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Propositional Logic is insufficient

A ALL PERSONS ARE HAPPY
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Propositional Logic is insufficient
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PAT IS HAPPY

Propositional logic lacks possibility to talk about indivi duals

In particular, need to model objects, attributes, associat ions, etc.
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Propositional Logic is insufficient

A

B

?

ALL PERSONS ARE HAPPY

PAT IS A PERSON

PAT IS HAPPY

Propositional logic lacks possibility to talk about indivi duals

In particular, need to model objects, attributes, associat ions, etc.

⇒ First-Order Logic (FOL) with Types
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First-Order Logic

I , |=

First-Order
Formulas

First-Order
Models

First-Order
Sequent
Calculus

⊢
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OO Type Hierarchy

Finite set T of static types , subtype relation ⊑,

Dynamic types Td ⊆ T , where ⊤ ∈ Td

Abstract types Ta ⊆ T , where ⊥ ∈ Ta

Td ∩ Ta = ∅, Td ∪ Ta = T , ⊥ ⊑ z ⊑ ⊤ for all z ∈ T

⊤

int

Object

AbstractCollection List

AbstractList

ArrayList

Null

⊥
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Signature of Typed First-Order Logic

Given type hierarchy (T , Td, Ta, ⊑), let Tq := T \{⊥}

Signature Σ = (V, P, F, α)
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Signature of Typed First-Order Logic

Given type hierarchy (T , Td, Ta, ⊑), let Tq := T \{⊥}

Signature Σ = (V, P, F, α)

Variable Symbols V = {xi | i ∈ N}

Predicate Symbols P = {pi | i ∈ N}

Function Symbols F = {fi | i ∈ N}
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Signature of Typed First-Order Logic

Given type hierarchy (T , Td, Ta, ⊑), let Tq := T \{⊥}

Signature Σ = (V, P, F, α)

Variable Symbols V = {xi | i ∈ N}

Predicate Symbols P = {pi | i ∈ N}

Function Symbols F = {fi | i ∈ N}

Typing function α for all symbols:

α(x) ∈ Tq for all x ∈ V
We write x:z instead of α(x) = z (in Java: “ z t;”)

α(p) ∈ T ∗
q for all p ∈ P

We write p:z1, . . . , zr intead of α(p) = (z1, . . . , zr)

α(f) ∈ T ∗
q ×Tq for all f ∈ F

We write f : z1, . . . , zr → z instead of α(f) = ((z1, . . . , zr), z)

r = 0 ok, No overloading of variables, functions, predicates!
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Special Signature Symbols

An Equality symbol
.
= in P, with typing

.
= : ⊤, ⊤

A type predicate symbol <−z in P for each z ∈ Tq.
with typing <−z : ⊤

Type cast symbol (z) in F for each z ∈ Tq,
with typing (z) : ⊤, z
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First-Order Signature Example

Sticks and stones may break your bones, but flowers will never hurt
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First-Order Signature Example

Sticks and stones may break your bones, but flowers will never hurt

Types Td = {Stick,Stone,Flower}, Ta = {Weapon,Any}

Stick,Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates P = {hurts : Any}

Functions F = {stick :→ Stick, stone :→ Stone, r :→ Flower}

Function with empty argument list: constant

22c181: Formal Methods in Software Engineering – p.8/31



First-Order Signature Example

Sticks and stones may break your bones, but flowers will never hurt

Types Td = {Stick,Stone,Flower}, Ta = {Weapon,Any}

Stick,Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates P = {hurts : Any}

Functions F = {stick :→ Stick, stone :→ Stone, r :→ Flower}

Function with empty argument list: constant

cf. KeY book p28
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Terms of First-Order Logic

Given signature (V, P, F, α)

Terms: Set Termz of terms of type z, one for each static type z ∈ T

x is term of type z for each variable x : z

f(t1, . . . , tr) is term of type z for each function symbol
f : z1, . . . , zr → z and terms ti of type z′i ⊑ zi for 1 ≤ i ≤ r

If f is constant ( r = 0) we write f instead of f()
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Terms of First-Order Logic

Given signature (V, P, F, α)

