} = \{boolean a, boolean b, boolean c, ...\}$

 $s_1 \models \langle \mathbf{p} \rangle \mathbf{a} \doteq \mathsf{TRUE}$ (ok), $s_1 \models \langle \mathbf{q} \rangle \mathbf{a} \doteq \mathsf{TRUE}$ (--) $s_5 \models \langle \mathbf{q} \rangle \mathbf{a} \doteq \mathsf{TRUE}$ (--),

 $\mathbf{FSym}_{nr} = \{ \texttt{boolean a, boolean b, boolean c, } \ldots \}$

 $s_1 \models \langle \mathbf{p} \rangle \mathbf{a} \doteq \mathsf{TRUE}$ (ok), $s_1 \models \langle \mathbf{q} \rangle \mathbf{a} \doteq \mathsf{TRUE}$ (--) $s_5 \models \langle \mathbf{q} \rangle \mathbf{a} \doteq \mathsf{TRUE}$ (--), $s_5 \models [\mathbf{q}] \mathbf{a} \doteq \mathsf{TRUE}$?

 $\mathbf{FSym}_{nr} = \{ \texttt{boolean a, boolean b, boolean c, } \ldots \}$

 $s_1 \models \langle \mathbf{p} \rangle \mathbf{a} \doteq \mathsf{TRUE}$ (ok), $s_1 \models \langle \mathbf{q} \rangle \mathbf{a} \doteq \mathsf{TRUE}$ (--) $s_5 \models \langle \mathbf{q} \rangle \mathbf{a} \doteq \mathsf{TRUE}$ (--), $s_5 \models [\mathbf{q}] \mathbf{a} \doteq \mathsf{TRUE}$ (ok)
•
$$s, \beta \models \langle \mathbf{p} \rangle \phi$$

p totally correct (with respect to ϕ) in s, β

 $\textbf{ s},\beta \models \langle \textbf{p} \rangle \phi$

 ${\bf p}$ totally correct (with respect to $\phi{\bf)}$ in s,β

 $\textbf{ s},\beta\models [\textbf{p}]\,\phi$

p partially correct (with respect to ϕ) in s, β

 $\textbf{ s},\beta \models \langle \textbf{p} \rangle \phi$

 ${\bf p}$ totally correct (with respect to $\phi{\rm)}$ in s,β

 $\textbf{ s},\beta \models [\texttt{p}] \, \phi$

p partially correct (with respect to ϕ) in s, β

• Duality $\langle \mathbf{p} \rangle \phi$ iff $![\mathbf{p}]!\phi$

Exercise: justify this with semantic definitions

 $\textbf{ s},\beta \models \langle \textbf{p} \rangle \phi$

 ${\bf p}$ totally correct (with respect to $\phi{\rm)}$ in s,β

 $\textbf{ s},\beta \models [\textbf{p}] \phi$

p partially correct (with respect to ϕ) in s, β

• Duality $\langle \mathbf{p} \rangle \phi$ **iff** $![\mathbf{p}]!\phi$

Exercise: justify this with semantic definitions

 ${\scriptstyle
m {\scriptstyle Implication}}$ if $\langle {
m p}
angle \phi$ then $[{
m p}] \phi$

Total correctness implies partial correctness (holds only for deterministic programs)

Let $\Gamma = \{\phi_1, \dots, \phi_n\} \subseteq$ For and $\Delta = \{\psi_1, \dots, \psi_m\} \subseteq$ For

 $\textbf{Recall: } s \models (\Gamma \implies \Delta) \qquad \textbf{iff} \qquad s \models (\phi_1 \& \cdots \& \phi_n) \quad \textbf{->} \quad (\psi_1 | \cdots | \psi_m)$

Semantics of DL sequents should be defined identically with semantics of FOL sequents (assume Γ, Δ are sets of closed DL formulas):

 $\Gamma \implies \Delta$ is valid iff $s \models (\Gamma \implies \Delta)$ in all states s

