Contents

- Overview of KeY
- UML and its semantics
- Introduction to OCL
- Specifying requirements with OCL
- Modelling of Systems with Formal Semantics
- Propositional \& First-order logic, sequent calculus
- OCL to Logic, horizontal proof obligations, using KeY
- Dynamic logic, proving program correctness
- Java Card DL
- Vertical proof obligations, using KeY
- Wrap-up, trends

State Dependency of Formula Evaluation

Closed FOL formula is either valid or not wrt model \mathcal{M}
Consider $\mathcal{M}=(\mathcal{D}, \delta, \mathcal{I})$ to be static part of snapshot, ie state

Let x be program (local) variable or attribute
Execution of program p may change state, ie value of x

State Dependency of Formula Evaluation

Closed FOL formula is either valid or not wrt model \mathcal{M}
Consider $\mathcal{M}=(\mathcal{D}, \delta, \mathcal{I})$ to be static part of snapshot, ie state

Let x be program (local) variable or attribute
Execution of program p may change state, ie value of x

Example
Executing $\mathrm{x}=3$; results in \mathcal{M} such that $\mathcal{M} \models \mathrm{x} \doteq 3$
Executing $\mathrm{x}=4 ;$ results in \mathcal{M} such that $\mathcal{M} \not \models \mathrm{x} \doteq 3$

State Dependency of Formula Evaluation

Closed FOL formula is either valid or not wrt model \mathcal{M}
Consider $\mathcal{M}=(\mathcal{D}, \delta, \mathcal{I})$ to be static part of snapshot, ie state

Let x be program (local) variable or attribute
Execution of program p may change state, ie value of x

Example
Executing $\mathrm{x}=3$; results in \mathcal{M} such that $\mathcal{M} \models \mathrm{x} \doteq 3$
Executing $\mathrm{x}=4 ;$ results in \mathcal{M} such that $\mathcal{M} \not \models \mathrm{x} \doteq 3$

Need a logic to capture state before/after program execution

Rigid versus Flexible Symbols

Signature of program logic defined as in FOL, but:
In addition there are program variables, attributes, etc.
Rigid versus Flexible

Rigid versus Flexible Symbols

Signature of program logic defined as in FOL, but:
In addition there are program variables, attributes, etc.
Rigid versus Flexible

- Rigid symbols, same interpretation in all execution states

Needed, for example, to hold initial value of program variable
Logical variables and built-in functions/predicates are rigid

Rigid versus Flexible Symbols

Signature of program logic defined as in FOL, but:
In addition there are program variables, attributes, etc.
Rigid versus Flexible

- Rigid symbols, same interpretation in all execution states Needed, for example, to hold initial value of program variable

Logical variables and built-in functions/predicates are rigid

- Non-rigid (or flexible) symbols, interpretation depends on state Needed to capture state change after program execution

Functions modeling program variables and attributes are flexible

Signature of Dynamic Logic (Simple Version)

Given type hierarchy $\mathcal{T}_{q}=\{$ int, boolean, $\boldsymbol{\top}\}$
Signature $\Sigma=($ VSym, PSym, FSym, PVSym, $\alpha)$

Variable Symbols
Rigid Predicate Symbols
Rigid Function Symbols
Non-rigid Function Symbols
$\mathbf{V S y m}=\left\{x_{i} \mid i \in \mathbb{I N}\right\}$
$\mathbf{P S y m}_{r}=\{>,>=, \ldots$,
$\boldsymbol{F S y m}_{r}=\{+,-, *, 0,1$, TRUE, FALSE $\}$
$\mathbf{F S y m}_{n r}=\{i, j, k, \ldots, p, q, r, \ldots\}$

Signature of Dynamic Logic (Simple Version)

Given type hierarchy $\mathcal{T}_{q}=\{$ int, boolean, $\top\}$
Signature $\Sigma=($ VSym, PSym, FSym, PVSym, $\alpha)$

Variable Symbols
Rigid Predicate Symbols
Rigid Function Symbols
Non-rigid Function Symbols

$$
\begin{aligned}
& \operatorname{VSym}_{=}=\left\{x_{i} \mid i \in I N\right\} \\
& \operatorname{PSym}_{r}=\{>,>=, \ldots,\} \\
& \text { FSym }_{r}=\{+,-, *, 0,1, \text { TRUE, FALSE }\} \\
& \text { FSym }_{n r}=\{i, j, k, \ldots, p, q, r, \ldots\}
\end{aligned}
$$

Typing function α for all symbols:

- $\alpha(\mathbf{j}) \in\{$ int, boolean $\}$ for all $\mathbf{j} \in \mathbf{F S y m}_{n r}$

When $b: \rightarrow$ boolean, write boolean b, etc.;, use as program variable

- Standard typing for rigid function/predicate symbols

For example, TRUE $: \rightarrow$ boolean, $>:$ int, int

Terms

First-order terms may contain rigid and non-rigid symbols
Different syntactic categories: FSym $_{r} \cap \mathbf{F S y m}_{n r}=\emptyset$
Program variables are non-rigid (=flexible) constants
Emphasize distinction to variables VSym: call them logical variables
A term containing at least one flexible symbol is flexible, otherwise rigid

Terms

First-order terms may contain rigid and non-rigid symbols
Different syntactic categories: FSym $_{r} \cap \mathbf{F S y m}_{n r}=\emptyset$
Program variables are non-rigid (=flexible) constants
Emphasize distinction to variables VSym: call them logical variables
A term containing at least one flexible symbol is flexible, otherwise rigid

Examples

VSym $=\{x:$ int, $b:$ boolean $\}$
$\mathbf{F S y m}_{n r}=\{$ int j , boolean p$\}$
Well-formed terms: $\mathrm{j}+x, \mathrm{j}, \quad b$
III-formed terms: $\mathrm{j}+b, \mathrm{j}+\mathrm{p}$

Atomic Programs

Atomic Programs Π_{0}

- Assignments $\mathrm{j}=t$ with:
$\mathrm{z} \mathrm{j} \in \mathrm{FSym}_{n r}, \quad t$ term of type z without logical variables

Atomic Programs

Atomic Programs Π_{0}

- Assignments $\mathrm{j}=t$ with:
$\mathrm{z} \mathbf{j} \in \mathrm{FSym}_{n r}, \quad t$ term of type z without logical variables