Terms: Set Termz of terms of type z, one for each static type z ∈ T

x is term of type z for each variable x : z

f(t1, . . . , tr) is term of type z for each function symbol
f : z1, . . . , zr → z and terms ti of type z′i ⊑ zi for 1 ≤ i ≤ r

If f is constant ( r = 0) we write f instead of f()

Example:

Td = {Car,Person,⊤} where Person ⊑ ⊤, Car ⊑ ⊤

F = {owner : Car → Person, pat :→ Person, herbie :→ Car}, x : Car

Terms: herbie, owner(herbie), owner((Car)pat) (!), owner(x)

Non-terms: Car, owner(pat), owner((Person)herbie)
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Formulas of First-Order Logic

First-Order Formulas: Set For of (first-order) formulas

p(t1, . . . , tr) is an atomic formula for predicate symbol
p : z1, . . . , zr and terms ti of type z′i ⊑ zi for 1 ≤ i ≤ r

Truth constants , connectives as in propositional logic

If x is any variable, φ a formula,
then ∀x .φ and ∃x .φ are formulas

We call φ the scope of variable x. We say that x is bound by the

quantifier ∀ in ∀x .φ (similarly for ∃x .φ)
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Formulas of First-Order Logic

First-Order Formulas: Set For of (first-order) formulas

p(t1, . . . , tr) is an atomic formula for predicate symbol
p : z1, . . . , zr and terms ti of type z′i ⊑ zi for 1 ≤ i ≤ r

Truth constants , connectives as in propositional logic

If x is any variable, φ a formula,
then ∀x .φ and ∃x .φ are formulas

We call φ the scope of variable x. We say that x is bound by the

quantifier ∀ in ∀x .φ (similarly for ∃x .φ)

Bound variables in quantified formulas are analogous to loca l
variables/formal parameters in programs

Use pathentheses and usual precedence rules to avoid syntac tic
ambiguity
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First-Order Syntax Example

Sticks and stones may break your bones, but flowers will never hurt

Types Td = {Stick,Stone,Flower}, Ta = {Weapon,Any}

Stick,Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates P = {hurts : Any}

Functions F = {stick :→ Stick, stone :→ Stone, r :→ Flower}

Variables V = {x : Weapon, y : Flower}

Examples:
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First-Order Syntax Example

Sticks and stones may break your bones, but flowers will never hurt

Types Td = {Stick,Stone,Flower}, Ta = {Weapon,Any}

Stick,Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates P = {hurts : Any}

Functions F = {stick :→ Stick, stone :→ Stone, r :→ Flower}

Variables V = {x : Weapon, y : Flower}

Examples:

∀x .hurts(x) & ∀y . !hurts(y)

We sometimes write the type of quantified variables explicit ly.
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First-Order Syntax Example

Sticks and stones may break your bones, but flowers will never hurt

Types Td = {Stick,Stone,Flower}, Ta = {Weapon,Any}

Stick,Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates P = {hurts : Any}

Functions F = {stick :→ Stick, stone :→ Stone, r :→ Flower}

Variables V = {x : Weapon, y : Flower}

Examples:

∀x : Weapon .hurts(x) & ∀y : Flower . !hurts(y)
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First-Order Syntax Example

Sticks and stones may break your bones, but flowers will never hurt

Types Td = {Stick,Stone,Flower}, Ta = {Weapon,Any}

Stick,Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates P = {hurts : Any}

Functions F = {stick :→ Stick, stone :→ Stone, r :→ Flower}

Variables V = {x : Weapon, y : Flower}

Examples:

∀x : Weapon .hurts(x) & ∀y : Flower . !hurts(y)

hurts(r) -> ∃y .hurts(y)
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Semantics of First-Order Logic

I , |=

First-Order
Formulas

First-Order
Models

First-Order
Sequent
Calculus

⊢
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Semantics of First-Order Logic

A model of FOL is a triple M = (D, δ,I) where

D is the universe or domain

Contains “objects” and “values”

δ is a dynamic typing function δ : D → Td

Each domain element has dynamic (“runtime”) type

I is an interpretation of the function and predicate symbols s.t.