Let $\Gamma = \{\phi_1, \dots, \phi_n\} \subseteq$ For and $\Delta = \{\psi_1, \dots, \psi_m\} \subseteq$ For

 $\textbf{Recall: } s \models (\Gamma \implies \Delta) \qquad \textbf{iff} \qquad s \models (\phi_1 \& \cdots \& \phi_n) \quad \textbf{->} \quad (\psi_1 | \cdots | \psi_m)$

Semantics of DL sequents should be defined identically with semantics of FOL sequents (assume $\Gamma,\,\Delta$ are sets of closed DL formulas):

 $\Gamma \implies \Delta$ is valid iff $s \models (\Gamma \implies \Delta)$ in all states s

Consequence for program variables

In valid formulas they represent any possible value of their type

How to restrict validity to set of initial states $S_0 \subseteq S$?

- 1. Design closed FOL formula Init with
 - $s \models \text{Init} \quad \text{iff} \quad s \in S_0$
- **2.** Use sequent Γ , Init ==> Δ

Later: simple method for specifying initial value of program variables

Dynamic Logic Semantics: States, Updates

- **•** States $s = (\mathcal{D}, \delta, \mathcal{I})$ all have
 - the same domain \mathcal{D} (all objects present from start)
 - the same typing function δ (dynamic type never changes)

May assume $\rho(\mathbf{p})$ works on interpretations $\mathcal I$

Define $\mathcal{I}, \beta \models \phi$ as $s, \beta \models \phi$, where $s = (\mathcal{D}, \delta, \mathcal{I})$

Program variables j as flexible constants in s with value $\mathcal{I}(j)$

Dynamic Logic Semantics: States, Updates

- **•** States $s = (\mathcal{D}, \delta, \mathcal{I})$ all have
 - the same domain \mathcal{D} (all objects present from start)
 - the same typing function δ (dynamic type never changes)

May assume $\rho(\mathbf{p})$ works on interpretations \mathcal{I}

Define $\mathcal{I}, \beta \models \phi$ as $s, \beta \models \phi$, where $s = (\mathcal{D}, \delta, \mathcal{I})$

Program variables j as flexible constants in s with value $\mathcal{I}(j)$

Modified state update of \mathcal{I} at j of type z with $d \in \mathcal{D}^z$

$$\mathcal{I}_{j}^{d}(\mathbf{x}) = \begin{cases} \mathcal{I}(\mathbf{x}) & \mathbf{x} \neq \mathbf{j} \\ \\ d & \mathbf{x} = \mathbf{j} \end{cases}$$

Cf. modified variable assignment

Operational Semantics of Programs

State transformation ρ defines semantics of programs

Same ρ for all programs, so not part of s

•
$$\rho(\mathbf{x} = \mathbf{t};)(\mathcal{I}) = \mathcal{I}^{val_{\mathcal{I},\beta}(t)}_{\mathbf{x}}$$

(can ignore β)

State transformation ρ defines semantics of programs

Same ρ for all programs, so not part of s

•
$$\rho(\mathbf{x} = \mathbf{t};)(\mathcal{I}) = \mathcal{I}_{\mathbf{x}}^{val_{\mathcal{I},\beta}(t)}$$
 (can ignore β)
• $\rho(if(b) \{p\} else \{q\};)(\mathcal{I}) = \begin{cases} \rho(p)(\mathcal{I}) & \mathcal{I} \models b \doteq TRUE \\ \rho(q)(\mathcal{I}) & otherwise \end{cases}$

• $\rho(\mathbf{x} = \mathbf{t};)(\mathcal{I}) = \mathcal{I}_{\mathbf{x}}^{val_{\mathcal{I},\beta}(t)}$ (can ignore β) • $\rho(\inf(b) \{\mathbf{p}\} \text{ else } \{\mathbf{q}\};)(\mathcal{I}) = \begin{cases} \rho(\mathbf{p})(\mathcal{I}) & \mathcal{I} \models b \doteq \text{TRUE} \\ \rho(\mathbf{q})(\mathcal{I}) & \text{otherwise} \end{cases}$ • $\rho(\mathbf{pq})(\mathcal{I}) = \rho(\mathbf{q})(\rho(\mathbf{p})(\mathcal{I})), \text{ if } \rho(\mathbf{p})(\mathcal{I}) \text{ defined, undefined otherwise} \end{cases}$