Examples

VSym $=\{x$: int, $b:$ boolean $\}$
FSym $_{n r}=\{$ int j , boolean p$\}$
Well-formed atomic programs: $j=j+1, \quad j=0, \quad p=$ FALSE
III-formed atomic programs: $\mathrm{j}=\mathrm{j}+x, \quad x=1, \quad \mathrm{j} \doteq \mathrm{j}, \quad \mathrm{p}=0$

Dynamic Logic (Simple Version) Programs

Programs Π

- If π is an atomic program, then π; is a program
- If p and q are programs, then pq is a program
- If b is a variable-free term of type boolean, p and q programs, then

$$
\text { if (b) }\{p\} \text { else }\{q\} ;
$$

is a program

- If b is a variable-free term of type boolean, p a program, then while (b) $\{p\}$;
is a program

Programs contain no logical variables

Dynamic Logic Syntax Example

Given signature
$\mathbf{P S y m}_{r}=\{<\}$
$\boldsymbol{F S y m}_{r}=\{0,+,-\}$
$\mathbf{F S y m}_{n r}=\{$ int i, int r, int n$\}$
An admissible DL program p:

```
i=0;
r=0;
while (i<n) {
    i=i+1;
    r=r+i;
};
r=r+r-n;
```

What does p compute?

Dynamic Logic (Simple Version) Formulas

Dynamic Logic Formulas (DL Formulas)

- Each FOL formula is a DL formula

DL formulas closed under FOL operators and connectives

- If \mathbf{p} is a program and ϕ a DL formula then | $\langle\mathrm{p}\rangle \phi$ | is a DL formula |
| :--- | :--- |
| $[\mathrm{p}] \phi$ | is a DL-Formula |

Program variables are constants: never bound in quantifiers
Programs contain no logical variables
The operators \rangle and [] can be arbitrarily nested

Dynamic Logic Syntax Example

Check for syntactic well-formedness and derive the signature
$\forall y .((\langle\mathrm{x}=1 ;\rangle \mathrm{x} \doteq y)<->(\langle\mathrm{x}=1 * 1 ;\rangle \mathrm{x} \doteq y)) \quad$ Syntax ?

Dynamic Logic Syntax Example

Check for syntactic well-formedness and derive the signature
$\forall y \cdot((\langle\mathrm{x}=1 ;\rangle \mathrm{x} \doteq y)<->(\langle\mathrm{x}=1 * 1 ;\rangle \mathrm{x} \doteq y))$
ok (y : int)

Dynamic Logic Syntax Example

Check for syntactic well-formedness and derive the signature
$\forall y \cdot((\langle\mathrm{x}=1 ;\rangle \mathrm{x} \doteq y)<->(\langle\mathrm{x}=1 * 1 ;\rangle \mathrm{x} \doteq y))$
$\exists \mathrm{x} .([\mathrm{x}=1 ;](\mathrm{x} \doteq 1))$
ok (y : int)

Syntax ?

Dynamic Logic Syntax Example

Check for syntactic well-formedness and derive the signature
$\forall y \cdot((\langle\mathrm{x}=1 ;\rangle \mathrm{x} \doteq y)<->(\langle\mathrm{x}=1 * 1 ;\rangle \mathrm{x} \doteq y))$
ok (y : int)
$\exists \mathrm{x} .([\mathrm{x}=1 ;](\mathrm{x} \doteq 1))$

- x cannot be logical variable, because it occurs in program
- x cannot be program variable, because it is quantified

Dynamic Logic Syntax Example

Check for syntactic well-formedness and derive the signature
$\forall y \cdot((\langle\mathrm{x}=1 ;\rangle \mathrm{x} \doteq y)<->(\langle\mathrm{x}=1 * 1 ;\rangle \mathrm{x} \doteq y))$
ok (y : int)
$\exists \mathrm{x} .([\mathrm{x}=1 ;](\mathrm{x} \doteq 1))$

- x cannot be logical variable, because it occurs in program
- x cannot be program variable, because it is quantified
$\langle\mathrm{x}=1 ;\rangle([$ while (true) $\}]$ false $)$ Syntax ?

Dynamic Logic Syntax Example

Check for syntactic well-formedness and derive the signature
$\forall y \cdot((\langle\mathrm{x}=1 ;\rangle \mathrm{x} \doteq y)<->(\langle\mathrm{x}=1 * 1 ;\rangle \mathrm{x} \doteq y))$
ok (y : int)
$\exists \mathrm{x} .([\mathrm{x}=1 ;](\mathrm{x} \doteq 1))$

- x cannot be logical variable, because it occurs in program
. x cannot be program variable, because it is quantified
$\langle\mathrm{x}=1 ;\rangle([$ while (true) $\mathbf{~}\}]$ false $)$
- Program formulas can appear nested

More Examples of DL Formulas

1. $\mathrm{x} \doteq i \boldsymbol{\&} \mathrm{y} \doteq j \rightarrow\langle\mathrm{z}=\mathrm{x} ; \mathrm{x}=\mathrm{y} ; \mathrm{y}=\mathrm{x} ;\rangle \mathrm{x} \doteq j \boldsymbol{=} \mathrm{y} \doteq i$
2. $x \doteq 3 \mid y \doteq-2->\langle y=x * x-x+6 ;\rangle y \doteq 0$
3. \langle if $0<=$ a then $\}$ else $\{a=-a ;\}\rangle 0<=a$
4. \langle while $(\mathrm{c}<=\mathrm{n}-1)\{\mathrm{p}=\mathrm{p}+\mathrm{m} ; \mathrm{c}=\mathrm{c}+1 ;\}\rangle \mathrm{p} \doteq \mathrm{m} * \mathrm{~m}$

Dynamic Logic Semantics: States

First-order model can be considered as (execution) state
Interpretation of non-rigid symbols can vary from state to state (eg, program variables)

Interpretation of rigid symbols is the same in all states (eg, built-in functions and predicates)

State $=$ First-order model:
$\mathcal{M}=s=(\mathcal{D}, \delta, \mathcal{I})$ over $\mathbf{F S y m}=\mathbf{F S y m}_{r} \cup \mathbf{F S y m}_{n r}$
Set of all states s is S

Dynamic Logic Semantics: Kripke Structure

Kripke structure $K=(S, \rho)$
State (model) $s=(\mathcal{D}, \delta, \mathcal{I}) \in S$ and $\rho: \Pi \rightarrow(S \rightarrow S) \quad \rho(\mathrm{p}), \rho(\mathrm{q})$