• If p : z1, . . . , zr ∈ P, then I(p) ⊆ Dz1 × · · · ×Dzr

• If f : z1, . . . , zr → z ∈ F, then I(f) : Dz1 × · · · ×Dzr →Dz

Moreover, let Dz = {d ∈ D | δ(d) ⊑ z}

(the domain elements of type z).

The dynamic types z ∈ Td must be non-empty: Dz 6= ∅

22c181: Formal Methods in Software Engineering – p.13/31



Semantics of Special Symbols

Equality symbol
.
= in P, with typing

.
=: ⊤, ⊤

Semantics: I(
.
=) = {(d,d) | d ∈ D} ⊆ D⊤ ×D⊤

“Referential Equality”
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Semantics of Special Symbols

Equality symbol
.
= in P, with typing

.
=: ⊤, ⊤

Semantics: I(
.
=) = {(d,d) | d ∈ D} ⊆ D⊤ ×D⊤

“Referential Equality”

Type predicate symbol <−z in P for each z ∈ Tq, with typing <−z : ⊤

Semantics: I(<−z) = Dz ⊆ D⊤
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Semantics of Special Symbols

Equality symbol
.
= in P, with typing

.
=: ⊤, ⊤

Semantics: I(
.
=) = {(d,d) | d ∈ D} ⊆ D⊤ ×D⊤

“Referential Equality”

Type predicate symbol <−z in P for each z ∈ Tq, with typing <−z : ⊤

Semantics: I(<−z) = Dz ⊆ D⊤

Type cast symbol (z) in F for each z ∈ Tq, with typing (z) : ⊤, z

Semantics: I((z)) is a function such that

I((z))(x) =











x if δ(x) ⊑ z

d otherwise

with d an arbitrary but fixed element of Dz
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Semantics of First-Order Logic: Example

Sticks and stones may break your bones, but flowers will never hurt

Types Td = {Stick,Stone,Flower}, Ta = {Weapon,Any}

Stick,Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates P = {hurts : Any}

Functions F = {stick :→ Stick, stone :→ Stone, r :→ Flower}

Variables V = {x : Weapon, y : Flower}

One of (infinitely) many possible models:
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Semantics of First-Order Logic: Example

Sticks and stones may break your bones, but flowers will never hurt

Types Td = {Stick,Stone,Flower}, Ta = {Weapon,Any}

Stick,Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates P = {hurts : Any}

Functions F = {stick :→ Stick, stone :→ Stone, r :→ Flower}

Variables V = {x : Weapon, y : Flower}

One of (infinitely) many possible models:

Domain D = {o1, o2, o3, o4}
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Semantics of First-Order Logic: Example

Sticks and stones may break your bones, but flowers will never hurt

Types Td = {Stick,Stone,Flower}, Ta = {Weapon,Any}

Stick,Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates P = {hurts : Any}

Functions F = {stick :→ Stick, stone :→ Stone, r :→ Flower}

Variables V = {x : Weapon, y : Flower}

One of (infinitely) many possible models:

Domain D = {o1, o2, o3, o4}

Typing δ(o1) = δ(o4) = Stick, δ(o2) = Stone, δ(o3) = Flower
DStick = {o1, o4}, DStone = {o2}, DFlower = {o3}, DAny = {o1, o2, o3, o4}
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Semantics of First-Order Logic: Example

Sticks and stones may break your bones, but flowers will never hurt

Types Td = {Stick,Stone,Flower}, Ta = {Weapon,Any}

Stick,Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates P = {hurts : Any}

Functions F = {stick :→ Stick, stone :→ Stone, r :→ Flower}

Variables V = {x : Weapon, y : Flower}

One of (infinitely) many possible models:

Domain D = {o1, o2, o3, o4}

Typing δ(o1) = δ(o4) = Stick, δ(o2) = Stone, δ(o3) = Flower
DStick = {o1, o4}, DStone = {o2}, DFlower = {o3}, DAny = {o1, o2, o3, o4}

Interpretation I(hurts) = {o1, o2, o4}
I(stick) = o1, I(stone) = o2, I(r) = o3
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Semantics of First-Order Logic, Cont’d