• $\rho(\mathbf{x} = \mathbf{t};)(\mathcal{I}) = \mathcal{I}_{\mathbf{x}}^{val_{\mathcal{I},\beta}(t)}$ (can ignore β) • $\rho(if(b) \{\mathbf{p}\} else \{\mathbf{q}\};)(\mathcal{I}) = \begin{cases} \rho(\mathbf{p})(\mathcal{I}) & \mathcal{I} \models b \doteq TRUE \\ \rho(\mathbf{q})(\mathcal{I}) & otherwise \end{cases}$ • $\rho(\mathbf{pq})(\mathcal{I}) = \rho(\mathbf{q})(\rho(\mathbf{p})(\mathcal{I})), \text{ if } \rho(\mathbf{p})(\mathcal{I}) \text{ defined, undefined otherwise} \end{cases}$ • $\rho(\text{while } (b) \{\mathbf{p}\};)(\mathcal{I}) = \mathcal{I}' \text{ iff there are } \mathcal{I} = \mathcal{I}_0, \dots, \mathcal{I}_n = \mathcal{I}' \text{ such that}$

• $\rho(\mathbf{x} = \mathbf{t};)(\mathcal{I}) = \mathcal{I}_{\mathbf{x}}^{val_{\mathcal{I},\beta}(t)}$ (can ignore β) • $\rho(if(b) \{\mathbf{p}\} else \{\mathbf{q}\};)(\mathcal{I}) = \begin{cases} \rho(\mathbf{p})(\mathcal{I}) & \mathcal{I} \models b \doteq TRUE \\ \rho(\mathbf{q})(\mathcal{I}) & otherwise \end{cases}$ • $\rho(\mathbf{pq})(\mathcal{I}) = \rho(\mathbf{q})(\rho(\mathbf{p})(\mathcal{I})), \text{ if } \rho(\mathbf{p})(\mathcal{I}) \text{ defined, undefined otherwise} \end{cases}$

• $\rho(\text{while } (b) \{p\};)(\mathcal{I}) = \mathcal{I}' \text{ iff there are } \mathcal{I} = \mathcal{I}_0, \dots, \mathcal{I}_n = \mathcal{I}' \text{ such that}$

•
$$\mathcal{I}_j, \beta \models b \doteq \texttt{TRUE} \text{ for } 0 \leq j < n$$

• $\rho(\mathbf{x} = \mathbf{t};)(\mathcal{I}) = \mathcal{I}_{\mathbf{x}}^{val_{\mathcal{I},\beta}(t)}$ (can ignore β) • $\rho(\inf(b) \{\mathbf{p}\} \text{ else } \{\mathbf{q}\};)(\mathcal{I}) = \begin{cases} \rho(\mathbf{p})(\mathcal{I}) & \mathcal{I} \models b \doteq \text{TRUE} \\ \rho(\mathbf{q})(\mathcal{I}) & \text{otherwise} \end{cases}$ • $\rho(\mathbf{pq})(\mathcal{I}) = \rho(\mathbf{q})(\rho(\mathbf{p})(\mathcal{I})), \text{ if } \rho(\mathbf{p})(\mathcal{I}) \text{ defined, undefined otherwise} \end{cases}$

p(pq)(x) - p(q)(p(p)(x)), n p(p)(x) defined,

• $\rho(\text{while } (b) \{p\};)(\mathcal{I}) = \mathcal{I}' \text{ iff there are } \mathcal{I} = \mathcal{I}_0, \dots, \mathcal{I}_n = \mathcal{I}' \text{ such that}$

