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OCL Context Declarations as Universal Quantifiers

Classifier Context (Invariants)

context typeName

inv ‘Boolean OclExpression-with- self ’
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OCL Context Declarations as Universal Quantifiers

Classifier Context (Invariants)

context typeName

inv ‘Boolean OclExpression-with- self ’

Equivalent to universally quantified expression

inv typeName .allInstances() – > forAll (x | OclExpression-with- x)

Example

context Person
inv self.age >= 0

⇒
inv Person.allInstances() – >

forAll(x | x.age >= 0)
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Translating Universal Quantifiers from OCL to FOL

Universally quantified OCL expression

inv typeName .allInstances – > forAll (x | OclExpression-with- x)
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∀x.T (OclExpression-with- x)
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Translating Universal Quantifiers from OCL to FOL

Universally quantified OCL expression

inv typeName .allInstances – > forAll (x | OclExpression-with- x)

Translation T to universal quantifier over variable x of type typeName

∀x.T (OclExpression-with- x)

Example

inv Person.allInstances() – >

forAll(x | x.age >= 0)
T
⇒ x : Person

∀x.(T (x.age >= 0))
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Quantification over Existing Objects

If x is variable of type C from UML context,
then ∀x.φ quantifies over all objects typeable with C

We want only the created objects in the current snapshot!
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Quantification over Existing Objects

If x is variable of type C from UML context,
then ∀x.φ quantifies over all objects typeable with C

We want only the created objects in the current snapshot!

Assume that each class C has Boolean attribute < created >

I(< created >)(o) is true iff o has been created in state described by I
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Quantification over Existing Objects

If x is variable of type C from UML context,
then ∀x.φ quantifies over all objects typeable with C

We want only the created objects in the current snapshot!

Assume that each class C has Boolean attribute < created >

I(< created >)(o) is true iff o has been created in state described by I

Instead of ∀ use quantifier ∀̇ defined as:

∀̇x.φ <-> ∀x.(x.< created > ->φ)

Instead of ∃ use quantifier ∃̇ defined as:

∃̇x.φ <-> ∃x.(x.< created >& φ)
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Translating OCL to FOL: Attributes

Attributes

class name
Person

name:String

e-mail:String

name compartment

attribute compartment

attribute names attribute types

OCL constraint with attribute

x.age >= 0

22c181: Formal Methods in Software Engineering – p.7/15
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class name
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name compartment

attribute compartment

attribute names attribute types

OCL constraint with attribute
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Translating OCL to FOL: Attributes

Attributes

class name
Person

name:String

e-mail:String

name compartment

attribute compartment

attribute names attribute types

OCL constraint with attribute

x.age >= 0

UML attribute semantics

I(age) function from I(Person) to I(int)

FOL type hierarchy & signature (fragment)

T = {Person, . . . ,int, . . .}

FSym = {age} with age : Person → int

PSym = {>=,<=,>,<, . . .}

22c181: Formal Methods in Software Engineering – p.7/15



Translating OCL to FOL: Attributes

Attributes

class name
Person

name:String

e-mail:String

name compartment

attribute compartment

attribute names attribute types

OCL constraint with attribute

x.age >= 0

UML attribute semantics

I(age) function from I(Person) to I(int)

FOL type hierarchy & signature (fragment)

T = {Person, . . . ,int, . . .}

FSym = {age} with age : Person → int

PSym = {>=,<=,>,<, . . .}

FOL translation

T (x.age >= 0) = age(x)>=0
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Notational Conventions

Allow postfix-dot notation for functions that model attribu tes

Example

age(x)>=0
T
⇒ x.age>=0

In simple cases FOL translation looks exactly like OCL :

OCL expressions w/o iterators are alternative concrete syntax of FOL
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Notational Conventions

Allow postfix-dot notation for functions that model attribu tes

Example

age(x)>=0
T
⇒ x.age>=0

In simple cases FOL translation looks exactly like OCL :

OCL expressions w/o iterators are alternative concrete syntax of FOL

No generic types in Java Card and FOL (such as Set(Person))

Translation generates suitable flat types on-the-fly

SetOfPerson, SequenceOfPerson, etc.

Shorthand for sets of objects: Vehicle{}, Person{}, int{}
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Assorted Remarks

FOL translation of OCL attribute interpreted as total funct ion

Value of an attribute might be null

Symbols with fixed interpretation for many OCL properties

<=, size, includes, +, 17, self, result, etc.