Assigning meaning to variables

Let x be variable of static type z

A Variable Assignment β maps x to an element of Dz
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Semantics of First-Order Logic, Cont’d

Assigning meaning to variables

Let x be variable of static type z

A Variable Assignment β maps x to an element of Dz

Assigning meaning to terms: a mapping valM,β from Termz(t) to Dz

(dependind on model M and variable assignment β) such that

valM,β(x) = β(x) (element in Dz , where x has type z)

valM,β(f(t1, . . . , tr)) = I(f)(valM,β(t1), . . . , valM,β(tr))
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Semantics of First-Order Logic, Cont’d

Assigning meaning to variables

Let x be variable of static type z

A Variable Assignment β maps x to an element of Dz

Assigning meaning to terms: a mapping valM,β from Termz(t) to Dz

(dependind on model M and variable assignment β) such that

valM,β(x) = β(x) (element in Dz , where x has type z)

valM,β(f(t1, . . . , tr)) = I(f)(valM,β(t1), . . . , valM,β(tr))

Modified variable assignment :

For d ∈ Dz let βd
y(x) :=











β(x) if x 6= y

d if x = y
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Semantics of First-Order Logic, Cont’d

Assigning meaning to formulas

Validity relation: M, β |= φ for φ ∈ For

M, β |= p(t1, . . . , tr) iff (valM,β(t1), . . . , valM,β(tr)) ∈ I(p)

M, β |= φ&ψ iff M, β |= φ and M, β |= ψ

. . .

M, β |= ∀x .φ iff M, βd
x |= φ for all d ∈ Dz

where the type of x is z

M, β |= ∃x .φ iff M, βd
x |= φ for at least one d ∈ Dz

where the type of x is z
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Semantics of First-Order Logic: Example

Sticks and stones may break your bones, but flowers will never hurt

Types Td = {Stick,Stone,Flower}, Ta = {Weapon,Any}

Stick,Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates P = {hurts : Any}

Functions F = {stick :→ Stick, stone :→ Stone, r :→ Flower}

Variables V = {x : Weapon, y : Flower}

In our previous model M:

DStick = {o1, o4}, DStone = {o2}, DFlower = {o3}

DWeapon = {o1, o2, o4}, I(hurts) = {o1, o2, o4} ⊆ DAny

Evaluate these formulas: ∃x .hurts(x), ∀x .hurts(x), ∃y .hurts(y)
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Semantics of First-Order Logic: Evaluation Example

Let β be arbitrary.

M, β |= ∃x : Weapon .hurts(x) iff

Semantic Rule

Information from model (D, δ, I)
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Semantics of First-Order Logic: Evaluation Example

Let β be arbitrary.

M, β |= ∃x : Weapon .hurts(x) iff

There exists d ∈ DWeapon such that M, βd
x |= hurts(x) if

Semantic Rule

M, β |= ∃x .φ iff M, βd
x |= φ for at least one d ∈ Dz

where the type of x is z

Information from model (D, δ, I)
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Semantics of First-Order Logic: Evaluation Example

Let β be arbitrary.

M, β |= ∃x : Weapon .hurts(x) iff

There exists d ∈ DWeapon such that M, βd
x |= hurts(x) if

M, βo1

x |= hurts(x) iff

Semantic Rule

Information from model (D, δ, I)

DWeapon = {o1, o2, o4} 22c181: Formal Methods in Software Engineering – p.19/31



Semantics of First-Order Logic: Evaluation Example

Let β be arbitrary.

M, β |= ∃x : Weapon .hurts(x) iff

There exists d ∈ DWeapon such that M, βd
x |= hurts(x) if

M, βo1

x |= hurts(x) iff

val
M,β

o1
x

(x) ∈ I(hurts)

Semantic Rule

M, β |= p(t1, . . . , tr) iff (valM,β(t1), . . . , valM,β(tr)) ∈ I(p)

Information from model (D, δ, I)
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Semantics of First-Order Logic: Evaluation Example

Let β be arbitrary.