•
$$\mathcal{I}_j, \beta \models b \doteq \texttt{TRUE}$$
 for $0 \le j < n$

•
$$\rho(\mathbf{p})(\mathcal{I}_j) = \mathcal{I}_{j+1}$$
 for $0 \le j < n$

• $\rho(\mathbf{x} = \mathbf{t};)(\mathcal{I}) = \mathcal{I}_{\mathbf{x}}^{val_{\mathcal{I},\beta}(t)}$ (can ignore β) • $\rho(if(b) \{p\} else \{q\};)(\mathcal{I}) = \begin{cases} \rho(p)(\mathcal{I}) & \mathcal{I} \models b \doteq TRUE \\ \rho(q)(\mathcal{I}) & otherwise \end{cases}$

 $\ \, \rho(\mathbf{pq})(\mathcal{I})=\rho(\mathbf{q})(\rho(\mathbf{p})(\mathcal{I})), \, \text{if} \, \rho(\mathbf{p})(\mathcal{I}) \, \text{defined,} \quad \text{ undefined otherwise}$

• $\rho(\text{while } (b) \{p\};)(\mathcal{I}) = \mathcal{I}' \text{ iff there are } \mathcal{I} = \mathcal{I}_0, \dots, \mathcal{I}_n = \mathcal{I}' \text{ such that}$

•
$$\mathcal{I}_j, \beta \models b \doteq \texttt{TRUE} \text{ for } 0 \leq j < n$$

•
$$\rho(\mathbf{p})(\mathcal{I}_j) = \mathcal{I}_{j+1}$$
 for $0 \le j < n$

• $\mathcal{I}_n, \beta \models b \doteq \text{FALSE}$ undefined otherwise

Proof by Symbolic Program Execution

Need to have rules for program formulas: but which?

What corresponds to top-level connective in sequential program?

Need to have rules for program formulas: but which?

What corresponds to top-level connective in sequential program?

Idea: follow natural program control flow

Need to have rules for program formulas: but which? What corresponds to top-level connective in sequential program?

Idea: follow natural program control flow

Sound and complete rule for conclusions with main formulas:

 $\langle \xi \mathbf{q} \rangle \phi, \qquad [\xi \mathbf{q}] \phi$

 ξ one single admissible program statement, q remaining program

Need to have rules for program formulas: but which? What corresponds to top-level connective in sequential program?

Idea: follow natural program control flow

Sound and complete rule for conclusions with main formulas:

 $\langle \xi \mathbf{q} \rangle \phi, \qquad [\xi \mathbf{q}] \phi$

 ξ one single admissible program statement, q remaining program

Rules execute symbolically the first active statement Proof corresponds to symbolic program execution

$$\mathsf{CONCATENATE} \frac{\Gamma \implies \langle \mathbf{p} \rangle \left(\langle \mathbf{q} \rangle \phi \right), \Delta}{\Gamma \implies \langle \mathbf{p} \mathbf{q} \rangle \phi, \Delta}$$

$$\begin{aligned} & \operatorname{CONCATENATE} \frac{\Gamma \implies \langle \mathbf{p} \rangle \left(\langle \mathbf{q} \rangle \phi \right), \Delta}{\Gamma \implies \langle \mathbf{p} \mathbf{q} \rangle \phi, \Delta} \\ & \operatorname{IF} \frac{\Gamma, b \doteq \mathrm{TRUE} \implies \langle \mathbf{p} \rangle \phi, \Delta}{\Gamma \implies \langle \mathbf{q} \rangle \phi, \Delta} \\ & \Gamma \implies \langle \mathrm{if} (b) \{ \mathbf{p} \} \operatorname{else} \{ \mathbf{q} \}; \rangle \phi, \Delta \end{aligned}$$