Each state is first-order model $s=(\mathcal{D}, \delta, \mathcal{I})$ over same domain \mathcal{D}

Dynamic Logic Semantics: Program Formulas

- $s, \beta \models\langle\mathrm{p}\rangle \phi \quad$ iff $\quad \rho(\mathrm{p})(s), \beta \models \phi$ and $\rho(\mathrm{p})(s)$ defined
p terminates and ϕ is true in the final state after execution

Dynamic Logic Semantics: Program Formulas

- $s, \beta \models\langle\mathrm{p}\rangle \phi \quad$ iff $\quad \rho(\mathrm{p})(s), \beta \models \phi$ and $\rho(\mathrm{p})(s)$ defined
p terminates and ϕ is true in the final state after execution
- $s, \beta \models[\mathrm{p}] \phi \quad$ iff $\quad \rho(\mathrm{p})(s), \beta \models \phi$ whenever $\rho(\mathrm{p})(s)$ defined

If p terminates then ϕ is true in the final state after execution

Dynamic Logic Semantics Example

Boolean program variables

$\mathbf{F S y m}_{n r}=\{$ boolean a , boolean b , boolean $\mathrm{c}, \ldots\}$

Dynamic Logic Semantics Example

Boolean program variables

$\mathbf{F S y m}_{n r}=\{$ boolean a, boolean b, boolean $\mathrm{c}, \ldots\}$

$s_{1} \models\langle\mathrm{p}\rangle \mathrm{a} \doteq \mathrm{TRUE} ?$

Dynamic Logic Semantics Example

Boolean program variables

$\mathbf{F S y m}_{n r}=\{$ boolean a, boolean b, boolean $\mathrm{c}, \ldots\}$

$s_{1} \models\langle\mathrm{p}\rangle \mathrm{a} \doteq \mathrm{TRUE}(\mathrm{ok})$,

Dynamic Logic Semantics Example

Boolean program variables

$\mathbf{F S y m}_{n r}=\{$ boolean a, boolean b, boolean $\mathrm{c}, \ldots\}$

$s_{1} \models\langle\mathrm{p}\rangle \mathrm{a} \doteq \operatorname{TRUE}(\mathrm{ok})$,
$s_{1} \models\langle\mathrm{q}\rangle \mathrm{a} \doteq \mathrm{TRUE} ?$

Dynamic Logic Semantics Example

Boolean program variables

$\mathbf{F S y m}_{n r}=\{$ boolean a, boolean b, boolean $\mathrm{c}, \ldots\}$

$s_{1} \models\langle\mathrm{p}\rangle \mathrm{a} \doteq \mathrm{TRUE}(\mathrm{ok})$,
$s_{1} \models\langle\mathrm{q}\rangle \mathrm{a} \doteq \mathrm{TRUE}(一)$

Dynamic Logic Semantics Example

Boolean program variables

$\mathbf{F S y m}_{n r}=\{$ boolean a, boolean b, boolean $\mathrm{c}, \ldots\}$

$s_{1} \models\langle\mathrm{p}\rangle \mathrm{a} \doteq \mathrm{TRUE}(\mathrm{ok})$,
$s_{1} \models\langle\mathrm{q}\rangle \mathrm{a} \doteq \mathrm{TRUE}(-)$
$s_{5} \models\langle\mathrm{q}\rangle \mathrm{a} \doteq \mathrm{TRUE} ?$

Dynamic Logic Semantics Example

Boolean program variables

$\mathbf{F S y m}_{n r}=\{$ boolean a, boolean b, boolean $\mathrm{c}, \ldots\}$

$s_{1} \models\langle\mathrm{p}\rangle \mathrm{a} \doteq \operatorname{TRUE}(\mathrm{ok})$,
$s_{1} \models\langle\mathrm{q}\rangle \mathrm{a} \doteq \mathrm{TRUE}(-)$
$s_{5} \models\langle\mathrm{q}\rangle \mathrm{a} \doteq \operatorname{TRUE}(-)$,

Dynamic Logic Semantics Example

Boolean program variables

$\mathbf{F S y m}_{n r}=\{$ boolean a, boolean b, boolean $\mathrm{c}, \ldots\}$

$s_{1} \models\langle\mathrm{p}\rangle \mathrm{a} \doteq \mathrm{TRUE}(\mathrm{ok})$,
$s_{1} \models\langle\mathrm{q}\rangle \mathrm{a} \doteq \mathrm{TRUE}($ - $)$
$s_{5} \models\langle\mathrm{q}\rangle \mathrm{a} \doteq \operatorname{TRUE}(-)$,
$s_{5} \models[\mathrm{q}] \mathrm{a} \doteq \mathrm{TRUE} ?$

Dynamic Logic Semantics Example

Boolean program variables

$\mathbf{F S y m}_{n r}=\{$ boolean a, boolean b, boolean $\mathrm{c}, \ldots\}$

$s_{1} \models\langle\mathrm{p}\rangle \mathrm{a} \doteq \operatorname{TRUE}(\mathrm{ok})$,
$s_{1} \models\langle\mathrm{q}\rangle \mathrm{a} \doteq \mathrm{TRUE}($ - $)$
$s_{5} \models\langle\mathrm{q}\rangle \mathrm{a} \doteq \operatorname{TRUE}(-)$,
$s_{5} \models[\mathrm{q}] \mathrm{a} \doteq \operatorname{TRUE}(\mathrm{ok})$

Program Correctness

- $s, \beta \models\langle\mathrm{p}\rangle \phi$
p totally correct (with respect to ϕ) in s, β

Program Correctness

- $s, \beta \models\langle\mathrm{p}\rangle \phi$
p totally correct (with respect to ϕ) in s, β
- $s, \beta \models[\mathrm{p}] \phi$
p partially correct (with respect to ϕ) in s, β

Program Correctness

- $s, \beta \models\langle\mathrm{p}\rangle \phi$
\mathbf{p} totally correct (with respect to ϕ) in s, β
- $s, \beta \models[\mathrm{p}] \phi$
p partially correct (with respect to ϕ) in s, β
- Duality $\langle\mathrm{p}\rangle \phi$ iff ! $[\mathrm{p}]!\phi$