M, β |= ∃x : Weapon .hurts(x) iff

There exists d ∈ DWeapon such that M, βd
x |= hurts(x) if

M, βo1

x |= hurts(x) iff

val
M,β

o1
x

(x) ∈ I(hurts)

since val
M,β

o1
x

(x) = βo1

x (x) = o1 iff

Semantic Rule

valM,β(x) = β(x), βd
y(x) :=











β(x) x 6= y

d x = y

Information from model (D, δ, I) 22c181: Formal Methods in Software Engineering – p.19/31



Semantics of First-Order Logic: Evaluation Example

Let β be arbitrary.

M, β |= ∃x : Weapon .hurts(x) iff

There exists d ∈ DWeapon such that M, βd
x |= hurts(x) if

M, βo1

x |= hurts(x) iff

val
M,β

o1
x

(x) ∈ I(hurts)

since val
M,β

o1
x

(x) = βo1

x (x) = o1 iff

o1 ∈ I(hurts) = {o1, o2, o4}

Semantic Rule

Information from model (D, δ, I)

I(hurts) = {o1, o2, o4}
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Semantics of First-Order Logic: Evaluation Example

Let β be arbitrary.

M, β |= ∃x : Weapon .hurts(x) iff

There exists d ∈ DWeapon such that M, βd
x |= hurts(x) if

M, βo1

x |= hurts(x) iff

val
M,β

o1
x

(x) ∈ I(hurts)

since val
M,β

o1
x

(x) = βo1

x (x) = o1 iff

o1 ∈ I(hurts) = {o1, o2, o4} ok!

Semantic Rule

Information from model (D, δ, I)
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First-Order Semantic Notions

Satisfiability , truth , and validity

M, β |= φ (φ is satisfiable )

M |= φ iff for all β : M, β |= φ (φ is true in M)

|= φ iff for all M : M |= φ (φ is valid )

Formula containing only variables in scope of a quantifier is closed

Closed formulas that are satisfiable are also true: only one n otion

From now on only closed formulas are considered.
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First-Order Logic Example

Types Td = {Stick,Stone,Flower}, Ta = {Weapon,Any}

Stick,Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates P = {hurts : Any}

Variables V = {x : Weapon, y : Flower}
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First-Order Logic Example

Types Td = {Stick,Stone,Flower}, Ta = {Weapon,Any}

Stick,Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates P = {hurts : Any}

Variables V = {x : Weapon, y : Flower}

∀x : Weapon .hurts(x) & ∀y : Flower . !hurts(y)

Satisfiable? True? Valid?
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First-Order Logic Example

Types Td = {Stick,Stone,Flower}, Ta = {Weapon,Any}

Stick,Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates P = {hurts : Any}

Variables V = {x : Weapon, y : Flower}

∀x : Weapon .hurts(x) & ∀y : Flower . !hurts(y)

Satisfiable? True? Valid?

Model:

D = {o1, o2}, δ(o1) = Stone, δ(o2) = Flower

I(hurts) = {o1}
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First-Order Logic Example

Types Td = {Stick,Stone,Flower}, Ta = {Weapon,Any}

Stick,Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates P = {hurts : Any}

Variables V = {x : Weapon, y : Flower}

∀x : Weapon .hurts(x) & ∀y : Flower . !hurts(y)

Satisfiable? True? Valid?

Counter-model:

D = {o1, o2}, δ(o1) = Stone, δ(o2) = Flower

I(hurts) = {}
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First-Order Logic Example

Types Td = {Stick,Stone,Flower}, Ta = {Weapon,Any}

Stick,Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates P = {hurts : Any}

Variables V = {x : Weapon, y : Flower}

∀x : Weapon .hurts(x) & ∀y : Flower . !hurts(y)

Satisfiable? True? Valid?