$$\begin{aligned} & \operatorname{CONCATENATE} \frac{\Gamma \implies \langle \mathbf{p} \rangle \left(\langle \mathbf{q} \rangle \phi \right), \Delta}{\Gamma \implies \langle \mathbf{p} \mathbf{q} \rangle \phi, \Delta} \\ & \mathbf{IF} \frac{\Gamma, b \doteq \mathrm{TRUE} \implies \langle \mathbf{p} \rangle \phi, \Delta}{\Gamma \implies \langle \mathbf{p} \rangle \phi, \Delta} \qquad \Gamma, b \doteq \mathrm{FALSE} \implies \langle \mathbf{q} \rangle \phi, \Delta}{\Gamma \implies \langle \mathrm{if} (b) \{ \mathbf{p} \} \mathrm{else} \{ \mathbf{q} \}; \rangle \phi, \Delta} \\ & \operatorname{ASSIGN} \frac{\{ \mathbf{x} / \mathbf{x}_{old} \} \Gamma, \mathbf{x} \doteq \{ \mathbf{x} / \mathbf{x}_{old} \} t \implies \phi, \{ \mathbf{x} / \mathbf{x}_{old} \} \Delta}{\Gamma \implies \langle \mathbf{x} = t; \rangle \phi, \Delta} \end{aligned}$$

 x_{old} new program variable that "rescues" old value of x

$$\begin{aligned} & \operatorname{CONCATENATE} \frac{\Gamma \implies \langle \mathbf{p} \rangle \left(\langle \mathbf{q} \rangle \phi \right), \Delta}{\Gamma \implies \langle \mathbf{p} \mathbf{q} \rangle \phi, \Delta} \\ & \Gamma \implies \langle \mathbf{p} \mathbf{q} \rangle \phi, \Delta \\ & \Pi \mathbf{F} \frac{\Gamma, b \doteq \mathrm{TRUE} \implies \langle \mathbf{p} \rangle \phi, \Delta}{\Gamma \implies \langle \mathbf{p} \rangle \phi, \Delta} \quad \Gamma, b \doteq \mathrm{FALSE} \implies \langle \mathbf{q} \rangle \phi, \Delta} \\ & \Gamma \implies \langle \mathrm{if} (b) \{ \mathbf{p} \} \mathrm{else} \{ \mathbf{q} \}; \rangle \phi, \Delta \\ & \operatorname{ASSIGN} \frac{\{ \mathbf{x} / \mathbf{x}_{old} \} \Gamma, \ \mathbf{x} \doteq \{ \mathbf{x} / \mathbf{x}_{old} \} t \implies \phi, \ \{ \mathbf{x} / \mathbf{x}_{old} \} \Delta}{\Gamma \implies \langle \mathbf{x} = \mathbf{t}; \rangle \phi, \Delta} \end{aligned}$$

 x_{old} new program variable that "rescues" old value of x

Partial correctness assertion (Hoare formula) $\{\psi\} \ p \ \{\phi\}$

If p is started in a state satisfying ψ and terminates, then its final state satisfies ϕ

In DL $\psi \rightarrow [p] \phi$

Partial correctness assertion(Hoare formula) $\{\psi\} p \{\phi\}$

If p is started in a state satisfying ψ and terminates, then its final state satisfies ϕ

In DL $\psi \rightarrow [p] \phi$

Valid formulas

 $[\mathtt{x}=\mathtt{1};]\,(\mathtt{x}\doteq1)$

Partial correctness assertion (Hoare formula) $\{\psi\} \ p \ \{\phi\}$

If p is started in a state satisfying ψ and terminates, then its final state satisfies ϕ

In DL $\psi \rightarrow [p] \phi$

Valid formulas

 $[x = 1;] (x \doteq 1) \qquad \qquad [while (true) \{x = x;\};] false$

Partial correctness assertion (Hoare formula) $\{\psi\} \ p \ \{\phi\}$

If p is started in a state satisfying ψ and terminates, then its final state satisfies ϕ

In DL $\psi \rightarrow [p] \phi$

Valid formulas

 $\label{eq:starses} \begin{bmatrix} \textbf{x} = \textbf{1}; \end{bmatrix} (\textbf{x} \doteq 1) \qquad \qquad \begin{bmatrix} \textbf{while} \ (\textbf{true}) \ \textbf{x} = \textbf{x}; \textbf{y}; \end{bmatrix} \textbf{false}$

Validity depends on p, q

 $\forall y. ((\langle \mathbf{p} \rangle \mathbf{x} \doteq y) \triangleleft (\langle \mathbf{q} \rangle \mathbf{x} \doteq y))$ meaning ?