Exercise: justify this with semantic definitions

Program Correctness

- $s, \beta \models\langle\mathrm{p}\rangle \phi$
p totally correct (with respect to ϕ) in s, β
- $s, \beta \models[\mathrm{p}] \phi$
p partially correct (with respect to ϕ) in s, β
- Duality $\langle\mathrm{p}\rangle \phi$ iff ! $[\mathrm{p}]!\phi$

Exercise: justify this with semantic definitions

- Implication if $\langle\mathrm{p}\rangle \phi$ then $[\mathrm{p}] \phi$

Total correctness implies partial correctness (holds only for deterministic programs)

Semantics of Sequents

Let $\Gamma=\left\{\phi_{1}, \ldots, \phi_{n}\right\} \subseteq$ For and $\Delta=\left\{\psi_{1}, \ldots, \psi_{m}\right\} \subseteq$ For

Recall: $s \models(\Gamma==>\Delta) \quad$ iff $\quad s \models\left(\phi_{1} \& \cdots \& \phi_{n}\right) \quad$-> $\quad\left(\psi_{1}|\cdots| \psi_{m}\right)$

Semantics of DL sequents should be defined identically with semantics of FOL sequents (assume Γ, Δ are sets of closed DL formulas):
$\Gamma==>\Delta$ is valid iff $\quad s \models(\Gamma==>\Delta)$ in all states s

Semantics of Sequents

Let $\Gamma=\left\{\phi_{1}, \ldots, \phi_{n}\right\} \subseteq$ For and $\Delta=\left\{\psi_{1}, \ldots, \psi_{m}\right\} \subseteq$ For

Recall: $s \models(\Gamma==>\Delta) \quad$ iff $\quad s \models\left(\phi_{1} \& \cdots \boldsymbol{\&} \phi_{n}\right) \quad$-> $\quad\left(\psi_{1}|\cdots| \psi_{m}\right)$

Semantics of DL sequents should be defined identically with semantics of FOL sequents (assume Γ, Δ are sets of closed DL formulas):
$\Gamma==>\Delta$ is valid iff $\quad s \models(\Gamma==>\Delta)$ in all states s

Consequence for program variables
In valid formulas they represent any possible value of their type

Initial States

How to restrict validity to set of initial states $S_{0} \subseteq S$?

1. Design closed FOL formula Init with

$$
s \models \text { Init } \quad \text { iff } \quad s \in S_{0}
$$

2. Use sequent

$$
\Gamma, \text { Init }==>\Delta
$$

Later: simple method for specifying initial value of program variables

Dynamic Logic Semantics: States, Updates

- States $s=(\mathcal{D}, \delta, \mathcal{I})$ all have
- the same domain \mathcal{D} (all objects present from start)
- the same typing function δ (dynamic type never changes)

May assume $\rho(\mathbf{p})$ works on interpretations \mathcal{I}
Define $\mathcal{I}, \beta \models \phi$ as $s, \beta \models \phi$, where $s=(\mathcal{D}, \delta, \mathcal{I})$

- Program variables j as flexible constants in s with value $\mathcal{I}(\mathrm{j})$

Dynamic Logic Semantics: States, Updates

- States $s=(\mathcal{D}, \delta, \mathcal{I})$ all have
- the same domain \mathcal{D} (all objects present from start)
- the same typing function δ (dynamic type never changes)

May assume $\rho(\mathbf{p})$ works on interpretations \mathcal{I}
Define $\mathcal{I}, \beta \models \phi$ as $s, \beta \models \phi$, where $s=(\mathcal{D}, \delta, \mathcal{I})$

- Program variables j as flexible constants in s with value $\mathcal{I}(\mathrm{j})$

Modified state update of \mathcal{I} at j of type z with $d \in \mathcal{D}^{z}$

$$
\mathcal{I}_{\mathrm{j}}^{d}(\mathrm{x})= \begin{cases}\mathcal{I}(\mathrm{x}) & \mathrm{x} \neq \mathrm{j} \\ d & \mathrm{x}=\mathrm{j}\end{cases}
$$

Cf. modified variable assignment

Operational Semantics of Programs

State transformation ρ defines semantics of programs
Same ρ for all programs, so not part of s

$$
\text { - } \rho(\mathrm{x}=\mathrm{t} ;)(\mathcal{I})=\mathcal{I}_{\mathrm{x}}^{v a l_{\mathcal{I}, \beta}(t)}
$$

Operational Semantics of Programs

State transformation ρ defines semantics of programs
Same ρ for all programs, so not part of s

- $\rho(\mathrm{x}=\mathrm{t} ;)(\mathcal{I})=\mathcal{I}_{\mathrm{x}}^{v a l_{\mathcal{I}, \beta}(t)}$
- $\rho($ if $(b)\{\mathrm{p}\}$ else $\{\mathrm{q}\} ;)(\mathcal{I})= \begin{cases}\rho(\mathrm{p})(\mathcal{I}) & \mathcal{I} \models b \doteq \operatorname{TRUE} \\ \rho(\mathrm{q})(\mathcal{I}) & \text { otherwise }\end{cases}$

Operational Semantics of Programs

State transformation ρ defines semantics of programs
Same ρ for all programs, so not part of s

- $\rho(\mathrm{x}=\mathrm{t} ;)(\mathcal{I})=\mathcal{I}_{\mathrm{x}}^{v a l_{\mathcal{I}, \beta}(t)}$
(can ignore β)
- $\rho($ if $(b)\{\mathrm{p}\}$ else $\{\mathrm{q}\} ;)(\mathcal{I})= \begin{cases}\rho(\mathrm{p})(\mathcal{I}) & \mathcal{I} \models b \doteq \text { TRUE } \\ \rho(\mathrm{q})(\mathcal{I}) & \text { otherwise }\end{cases}$
- $\rho(\mathrm{pq})(\mathcal{I})=\rho(\mathrm{q})(\rho(\mathrm{p})(\mathcal{I}))$, if $\rho(\mathrm{p})(\mathcal{I})$ defined, undefined otherwise

Operational Semantics of Programs

State transformation ρ defines semantics of programs
Same ρ for all programs, so not part of s