Correct intended semantics guaranteed by sound calculus ru les
(automatically loaded)

If owner type of functions that model attributes and operati ons
is required to resolve overloading, then write it in front :

Person ::age(x), Person{} ::includes(siblings(self),p)
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Translating OCL to FOL: Associations

Associations

Person

name:String

age:int

≪query≫
getName():String

setAge(newAge:int):int

a

1

mother

1

father

a

Multiplicity 1: like attributes, but no dot notation

Function 〈supplier-role-name 〉 : 〈client-type 〉 → 〈supplier-type 〉

Example: father : Person → Person

Use explicit role name if present, otherwise default role na me

not(self.father = self.mother)
T
⇒ !(father(self)

.
= mother(self))
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Translating OCL to FOL: Associations

Associations

Person

name:String

age:int

≪query≫
getName():String

setAge(newAge:int):int

a

*
siblings

*
nephews

a

Other multiplicity than 1:

Function 〈supplier-role-name 〉 : 〈client-type 〉 → 〈Supplier-type {}〉
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Translating OCL to FOL: Associations

Associations

Person

name:String

age:int

≪query≫
getName():String

setAge(newAge:int):int

a

*
siblings

*
nephews

a

Other multiplicity than 1:

Function 〈supplier-role-name 〉 : 〈client-type 〉 → 〈Supplier-type {}〉

Example: siblings : Person → Person{}

self.siblings = self.nephews
T
⇒ siblings(self)

.
= nephews(self)

Problem: no rules for equality of sets of objects ⇒ extensionality
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Translating OCL to FOL: Associations

Associations

Person

name:String

age:int

≪query≫
getName():String

setAge(newAge:int):int

a

*
siblings

*
nephews

a

Other multiplicity than 1:

Function 〈supplier-role-name 〉 : 〈client-type 〉 → 〈Supplier-type {}〉

siblings(self)
.
= nephews(self) expanded into:

∀̇p.( Person{}::includes(siblings(self), p)

<->

Person{}::includes(nephews(self), p))
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Translating OCL to FOL: allInstances()

allInstances()

Person

name:String

age:int

≪query≫
getName():String

setAge(newAge:int):int

a

1

mother

1

father

a

Argument of OCL quantifier forAll, exists

Analogous treatment to class context declaration

Example
Person.allInstances() -> forAll(age >= 0)

T
⇒

∀̇x.(x.age>=0)
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Translating OCL to FOL: allInstances()

allInstances()

Person

name:String

age:int

≪query≫
getName():String

setAge(newAge:int):int

a

1

mother

1

father

a

Other collection property than quantifier

For T.allInstances() create constant T{}::allInstances :→ T{}

Add “definition” of T{}::allInstances to goal antecedent:

∀̇x. T{}::includes(T{}::allInstances, x)

Example for translation of allInstances()
Person.allInstances() -> size() = 1

T
⇒

Person{}::size(Person{}::allInstances)
.
= 1
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Translating OCL to FOL: Important Issues

In many cases FOL translation follows OCL closely

Some collection properties have complicated translations
(select, reject)

Translator optimizes whenever possible

Sometimes, translation declares new function symbols

Definitions placed in antecedent (ie, left) of sequent arrow ==>

Details of translation (see also course web page):

B. Beckert, U. Keller, P Schmitt:
Translating the OCL into First-order Predicate Logic

A. Roth & P. Schmitt
Formal Specification , Section 5.2.3
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Horizontal Verification: Behavioural Subtyping

Substitution principle (Liskov, 1993)

Let φ be a property provable about objects x of type T .
Then φ should be true for objects y of type S where S⊑T .
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Horizontal Verification: Behavioural Subtyping

Substitution principle (Liskov, 1993)

Let φ be a property provable about objects x of type T .
Then φ should be true for objects y of type S where S⊑T .

Consequence is invariant subtyping property:

Invariant of a class must imply invariant of all parent class es
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Horizontal Verification: Behavioural Subtyping

Substitution principle (Liskov, 1993)

Let φ be a property provable about objects x of type T .
Then φ should be true for objects y of type S where S⊑T .

Consequence is invariant subtyping property:

Invariant of a class must imply invariant of all parent class es

invS is (FOL translation of) OCL invariant constraint of a class S

T1, . . . , Tn parent classes and interfaces of S

Proof obligation: ∀̇self.(invS -> (invT1
& · · ·&invTn

))
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