Another Counter-model:

D = {o1, o2, o3}, δ(o1) = Stone, δ(o2) = δ(o3) = Flower

I(hurts) = {o1, o3}
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Untyped First-Order Logic

Standard FOL (as in most logic textbooks is untyped [single t yped])

Obtained as special case of typed signature:

Td = {⊤}, Ta = {⊥}

Hence, D = D⊤ 6= ∅, δ(d) = ⊤ for all d ∈ D

All variables, predicate and function symbols declared on ⊤

Don’t need type information of variables (omit)

Only arity in signature of function/predicate symbols matt ers
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Untyped First-Order Logic

Standard FOL (as in most logic textbooks is untyped [single t yped])

Obtained as special case of typed signature:

Td = {⊤}, Ta = {⊥}

Hence, D = D⊤ 6= ∅, δ(d) = ⊤ for all d ∈ D

All variables, predicate and function symbols declared on ⊤

Don’t need type information of variables (omit)

Only arity in signature of function/predicate symbols matt ers

Example : P = {person/1, happy/1}, F = {pat/0}
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Untyped First-Order Logic

Standard FOL (as in most logic textbooks is untyped [single t yped])

Obtained as special case of typed signature:

Td = {⊤}, Ta = {⊥}

Hence, D = D⊤ 6= ∅, δ(d) = ⊤ for all d ∈ D

All variables, predicate and function symbols declared on ⊤

Don’t need type information of variables (omit)

Only arity in signature of function/predicate symbols matt ers

Example : P = {person/1, happy/1}, F = {pat/0}

∀x . (person(x) -> happy(x)) ALL PERSONS ARE HAPPY
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Untyped First-Order Logic

Standard FOL (as in most logic textbooks is untyped [single t yped])

Obtained as special case of typed signature:

Td = {⊤}, Ta = {⊥}

Hence, D = D⊤ 6= ∅, δ(d) = ⊤ for all d ∈ D

All variables, predicate and function symbols declared on ⊤

Don’t need type information of variables (omit)

Only arity in signature of function/predicate symbols matt ers

Example : P = {person/1, happy/1}, F = {pat/0}

∀x . (person(x) -> happy(x))

person(pat)

ALL PERSONS ARE HAPPY

PAT IS A PERSON
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Untyped First-Order Logic

Standard FOL (as in most logic textbooks is untyped [single t yped])

Obtained as special case of typed signature:

Td = {⊤}, Ta = {⊥}

Hence, D = D⊤ 6= ∅, δ(d) = ⊤ for all d ∈ D

All variables, predicate and function symbols declared on ⊤

Don’t need type information of variables (omit)

Only arity in signature of function/predicate symbols matt ers

Example : P = {person/1, happy/1}, F = {pat/0}

∀x . (person(x) -> happy(x))

person(pat)

happy(pat)

ALL PERSONS ARE HAPPY

PAT IS A PERSON

PAT IS HAPPY
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Types and Symbols with Fixed Interpretation

Certain symbols should have “standard” meaning in all inter pretations

So far:
.
=, <−z , (z)

For certain types we also fix domain and dynamic typing:

Dint = {d ∈ D | δ(d) = int} = Z
These types appear between ⊥ and ⊤, uncomparable to others

Examples of types, function/predicate symbols with fixed me aning

I(17) should be always 17, not e.g. towel

int KeY can switch between J AVA 32-bit integers and Z

but in FOL always math integers I(+) = +Z, I(*) = ∗Z, . . .

boolean
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Some Predefined Symbols in KeY FO Logic

Types

int, short, byte, boolean with standard meaning

All classes of current UML context diagram and Null

If T is one of these types then also Set(T ), Bag(T ), Sequence(T )

Predicates on integer types with standard meaning

>, <, >=, <=, . . . (infix)

Functions and Constants with standard meaning

+, -, div, mod, 0, 1, . . .

