
22c181:
Formal Methods in Software Engineering

The University of Iowa

Spring 2008

Typed First-order Logic

Copyright 2007-8 Reiner Hähnle and Cesare Tinelli.

Notes originally developed by Reiner Hähnle at Chalmers Uni versity and modified by Cesare Tinelli at the University of Io wa. These notes

are copyrighted materials and may not be used in other course settings outside of the University of Iowa in their current f orm or modified

form without the express written permission of one of the cop yright holders.

22c181: Formal Methods in Software Engineering – p.1/31

Contents

Overview of KeY

UML and its semantics

Introduction to OCL

Specifying requirements with OCL

Modelling of Systems with Formal Semantics

Propositional & First-order logic, sequent calculus

OCL to Logic, horizontal proof obligations, using KeY

Dynamic logic, proving program correctness

Java Card DL

Vertical proof obligations, using KeY

Wrap-up, trends

22c181: Formal Methods in Software Engineering – p.2/31

Propositional Logic is insufficient

A ALL PERSONS ARE HAPPY

22c181: Formal Methods in Software Engineering – p.3/31

Propositional Logic is insufficient

A

B

ALL PERSONS ARE HAPPY

PAT IS A PERSON

22c181: Formal Methods in Software Engineering – p.3/31

Propositional Logic is insufficient

A

B

?

ALL PERSONS ARE HAPPY

PAT IS A PERSON

PAT IS HAPPY

Propositional logic lacks possibility to talk about indivi duals

In particular, need to model objects, attributes, associat ions, etc.

22c181: Formal Methods in Software Engineering – p.3/31

Propositional Logic is insufficient

A

B

?

ALL PERSONS ARE HAPPY

PAT IS A PERSON

PAT IS HAPPY

Propositional logic lacks possibility to talk about indivi duals

In particular, need to model objects, attributes, associat ions, etc.

⇒ First-Order Logic (FOL) with Types

22c181: Formal Methods in Software Engineering – p.3/31

First-Order Logic

I , |=

First-Order
Formulas

First-Order
Models

First-Order
Sequent
Calculus

⊢

22c181: Formal Methods in Software Engineering – p.4/31

OO Type Hierarchy

Finite set T of static types , subtype relation ⊑,

Dynamic types Td ⊆ T , where ⊤ ∈ Td

Abstract types Ta ⊆ T , where ⊥ ∈ Ta

Td ∩ Ta = ∅, Td ∪ Ta = T , ⊥ ⊑ z ⊑ ⊤ for all z ∈ T

⊤

int

Object

AbstractCollection List

AbstractList

ArrayList

Null

⊥
22c181: Formal Methods in Software Engineering – p.5/31

Signature of Typed First-Order Logic

Given type hierarchy (T , Td, Ta, ⊑), let Tq := T \{⊥}

Signature Σ = (V, P, F, α)

22c181: Formal Methods in Software Engineering – p.6/31

Signature of Typed First-Order Logic

Given type hierarchy (T , Td, Ta, ⊑), let Tq := T \{⊥}

Signature Σ = (V, P, F, α)

Variable Symbols V = {xi | i ∈ N}

Predicate Symbols P = {pi | i ∈ N}

Function Symbols F = {fi | i ∈ N}

22c181: Formal Methods in Software Engineering – p.6/31

Signature of Typed First-Order Logic

Given type hierarchy (T , Td, Ta, ⊑), let Tq := T \{⊥}

Signature Σ = (V, P, F, α)

Variable Symbols V = {xi | i ∈ N}

Predicate Symbols P = {pi | i ∈ N}

Function Symbols F = {fi | i ∈ N}

Typing function α for all symbols:

α(x) ∈ Tq for all x ∈ V
We write x:z instead of α(x) = z (in Java: “ z t;”)

α(p) ∈ T ∗
q for all p ∈ P

We write p:z1, . . . , zr intead of α(p) = (z1, . . . , zr)

α(f) ∈ T ∗
q ×Tq for all f ∈ F

We write f : z1, . . . , zr → z instead of α(f) = ((z1, . . . , zr), z)

r = 0 ok, No overloading of variables, functions, predicates!
22c181: Formal Methods in Software Engineering – p.6/31

Special Signature Symbols

An Equality symbol
.
= in P, with typing

.
= : ⊤, ⊤

A type predicate symbol <−z in P for each z ∈ Tq.
with typing <−z : ⊤

Type cast symbol (z) in F for each z ∈ Tq,
with typing (z) : ⊤, z

22c181: Formal Methods in Software Engineering – p.7/31

First-Order Signature Example

Sticks and stones may break your bones, but flowers will never hurt

22c181: Formal Methods in Software Engineering – p.8/31

First-Order Signature Example

Sticks and stones may break your bones, but flowers will never hurt

Types Td = {Stick,Stone,Flower}, Ta = {Weapon,Any}

Stick,Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates P = {hurts : Any}