- $\rho(\mathrm{x}=\mathrm{t} ;)(\mathcal{I})=\mathcal{I}_{\mathrm{x}}^{v a l_{\mathcal{I}, \beta}(t)}$
(can ignore β)
- $\rho($ if $(b)\{p\}$ else $\{q\} ;)(\mathcal{I})= \begin{cases}\rho(\mathrm{p})(\mathcal{I}) & \mathcal{I} \models b \doteq \text { TRUE } \\ \rho(\mathrm{q})(\mathcal{I}) & \text { otherwise }\end{cases}$
- $\rho(\mathrm{pq})(\mathcal{I})=\rho(\mathrm{q})(\rho(\mathrm{p})(\mathcal{I}))$, if $\rho(\mathrm{p})(\mathcal{I})$ defined, undefined otherwise
- $\rho($ while $(b)\{\mathrm{p}\} ;)(\mathcal{I})=\mathcal{I}^{\prime}$ iff there are $\mathcal{I}=\mathcal{I}_{0}, \ldots, \mathcal{I}_{n}=\mathcal{I}^{\prime}$ such that

Operational Semantics of Programs

State transformation ρ defines semantics of programs
Same ρ for all programs, so not part of s

- $\rho(\mathrm{x}=\mathrm{t} ;)(\mathcal{I})=\mathcal{I}_{\mathrm{x}}^{v a l_{\mathcal{I}, \beta}(t)}$
(can ignore β)
- $\rho($ if $(b)\{p\}$ else $\{q\} ;)(\mathcal{I})= \begin{cases}\rho(\mathrm{p})(\mathcal{I}) & \mathcal{I} \models b \doteq \text { TRUE } \\ \rho(\mathrm{q})(\mathcal{I}) & \text { otherwise }\end{cases}$
- $\rho(\mathrm{pq})(\mathcal{I})=\rho(\mathrm{q})(\rho(\mathrm{p})(\mathcal{I}))$, if $\rho(\mathrm{p})(\mathcal{I})$ defined, undefined otherwise
- $\rho($ while $(b)\{\mathrm{p}\} ;)(\mathcal{I})=\mathcal{I}^{\prime}$ iff there are $\mathcal{I}=\mathcal{I}_{0}, \ldots, \mathcal{I}_{n}=\mathcal{I}^{\prime}$ such that
- $\mathcal{I}_{j}, \beta \models b \doteq$ TRUE for $0 \leq j<n$

Operational Semantics of Programs

State transformation ρ defines semantics of programs
Same ρ for all programs, so not part of s

- $\rho(\mathrm{x}=\mathrm{t} ;)(\mathcal{I})=\mathcal{I}_{\mathrm{x}}^{v a l_{\mathcal{I}, \beta}(t)}$
(can ignore β)
- $\rho($ if $(b)\{p\}$ else $\{q\} ;)(\mathcal{I})= \begin{cases}\rho(\mathrm{p})(\mathcal{I}) & \mathcal{I} \models b \doteq \text { TRUE } \\ \rho(\mathrm{q})(\mathcal{I}) & \text { otherwise }\end{cases}$
- $\rho(\mathrm{pq})(\mathcal{I})=\rho(\mathrm{q})(\rho(\mathrm{p})(\mathcal{I}))$, if $\rho(\mathrm{p})(\mathcal{I})$ defined, undefined otherwise
- $\rho($ while $(b)\{\mathrm{p}\} ;)(\mathcal{I})=\mathcal{I}^{\prime}$ iff there are $\mathcal{I}=\mathcal{I}_{0}, \ldots, \mathcal{I}_{n}=\mathcal{I}^{\prime}$ such that
- $\mathcal{I}_{j}, \beta \models b \doteq$ TRUE for $0 \leq j<n$
- $\rho(\mathrm{p})\left(\mathcal{I}_{j}\right)=\mathcal{I}_{j+1}$ for $0 \leq j<n$

Operational Semantics of Programs

State transformation ρ defines semantics of programs
Same ρ for all programs, so not part of s

- $\rho(\mathrm{x}=\mathrm{t} ;)(\mathcal{I})=\mathcal{I}_{\mathrm{x}}^{v a l_{\mathcal{I}, \beta}(t)}$
(can ignore β)
- $\rho($ if $(b)\{p\}$ else $\{q\} ;)(\mathcal{I})= \begin{cases}\rho(\mathrm{p})(\mathcal{I}) & \mathcal{I} \models b \doteq \text { TRUE } \\ \rho(\mathrm{q})(\mathcal{I}) & \text { otherwise }\end{cases}$
- $\rho(\mathrm{pq})(\mathcal{I})=\rho(\mathrm{q})(\rho(\mathrm{p})(\mathcal{I}))$, if $\rho(\mathrm{p})(\mathcal{I})$ defined, undefined otherwise
- $\rho($ while $(b)\{\mathrm{p}\} ;)(\mathcal{I})=\mathcal{I}^{\prime}$ iff there are $\mathcal{I}=\mathcal{I}_{0}, \ldots, \mathcal{I}_{n}=\mathcal{I}^{\prime}$ such that
- $\mathcal{I}_{j}, \beta \models b \doteq$ TRUE for $0 \leq j<n$
- $\rho(\mathrm{p})\left(\mathcal{I}_{j}\right)=\mathcal{I}_{j+1}$ for $0 \leq j<n$
- $\mathcal{I}_{n}, \beta \models b \doteq$ FALSE
undefined otherwise

Proof by Symbolic Program Execution

Need to have rules for program formulas: but which?
What corresponds to top-level connective in sequential program?

Proof by Symbolic Program Execution

Need to have rules for program formulas: but which?
What corresponds to top-level connective in sequential program?

Idea: follow natural program control flow

Proof by Symbolic Program Execution

Need to have rules for program formulas: but which?
What corresponds to top-level connective in sequential program?

Idea: follow natural program control flow

Sound and complete rule for conclusions with main formulas:

$$
\langle\xi \mathrm{q}\rangle \phi, \quad[\xi \mathrm{q}] \phi
$$

ξ one single admissible program statement, q remaining program

Proof by Symbolic Program Execution

Need to have rules for program formulas: but which?
What corresponds to top-level connective in sequential program?