TRUE, FALSE

Notation for quantifiers , variables declared at quantifier symbol

\forall Type Variable; ScopeFormula
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First-Order Problems in KeY Syntax: .key

\sorts { // types are called ’sorts’

person; // one declaration per line, end with ’;’

}

\functions { // ResultType FctSymbol(ParType,..,ParType)

int age(person); // ’int’ predefined type

}

\predicates { // PredSymbol(ParType,..,ParType)

parent(person,person);

}

\problem { // Goal formula

\forall person son; \forall person father;

(parent(father,son) -> age(father) > age(son)) }
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Contents

Overview of KeY

UML and its semantics

Introduction to OCL

Specifying requirements with OCL

Modelling of Systems with Formal Semantics

Propositional & First-order logic, sequent calculus

OCL to Logic, horizontal proof obligations, using KeY

Dynamic logic, proving program correctness

Java Card DL

Vertical proof obligations, using KeY

Wrap-up, trends
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Sequent Calculus for FOL

left side, antecedent right side, succedent

[t/t′]φ is result of replacing each occurrence of t in φ with t′

sz, tz
′

and t are arbitrary variable free terms
x and sz have static type z and tz

′

has static type z′⊑z
cz new constant of type z (does not occur in current proof branch)
Equations can be reversed (by symmetry of equality)
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Sequent Calculus for FOL

left side, antecedent right side, succedent

∀
Γ, ∀x .φ,

h

x/tz
′

i

φ ==> ∆

Γ,∀x .φ ==> ∆

Γ ==> [x/cz]φ,∆

Γ ==> ∀x .φ, ∆

[t/t′]φ is result of replacing each occurrence of t in φ with t′

sz, tz
′

and t are arbitrary variable free terms
x and sz have static type z and tz

′

has static type z′⊑z
cz new constant of type z (does not occur in current proof branch)
Equations can be reversed (by symmetry of equality)
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Sequent Calculus for FOL

left side, antecedent right side, succedent

∀
Γ, ∀x .φ,

h

x/tz
′

i

φ ==> ∆

Γ,∀x .φ ==> ∆

Γ ==> [x/cz]φ,∆

Γ ==> ∀x .φ, ∆

∃
Γ, [x/cz]φ ==> ∆

Γ, ∃x .φ ==> ∆

Γ ==>
h

x/tz
′

i

φ, ∃x .φ, ∆

Γ ==> ∃x .φ,∆

[t/t′]φ is result of replacing each occurrence of t in φ with t′

sz, tz
′

and t are arbitrary variable free terms
x and sz have static type z and tz

′

has static type z′⊑z
cz new constant of type z (does not occur in current proof branch)
Equations can be reversed (by symmetry of equality)
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Sequent Calculus for FOL

left side, antecedent right side, succedent

∀
Γ, ∀x .φ,

h

x/tz
′

i

φ ==> ∆

Γ,∀x .φ ==> ∆

Γ ==> [x/cz]φ,∆

Γ ==> ∀x .φ, ∆

∃
Γ, [x/cz]φ ==> ∆

Γ, ∃x .φ ==> ∆

Γ ==>
h

x/tz
′

i

φ, ∃x .φ, ∆

Γ ==> ∃x .φ,∆

.
=

Γ, sz .
= tz

′

,
h

sz/tz
′

i

ψ ==>
h

sz/tz
′

i

φ,∆

Γ, sz .
= tz

′

,ψ ==> φ,∆ Γ ==> t
.
= t,∆

[t/t′]φ is result of replacing each occurrence of t in φ with t′

sz, tz
′

and t are arbitrary variable free terms
x and sz have static type z and tz

′

has static type z′⊑z
cz new constant of type z (does not occur in current proof branch)
Equations can be reversed (by symmetry of equality)

22c181: Formal Methods in Software Engineering – p.27/31



A Simple Proof (Exercises p3.key)

∃x .∀y . p(x,y) ==> ∀y .∃x .p(x,y)

Let static type of x and y be ⊤
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A Simple Proof (Exercises p3.key)

∀y . p(c, y) ==> ∀y .∃x .p(x,y)

∃x .∀y . p(x,y) ==> ∀y .∃x .p(x,y)

ex left: substitute new constant c of type ⊤ for x
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A Simple Proof (Exercises p3.key)

∀y . p(c, y) ==> ∃x .p(x,d)

∀y . p(c, y) ==> ∀y .∃x .p(x,y)

∃x .∀y . p(x,y) ==> ∀y .∃x .p(x,y)

all right: substitute new constant d of type ⊤ for y

22c181: Formal Methods in Software Engineering – p.28/31



A Simple Proof (Exercises p3.key)

p(c, d), ∀y . p(c, y) ==> ∃x .p(x,d)