Partial correctness assertion (Hoare formula) $\{\psi\} p \{\phi\}$

If p is started in a state satisfying ψ and terminates, then its final state satisfies ϕ

In DL

$$\psi \rightarrow [p] \phi$$

Valid formulas

 $[x = 1;] (x \doteq 1)$ [while (true) $\{x = x;\};$] false

Validity depends on p, q

$$\forall y. \left(\left(\langle \mathbf{p} \rangle \mathbf{x} \doteq y \right) \triangleleft \mathbf{x} \neq y \right)$$

p, q equivalent relative to x

Partial correctness assertion (Hoare formula) $\{\psi\} p \{\phi\}$

If p is started in a state satisfying ψ and terminates, then its final state satisfies ϕ

In DL

Valid formulas

 $[x = 1;] (x \doteq 1)$ [while (true) $\{x = x;\};$] false

Validity depends on p, q

$$\forall y. ((\langle \mathbf{p} \rangle \mathbf{x} \doteq y) \triangleleft (\langle \mathbf{q} \rangle \mathbf{x} \doteq y))$$

 $\exists y.(\mathbf{x} \doteq y \rightarrow \langle \mathbf{p} \rangle \mathbf{true})$ meaning ?

p, q equivalent relative to x

Partial correctness assertion (Hoare formula) $\{\psi\} p \{\phi\}$

If p is started in a state satisfying ψ and terminates, then its final state satisfies ϕ

In DL

Valid formulas

 $[x = 1;] (x \doteq 1) \qquad \qquad [while (true) \{x = x;\};] false$

Validity depends on p, q

$$\forall y. ((\langle \mathbf{p} \rangle \mathbf{x} \doteq y) \triangleleft (\langle \mathbf{q} \rangle \mathbf{x} \doteq y)) \\ \exists y. (\mathbf{x} \doteq y \rightarrow \langle \mathbf{p} \rangle \mathbf{true})$$

p, q equivalent relative to x

 $p \ \mbox{terminates}$ for some initial value of x

Motivation

- UNWIND-rule only works if number of loop iterations small & known
- Properties of inductive FO data structures unprovable (numbers, lists, trees, etc.)

Motivation

- UNWIND-rule only works if number of loop iterations small & known
- Properties of inductive FO data structures unprovable (numbers, lists, trees, etc.)

Induction Rule (over natural numbers)

$$\Gamma \implies [n/0]\phi, \Delta \qquad \Gamma, [n/n']\phi \implies [n/n'+1]\phi, \Delta \qquad \Gamma, \forall n.\phi \implies \Delta$$
$$\Gamma \implies \Delta$$

Where n logical variable, n' constant of type int not occurring in Γ, Δ

Definition of even (unary predicate on int):

$$= \forall x.(\mathbf{even}(x) \rightarrow \mathbf{even}(x+2))$$

How to prove ==>even(2*7)?

Definition of even (unary predicate on int):

- **●** ==> even(0)
- ==> $\forall x.(\mathbf{even}(x) \rightarrow \mathbf{even}(x+2))$

How to prove ==>even(2*7)?

- **1.** Apply definition 7 times
- **2.** Use induction rule with induction hypothesis $\phi = \text{even}(2 * n)$

Definition of even (unary predicate on int):

● ==> even(0)

$$= \forall x.(\mathbf{even}(x) \rightarrow \mathbf{even}(x+2))$$

How to prove ==>even(2*7)?

- **1.** Apply definition 7 times
- **2.** Use induction rule with induction hypothesis $\phi = \text{even}(2 * n)$

$$=> \operatorname{even}(2*0) \quad \operatorname{even}(2*n') ==> \operatorname{even}(2*(n'+1)) \quad \forall n.\operatorname{even}(2*n) ==> \operatorname{even}(2*7)$$
$$==> \operatorname{even}(2*7)$$

Demo in dlIntro/ind.key
Cannot quantify over program variables!