Idea: follow natural program control flow

Sound and complete rule for conclusions with main formulas:

$$
\langle\xi \mathrm{q}\rangle \phi, \quad[\xi \mathrm{q}] \phi
$$

ξ one single admissible program statement, q remaining program

Rules execute symbolically the first active statement
Proof corresponds to symbolic program execution

Dynamic Logic Calculus

$$
\text { CONCATENATE } \frac{\Gamma==>\langle\mathrm{p}\rangle(\langle\mathrm{q}\rangle \phi), \Delta}{\Gamma==>\langle\mathrm{pq}\rangle \phi, \Delta}
$$

Dynamic Logic Calculus

$$
\begin{gathered}
\text { CONCATENATE } \frac{\Gamma==>\langle\mathrm{p}\rangle(\langle\mathrm{q}\rangle \phi), \Delta}{\Gamma==>\langle\mathrm{pq}\rangle \phi, \Delta} \\
\text { IF } \frac{\Gamma, b \doteq \operatorname{TRUE}==>\langle\mathrm{p}\rangle \phi, \Delta \quad \Gamma, b \doteq \mathrm{FALSE}==>\langle\mathrm{q}\rangle \phi, \Delta}{\Gamma==>\langle\text { if }(b)\{\mathrm{p}\} \text { else }\{\mathrm{q}\} ;\rangle \phi, \Delta}
\end{gathered}
$$

Dynamic Logic Calculus

$$
\begin{gathered}
\text { CONCATENATE } \frac{\Gamma==>\langle\mathrm{p}\rangle(\langle\mathrm{q}\rangle \phi), \Delta}{\Gamma==>\langle\mathrm{pq}\rangle \phi, \Delta} \\
\text { IF } \frac{\Gamma, b \doteq \operatorname{TRUE}==>\langle\mathrm{p}\rangle \phi, \Delta \quad \Gamma, b \doteq \mathrm{FALSE}==>\langle\mathrm{q}\rangle \phi, \Delta}{\Gamma==>\langle\text { if }(b)\{\mathrm{p}\} \text { else }\{\mathrm{q}\} ;\rangle \phi, \Delta} \\
\text { ASSIGN } \frac{\left\{\mathrm{x} / \mathrm{x}_{o l d}\right\} \Gamma, \mathrm{x} \doteq\left\{\mathrm{x} / \mathrm{x}_{\text {old }}\right\} t==>\phi,\left\{\mathrm{x} / \mathrm{x}_{\text {old }}\right\} \Delta}{\Gamma==>\langle x=t ;\rangle \phi, \Delta}
\end{gathered}
$$

$\mathrm{x}_{\text {old }}$ new program variable that "rescues" old value of x

Dynamic Logic Calculus

$$
\begin{gathered}
\text { CONCATENATE } \frac{\Gamma==>\langle\mathrm{p}\rangle(\langle\mathrm{q}\rangle \phi), \Delta}{\Gamma==>\langle\mathrm{pq}\rangle \phi, \Delta} \\
\text { IF } \frac{\Gamma, b \doteq \operatorname{TRUE}==>\langle\mathrm{p}\rangle \phi, \Delta \quad \Gamma, b \doteq \mathrm{FALSE}==>}{\Gamma=\mathrm{q}\rangle \phi, \Delta} \\
\text { ASSIGN } \frac{\left\{\mathrm{x} / \mathrm{x}_{\text {old }}\right\} \Gamma, \mathrm{x} \doteq\{\mathrm{if}(b)\{\mathrm{p}\} \text { else }\{\mathrm{q}\} ;\rangle \phi, \Delta}{\Gamma==>\langle x=t ;\rangle \phi, \Delta} .
\end{gathered}
$$

$\mathrm{x}_{\text {old }}$ new program variable that "rescues" old value of x

$$
\text { UNWIND } \frac{\Gamma, b \doteq \operatorname{FALSE}==>\phi, \Delta \quad \Gamma, b \doteq \operatorname{TRUE}==>\langle\mathrm{p}\rangle\langle\text { while }(b)\{\mathrm{p}\} ;\rangle \phi, \Delta}{\Gamma==>\langle\text { while }(b)\{\mathrm{p}\} ;\rangle \phi, \Delta}
$$

Dynamic Logic Examples

Partial correctness assertion (Hoare formula)

$$
\{\psi\} \mathrm{p}\{\phi\}
$$

If p is started in a state satisfying ψ and terminates, then its final state satisfies ϕ

In DL

$$
\psi->[\mathrm{p}] \phi
$$

Dynamic Logic Examples

Partial correctness assertion (Hoare formula)
$\{\psi\}$ p $\{\phi\}$

If p is started in a state satisfying ψ and terminates, then its final state satisfies ϕ

In DL

$$
\psi->[\mathrm{p}] \phi
$$

Valid formulas
$[\mathrm{x}=1 ;](\mathrm{x} \doteq 1)$

Dynamic Logic Examples

Partial correctness assertion (Hoare formula)

$$
\{\psi\} \mathrm{p}\{\phi\}
$$

If p is started in a state satisfying ψ and terminates, then its final state satisfies ϕ

In DL

$$
\psi->[\mathrm{p}] \phi
$$

Valid formulas
$[\mathrm{x}=1 ;](\mathrm{x} \doteq 1)$

$$
\text { [while (true) }\{x=x ;\} ;] \text { false }
$$

Dynamic Logic Examples

Partial correctness assertion (Hoare formula)

$$
\{\psi\} \mathrm{p}\{\phi\}
$$

If p is started in a state satisfying ψ and terminates, then its final state satisfies ϕ

In DL

$$
\psi->[\mathrm{p}] \phi
$$

Valid formulas
$[\mathrm{x}=1 ;](\mathrm{x} \doteq 1)$

$$
\text { [while (true) }\{x=x ;\} ;] \text { false }
$$

Validity depends on p, q
$\forall y$. $((\langle\mathrm{p}\rangle \mathrm{x} \doteq y)<->(\langle\mathrm{q}\rangle \mathrm{x} \doteq y)) \quad$ meaning?

Dynamic Logic Examples

Partial correctness assertion (Hoare formula)

$$
\{\psi\} \mathrm{p}\{\phi\}
$$

If p is started in a state satisfying ψ and terminates, then its final state satisfies ϕ

In DL

$$
\psi->[\mathrm{p}] \phi
$$

Valid formulas
$[\mathrm{x}=1 ;](\mathrm{x} \doteq 1)$
[while (true) $\{x=x ;\} ;]$ false
Validity depends on p, q
$\forall y .((\langle\mathrm{p}\rangle \mathrm{x} \doteq y)<->(\langle\mathrm{q}\rangle \mathrm{x} \doteq y))$
p, q equivalent relative to x

Dynamic Logic Examples

Partial correctness assertion (Hoare formula)

$$
\{\psi\} \mathrm{p}\{\phi\}
$$

If p is started in a state satisfying ψ and terminates, then its final state satisfies ϕ

In DL

$$
\psi->[\mathrm{p}] \phi
$$

Valid formulas
$[\mathrm{x}=1 ;](\mathrm{x} \doteq 1)$
[while (true) $\{x=x ;\} ;]$ false
Validity depends on p, q
$\forall y .((\langle\mathrm{p}\rangle \mathrm{x} \doteq y)<->(\langle\mathrm{q}\rangle \mathrm{x} \doteq y))$
p, q equivalent relative to x
$\exists y .(\mathrm{x} \doteq y->\langle\mathrm{p}\rangle$ true $)$ meaning?