∀y . p(c, y) ==> ∃x .p(x,d)

∀y . p(c, y) ==> ∀y .∃x .p(x,y)

∃x .∀y . p(x,y) ==> ∀y .∃x .p(x,y)

all left: free to substitute any term of type ⊤ for y, choose d
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A Simple Proof (Exercises p3.key)

p(c, d) ==> ∃x .p(x,d)

∀y . p(c, y) ==> ∃x .p(x,d)

∀y . p(c, y) ==> ∀y .∃x .p(x,y)

∃x .∀y . p(x,y) ==> ∀y .∃x .p(x,y)

all left not needed anymore (hide)
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A Simple Proof (Exercises p3.key)

p(c, d) ==> p(c, d), ∃x .p(x,y)

p(c, d) ==> ∃x .p(x,d)

∀y . p(c, y) ==> ∃x .p(x,d)

∀y . p(c, y) ==> ∀y .∃x .p(x,y)

∃x .∀y . p(x,y) ==> ∀y .∃x .p(x,y)

ex right: free to substitute any term of type ⊤ for x, choose c
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A Simple Proof (Exercises p3.key)

p(c, d) ==> p(c, d)

p(c, d) ==> ∃x .p(x,d)

∀y . p(c, y) ==> ∃x .p(x,d)

∀y . p(c, y) ==> ∀y .∃x .p(x,y)

∃x .∀y . p(x,y) ==> ∀y .∃x .p(x,y)

ex right not needed anymore (hide)
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A Simple Proof (Exercises p3.key)

∗

p(c, d) ==> p(c, d)

p(c, d) ==> ∃x .p(x,d)

∀y . p(c, y) ==> ∃x .p(x,d)

∀y . p(c, y) ==> ∀y .∃x .p(x,y)

∃x .∀y . p(x,y) ==> ∀y .∃x .p(x,y)

Close
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Rules for Type Casts and Type Predicates

Type predicate formulas t<− z
true iff dynamic type valM(t) is subtype of z

Type cast terms (z)t
evaluates to valM(t) if cast succeeds, arb. element otherwise
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Rules for Type Casts and Type Predicates

Type predicate formulas t<− z
true iff dynamic type valM(t) is subtype of z

Type cast terms (z)t
evaluates to valM(t) if cast succeeds, arb. element otherwise

Typical rule:
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Rules for Type Casts and Type Predicates

Type predicate formulas t<− z
true iff dynamic type valM(t) is subtype of z

Type cast terms (z)t
evaluates to valM(t) if cast succeeds, arb. element otherwise

Typical rule:

The dynamic type of a term must be typeable to its static type

TYPESTATIC
Γ, t<− z ==> ∆

Γ ==> ∆
z static (declared) type of t

Expresses type-safety of typed first-order logic

22c181: Formal Methods in Software Engineering – p.29/31



Rules for Type Casts and Type Predicates

Type predicate formulas t<− z
true iff dynamic type valM(t) is subtype of z

Type cast terms (z)t
evaluates to valM(t) if cast succeeds, arb. element otherwise

Typical rule:

The dynamic type of a term must be typeable to its static type

TYPESTATIC
Γ, t<− z ==> ∆

Γ ==> ∆
z static (declared) type of t

Expresses type-safety of typed first-order logic

KeY first-order strategy applies suitable typing rules auto matically
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Sequent Proofs: Important Issues

Rules are applied to top-most connective/quantifier

exLeft and allRight substitute new constant

exRight and allLeft allow to substitute any variable-free term

Formulas that are not needed in remaining proof may be hidden

All branches must be closed with axiom

There are many different possible proofs for a valid sequent

KeY FO strategy applies all but exRight and allLeft automatically
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Another Proof Example

Types T = {⊥, ⊤}

Predicates PSym = {p}, p : ⊤,⊤

Functions FSym = {}

(∃x .∃y . p(x,y) & ∀x . !p(x,x)) -> ∃x .∃y . (!x
.
= y)

Intuitive Meaning? Satisfiable? True? Valid?

Demo
oclFol/rel.key
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