How to express validity for arbitrary initial value of program variable?

Cannot quantify over program variables!

How to express validity for arbitrary initial value of program variable?

Not allowed: $\forall i. \langle p(i) \rangle \phi$

(program \neq logical variable)

Cannot quantify over program variables!

How to express validity for arbitrary initial value of program variable?

Not allowed: $\forall i. \langle p(i) \rangle \phi$

Not intended: ==> $\langle p(i) \rangle \phi$

(program \neq logical variable)

(Validity of sequents: quantification over *all* states)

Cannot quantify over program variables!

How to express validity for arbitrary initial value of program variable?

Not allowed: $\forall i. \langle p(i) \rangle \phi$ (program \neq logical variable)

Not intended: ==> $\langle p(i) \rangle \phi$

(Validity of sequents: quantification over *all* states)

As previous: $\forall n.(n \doteq i \rightarrow \langle p(i) \rangle \phi)$

Cannot quantify over program variables!

How to express validity for arbitrary initial value of program variable?

Not allowed: $\forall i. \langle p(i) \rangle \phi$ (program \neq logical variable)

Not intended: $=>\langle p(i)\rangle\phi$ (Validity of sequents: quantification over *all* states)

As previous: $\forall n.(n \doteq i \rightarrow \langle p(i) \rangle \phi)$

Not allowed: $\forall n. \langle p(n) \rangle \phi$ (no logical variables in programs)

Cannot quantify over program variables!

How to express validity for arbitrary initial value of program variable?

Not allowed: $\forall i. \langle p(i) \rangle \phi$ (program \neq logical variable)

Not intended: $=>\langle p(i)\rangle\phi$ (Validity of sequents: quantification over *all* states)

As previous: $\forall n.(n \doteq i \rightarrow \langle p(i) \rangle \phi)$

Not allowed: $\forall n. \langle p(n) \rangle \phi$ (no logical variables in programs)

Solution

Use explicit construct to record state change information

Update $\forall n.(\{i := n\} \langle p(i) \rangle \phi)$

Explicit State Updates

Updates record computation state in which we evaluate a formula

Updates record computation state in which we evaluate a formula

Syntax

If v is program variable, t, t' FOL terms, and ϕ any DL formula, then $\{v := t\}\phi$ is DL formula and $\{v := t\}t'$ is DL term

Updates record computation state in which we evaluate a formula

Syntax

If v is program variable, t, t' FOL terms, and ϕ any DL formula, then $\{v := t\}\phi$ is DL formula and $\{v := t\}t'$ is DL term

Semantics

$$\mathcal{I},\beta\models\{\mathtt{v}:=t\}\phi\quad\text{iff}\quad\mathcal{I}^{val_{\mathcal{I},\beta}(t)}_{\mathtt{v}},\beta\models\phi$$

Semantics identical to assignment, may depend on logical variables in t

Updates work like "lazy" assignments

Updates are not assignments: may contain logical variable

Updates are not equations: change interpretation of non-rigid terms

Computing Effect of Updates (Automatic)

Update followed by program variable

by logical variable

$$\{\mathbf{x} := t\} \mathbf{y} \quad \rightsquigarrow \quad \mathbf{y} \\ \{\mathbf{x} := t\} \mathbf{x} \quad \rightsquigarrow \quad t$$

$$\{\mathbf{x} := t\} w \quad \leadsto \quad w$$

Computing Effect of Updates (Automatic)

Update followed by program variable

${x := t}y \rightsquigarrow y$

 ${x := t}x \rightarrow t$

Update followed by complex term

$$\{\mathbf{x} := t\}f(t_1, \ldots, t_n) \quad \leadsto \quad f(\{\mathbf{x} := t\}t_1, \ldots, \{\mathbf{x} := t\}t_n)$$

$\{\mathbf{x} := t\} w \quad \leadsto \quad w$

by logical variable

Computing Effect of Updates (Automatic)