Dynamic Logic Examples

Partial correctness assertion (Hoare formula)

$$
\{\psi\} \mathrm{p}\{\phi\}
$$

If p is started in a state satisfying ψ and terminates, then its final state satisfies ϕ

In DL

$$
\psi->[\mathrm{p}] \phi
$$

Valid formulas
$[\mathrm{x}=1 ;](\mathrm{x} \doteq 1)$
Validity depends on p, q
$\forall y .((\langle\mathrm{p}\rangle \mathrm{x} \doteq y)<->(\langle\mathrm{q}\rangle \mathrm{x} \doteq y))$
p, q equivalent relative to x
$\exists y .(\mathrm{x} \doteq y-\rangle\langle\mathrm{p}\rangle$ true $) \quad \mathrm{p}$ terminates for some initial value of x

Induction Rule

Motivation

- UNWIND-rule only works if number of loop iterations small \& known
- Properties of inductive FO data structures unprovable (numbers, lists, trees, etc.)

Induction Rule

Motivation

- UNWIND-rule only works if number of loop iterations small \& known
- Properties of inductive FO data structures unprovable (numbers, lists, trees, etc.)

Induction Rule (over natural numbers)

$$
\begin{gathered}
\Gamma==>[n / 0] \phi, \Delta \quad \Gamma,\left[n / n^{\prime}\right] \phi==>\left[n / n^{\prime}+1\right] \phi, \Delta \quad \Gamma, \forall n \cdot \phi==>\Delta \\
\Gamma=\Delta \Delta
\end{gathered}
$$

Where n logical variable, n^{\prime} constant of type int not occurring in Γ, Δ

Induction Rule Example

Definition of even (unary predicate on int):

- ==> even (0)
- $==>\forall x$. $(\mathbf{e v e n}(x)$-> $\operatorname{even}(x+2))$

How to prove ==> even $(2 * 7)$?

Induction Rule Example

Definition of even (unary predicate on int):

- ==> even (0)
- $==>\forall x$. $(\operatorname{even}(x)->\operatorname{even}(x+2))$

How to prove ==>even $(2 * 7)$?

1. Apply definition 7 times
2. Use induction rule with induction hypothesis $\phi=\operatorname{even}(2 * n)$

Induction Rule Example

Definition of even (unary predicate on int):

- ==> even (0)
- $==>\forall x$. $(\mathbf{e v e n}(x)->\operatorname{even}(x+2))$

How to prove ==> even $(2 * 7)$?

1. Apply definition 7 times
2. Use induction rule with induction hypothesis $\phi=\operatorname{even}(2 * n)$

$$
\begin{gathered}
==>\operatorname{even}(2 * 0) \quad \operatorname{even}\left(2 * n^{\prime}\right)==>\operatorname{even}\left(2 *\left(n^{\prime}+1\right)\right) \quad \forall n . \text { even }(2 * n)==>\operatorname{even}(2 * 7) \\
==>\operatorname{even}(2 * 7)
\end{gathered}
$$

Demo in dlintro/ind.key

Quantifying over Program Variables

What if induction hypothesis contains program?
Cannot quantify over program variables!
How to express validity for arbitrary initial value of program variable?

Quantifying over Program Variables

What if induction hypothesis contains program?
Cannot quantify over program variables!
How to express validity for arbitrary initial value of program variable?
Not allowed: $\quad \forall i .\langle p(i)\rangle \phi$

Quantifying over Program Variables

What if induction hypothesis contains program?
Cannot quantify over program variables!
How to express validity for arbitrary initial value of program variable?
Not allowed: $\quad \forall i .\langle p(i)\rangle \phi$
(program \neq logical variable)
Not intended: $==>\langle p(i)\rangle \phi$

Quantifying over Program Variables

What if induction hypothesis contains program?
Cannot quantify over program variables!
How to express validity for arbitrary initial value of program variable?
Not allowed: $\quad \forall i .\langle\mathrm{p}(\mathrm{i})\rangle \phi$
(program \neq logical variable)
Not intended: $==>\langle p(i)\rangle \phi$
(Validity of sequents: quantification over all states)
As previous: $\quad \forall n .(n \doteq \mathrm{i}->\langle\mathrm{p}(\mathrm{i})\rangle \phi)$

Quantifying over Program Variables

What if induction hypothesis contains program?
Cannot quantify over program variables!
How to express validity for arbitrary initial value of program variable?
Not allowed: $\quad \forall \mathrm{i} .\langle\mathrm{p}(\mathrm{i})\rangle \phi$
(program \neq logical variable)
Not intended: $==>\langle p(i)\rangle \phi$
(Validity of sequents: quantification over all states)
As previous: $\quad \forall n .(n \doteq \mathrm{i}->\langle\mathrm{p}(\mathrm{i})\rangle \phi)$
Not allowed: $\quad \forall n .\langle\mathrm{p}(n)\rangle \phi$
(no logical variables in programs)

Quantifying over Program Variables

What if induction hypothesis contains program?
Cannot quantify over program variables!
How to express validity for arbitrary initial value of program variable?
Not allowed: $\quad \forall i .\langle p(i)\rangle \phi$
(program \neq logical variable)
Not intended: $==>\langle p(i)\rangle \phi$
(Validity of sequents: quantification over all states)
As previous: $\quad \forall n .(n \doteq \mathrm{i}->\langle\mathrm{p}(\mathrm{i})\rangle \phi)$
Not allowed: $\quad \forall n .\langle\mathrm{p}(n)\rangle \phi$
(no logical variables in programs)

Solution
Use explicit construct to record state change information
Update $\quad \forall n .(\{\mathrm{i}:=n\}\langle\mathrm{p}(\mathrm{i})\rangle \phi)$

Explicit State Updates

Updates record computation state in which we evaluate a formula

Explicit State Updates

Updates record computation state in which we evaluate a formula
Syntax
If v is program variable, t, t^{\prime} FOL terms, and ϕ any DL formula, then $\{\mathrm{v}:=t\} \phi$ is DL formula and $\{\mathrm{v}:=t\} t^{\prime}$ is DL term

Explicit State Updates

Updates record computation state in which we evaluate a formula

Syntax

If v is program variable, t, t^{\prime} FOL terms, and ϕ any DL formula, then $\{\mathrm{v}:=t\} \phi$ is DL formula and $\{\mathrm{v}:=t\} t^{\prime}$ is DL term

Semantics

$\mathcal{I}, \beta \models\{\mathrm{v}:=t\} \quad$ iff $\quad \mathcal{I}_{\mathrm{v}}^{v a l_{\mathcal{I}, \beta}(t)}, \beta \models \phi$
Semantics identical to assignment, may depend on logical variables in t
Updates work like "lazy" assignments
Updates are not assignments: may contain logical variable
Updates are not equations: change interpretation of non-rigid terms

Computing Effect of Updates (Automatic)

Update followed by program variable

$$
\begin{aligned}
& \{\mathrm{x}:=t\} \mathrm{y} \leadsto \mathrm{y} \\
& \{\mathrm{x}:=t\} \mathrm{x} \leadsto t
\end{aligned}
$$

by logical variable
$\{\mathrm{x}:=t\} w \sim w$

Computing Effect of Updates (Automatic)

Update followed by program variable

$$
\begin{aligned}
& \{\mathrm{x}:=t\} \mathrm{y} \leadsto \mathrm{y} \\
& \{\mathrm{x}:=t\} \mathrm{x} \leadsto t
\end{aligned}
$$

by logical variable
$\{x:=t\} w \sim w$

Update followed by complex term

$$
\{\mathrm{x}:=t\} f\left(t_{1}, \ldots, t_{n}\right) \leadsto f\left(\{\mathrm{x}:=t\} t_{1}, \ldots,\{\mathrm{x}:=t\} t_{n}\right)
$$

Computing Effect of Updates (Automatic)

Update followed by program variable

$$
\begin{aligned}
& \{\mathrm{x}:=t\} \mathrm{y} \leadsto \mathrm{y} \\
& \{\mathrm{x}:=t\} \mathrm{x} \leadsto t
\end{aligned}
$$

by logical variable
$\{x:=t\} w \sim w$

Update followed by complex term

$$
\{\mathrm{x}:=t\} f\left(t_{1}, \ldots, t_{n}\right) \leadsto f\left(\{\mathrm{x}:=t\} t_{1}, \ldots,\{\mathrm{x}:=t\} t_{n}\right)
$$

Update followed by first-order formula

$$
\begin{aligned}
& \{\mathrm{x}:=t \mathfrak{\}}(\phi \boldsymbol{\&} \psi) \sim\{\mathrm{x}:=t\} \phi \&\{\mathrm{x}:=t\} \psi \text { etc. } \\
& \{\mathrm{x}:=t \mathfrak{\}}(\forall y \cdot \phi) \sim \forall y \cdot(\{\mathrm{x}:=t\} \phi) \text { etc. }
\end{aligned}
$$

Computing Effect of Updates (Automatic)

Update followed by program variable

$$
\begin{aligned}
& \{\mathrm{x}:=t\} \mathrm{y} \leadsto \mathrm{y} \\
& \{\mathrm{x}:=t\} \mathrm{x} \leadsto{ }^{2}
\end{aligned}
$$

$$
\{\mathrm{x}:=t\} w \leadsto w
$$

Update followed by complex term

$$
\{\mathrm{x}:=t\} f\left(t_{1}, \ldots, t_{n}\right) \leadsto f\left(\{\mathrm{x}:=t\} t_{1}, \ldots,\{\mathrm{x}:=t\} t_{n}\right)
$$

Update followed by first-order formula

$$
\begin{aligned}
& \{\mathrm{x}:=t \mathfrak{\}}(\phi \boldsymbol{\&} \psi) \sim\{\mathrm{x}:=t\} \phi \boldsymbol{\&}\{\mathrm{x}:=t\} \psi \text { etc. } \\
& \{\mathrm{x}:=t \mathfrak{\}}(\forall y \cdot \phi) \sim \forall y \cdot(\{\mathrm{x}:=t \mathfrak{\}} \phi) \text { etc. }
\end{aligned}
$$

Update followed by program formula

$$
\{\mathrm{x}:=t\}(\langle\mathrm{p}\rangle \phi) \sim\{\mathrm{x}:=t\}(\langle\mathrm{p}\rangle \phi)
$$

Update computation delayed until p symbolically executed

Assignment Rule Using Updates

$$
\text { ASSIGN } \frac{\Gamma==>\{\mathrm{x}:=t\} \phi, \Delta}{\Gamma==>\langle\mathrm{x}=\mathrm{t} ;\rangle \phi, \Delta}
$$

Avoids renaming of program variables
Works as long as t has no side effects (ok in simple DL)
But: rules dealing with programs need to account for updates

Assignment Rule Using Updates

$$
\text { ASSIGN } \frac{\Gamma==>\{\mathrm{x}:=\mathrm{t}\} \phi, \Delta}{\Gamma==>\langle\mathrm{x}=\mathrm{t} ;\rangle \phi, \Delta}
$$

Avoids renaming of program variables
Works as long as t has no side effects (ok in simple DL)
But: rules dealing with programs need to account for updates
Solution: rules work on first active statement after updates and prefix, followed by postfix (remaining code)

Explicit concatenation rule not longer useful

Assignment Rule Using Updates

$$
\text { ASSIGN } \frac{\Gamma==>\{\mathrm{x}:=\mathrm{t}\} \phi, \Delta}{\Gamma==>\langle\mathrm{x}=\mathrm{t} ;\rangle \phi, \Delta}
$$

Avoids renaming of program variables
Works as long as t has no side effects (ok in simple DL)
But: rules dealing with programs need to account for updates
Solution: rules work on first active statement after updates and prefix, followed by postfix (remaining code)

Explicit concatenation rule not longer useful
General form of conclusion in rule for symbolic execution

Example Proof

```
\programVariables { // program variables in FSym
    int x;
}
\problem {
    \exists int y; (x = y -> // y logical variable
    \<{while (x > 0) {x = x-1;}}\> true)
    // modal brackets written as \<, \>
}
Intuitive Meaning? Satisfiable? Valid?
```


Demo

dlIntro/term.key