Update followed by program variable

${x := t}y \rightsquigarrow y$

 ${\mathbf{x} := t}\mathbf{x} \rightsquigarrow t$

Update followed by complex term

$$\{\mathbf{x} := t\}f(t_1, \ldots, t_n) \quad \leadsto \quad f(\{\mathbf{x} := t\}t_1, \ldots, \{\mathbf{x} := t\}t_n)$$

Update followed by first-order formula

$$\begin{aligned} \{\mathbf{x} := t\}(\phi \, \mathbf{\&} \, \psi) & \leadsto \quad \{\mathbf{x} := t\}\phi \, \mathbf{\&} \, \{\mathbf{x} := t\}\psi \quad \text{etc.} \\ \{\mathbf{x} := t\}(\forall y.\phi) & \leadsto \quad \forall y.(\{\mathbf{x} := t\}\phi) \quad \text{etc.} \end{aligned}$$

by logical variable

$$\{\mathbf{x} := t\} w \quad \leadsto \quad w$$

Update followed by program variable

${x := t}y \rightsquigarrow y$

 ${\mathbf{x} := t}\mathbf{x} \rightsquigarrow t$

Update followed by complex term

$$\{\mathbf{x} := t\}f(t_1, \ldots, t_n) \quad \leadsto \quad f(\{\mathbf{x} := t\}t_1, \ldots, \{\mathbf{x} := t\}t_n)$$

Update followed by first-order formula

$$\begin{aligned} \{\mathbf{x} := t\}(\phi \, \mathbf{\&} \, \psi) & \leadsto \quad \{\mathbf{x} := t\}\phi \, \mathbf{\&} \, \{\mathbf{x} := t\}\psi \quad \text{etc.} \\ \{\mathbf{x} := t\}(\forall y.\phi) & \leadsto \quad \forall y.(\{\mathbf{x} := t\}\phi) \quad \text{etc.} \end{aligned}$$

Update followed by program formula

$${\mathbf{x} := t}(\langle \mathbf{p} \rangle \phi) \quad \leadsto \quad {\mathbf{x} := t}(\langle \mathbf{p} \rangle \phi) \qquad \qquad \text{unchanged}$$

Update computation delayed until \boldsymbol{p} symbolically executed

by logical variable

$$\{\mathbf{x} := t\} w \quad \leadsto \quad w$$

- p.28/3

Assignment Rule Using Updates

$$\operatorname{ASSIGN} \frac{\Gamma == \{ \mathbf{x} := t \} \phi, \Delta}{\Gamma == \langle \mathbf{x} = \mathbf{t}; \rangle \phi, \Delta}$$

Avoids renaming of program variables

Works as long as t has no side effects (ok in simple DL)

But: rules dealing with programs need to account for updates

Assignment Rule Using Updates

ASSIGN
$$\frac{\Gamma \implies \{\mathbf{x} := t\}\phi, \Delta}{\Gamma \implies \langle \mathbf{x} = \mathbf{t}; \rangle \phi, \Delta}$$

Avoids renaming of program variables

Works as long as t has no side effects (ok in simple DL)

But: rules dealing with programs need to account for updates

Solution: rules work on first active statement after updates and prefix, followed by postfix (remaining code) Explicit concatenation rule not longer useful

Assignment Rule Using Updates

ASSIGN
$$\frac{\Gamma \implies \{\mathbf{x} := t\}\phi, \Delta}{\Gamma \implies \langle \mathbf{x} = \mathbf{t}; \rangle \phi, \Delta}$$

Avoids renaming of program variables

Works as long as t has no side effects (ok in simple DL)

But: rules dealing with programs need to account for updates

Solution: rules work on first active statement after updates and prefix, followed by postfix (remaining code) Explicit concatenation rule not longer useful

General form of conclusion in rule for symbolic execution


```
\programVariables { // program variables in FSym
  int x;
}
\problem {
\exists int y; (x = y - > // y \text{ logical variable})
    < \{ while (x > 0) \{ x = x-1; \} \} > true \}
      // modal brackets written as \<, \>
}
```

Intuitive Meaning? Satisfiable? Valid?

Demo

dlIntro/term.key