Functions F = {stick :→ Stick, stone :→ Stone, r :→ Flower}

Function with empty argument list: constant

22c181: Formal Methods in Software Engineering – p.8/31

First-Order Signature Example

Sticks and stones may break your bones, but flowers will never hurt

Types Td = {Stick,Stone,Flower}, Ta = {Weapon,Any}

Stick,Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates P = {hurts : Any}

Functions F = {stick :→ Stick, stone :→ Stone, r :→ Flower}

Function with empty argument list: constant

cf. KeY book p28

22c181: Formal Methods in Software Engineering – p.8/31

Terms of First-Order Logic

Given signature (V, P, F, α)

Terms: Set Termz of terms of type z, one for each static type z ∈ T

x is term of type z for each variable x : z

f(t1, . . . , tr) is term of type z for each function symbol
f : z1, . . . , zr → z and terms ti of type z′i ⊑ zi for 1 ≤ i ≤ r

If f is constant (r = 0) we write f instead of f()

22c181: Formal Methods in Software Engineering – p.9/31

Terms of First-Order Logic

Given signature (V, P, F, α)

Terms: Set Termz of terms of type z, one for each static type z ∈ T

x is term of type z for each variable x : z

f(t1, . . . , tr) is term of type z for each function symbol
f : z1, . . . , zr → z and terms ti of type z′i ⊑ zi for 1 ≤ i ≤ r

If f is constant (r = 0) we write f instead of f()

Example:

Td = {Car,Person,⊤} where Person ⊑ ⊤, Car ⊑ ⊤

F = {owner : Car → Person, pat :→ Person, herbie :→ Car}, x : Car

Terms: herbie, owner(herbie), owner((Car)pat) (!), owner(x)

Non-terms: Car, owner(pat), owner((Person)herbie)

22c181: Formal Methods in Software Engineering – p.9/31

Formulas of First-Order Logic

First-Order Formulas: Set For of (first-order) formulas

p(t1, . . . , tr) is an atomic formula for predicate symbol
p : z1, . . . , zr and terms ti of type z′i ⊑ zi for 1 ≤ i ≤ r

Truth constants , connectives as in propositional logic

If x is any variable, φ a formula,
then ∀x .φ and ∃x .φ are formulas

We call φ the scope of variable x. We say that x is bound by the

quantifier ∀ in ∀x .φ (similarly for ∃x .φ)

22c181: Formal Methods in Software Engineering – p.10/31

Formulas of First-Order Logic

First-Order Formulas: Set For of (first-order) formulas

p(t1, . . . , tr) is an atomic formula for predicate symbol
p : z1, . . . , zr and terms ti of type z′i ⊑ zi for 1 ≤ i ≤ r

Truth constants , connectives as in propositional logic

If x is any variable, φ a formula,
then ∀x .φ and ∃x .φ are formulas

We call φ the scope of variable x. We say that x is bound by the

quantifier ∀ in ∀x .φ (similarly for ∃x .φ)

Bound variables in quantified formulas are analogous to loca l
variables/formal parameters in programs

Use pathentheses and usual precedence rules to avoid syntac tic
ambiguity

22c181: Formal Methods in Software Engineering – p.10/31

First-Order Syntax Example

Sticks and stones may break your bones, but flowers will never hurt

Types Td = {Stick,Stone,Flower}, Ta = {Weapon,Any}

Stick,Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates P = {hurts : Any}

Functions F = {stick :→ Stick, stone :→ Stone, r :→ Flower}

Variables V = {x : Weapon, y : Flower}

Examples:

22c181: Formal Methods in Software Engineering – p.11/31

First-Order Syntax Example

Sticks and stones may break your bones, but flowers will never hurt

Types Td = {Stick,Stone,Flower}, Ta = {Weapon,Any}

Stick,Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates P = {hurts : Any}

Functions F = {stick :→ Stick, stone :→ Stone, r :→ Flower}

Variables V = {x : Weapon, y : Flower}

Examples:

∀x .hurts(x) & ∀y . !hurts(y)

We sometimes write the type of quantified variables explicit ly.

22c181: Formal Methods in Software Engineering – p.11/31

First-Order Syntax Example

Sticks and stones may break your bones, but flowers will never hurt

Types Td = {Stick,Stone,Flower}, Ta = {Weapon,Any}

Stick,Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates P = {hurts : Any}

Functions F = {stick :→ Stick, stone :→ Stone, r :→ Flower}

Variables V = {x : Weapon, y : Flower}

Examples:

∀x : Weapon .hurts(x) & ∀y : Flower . !hurts(y)

22c181: Formal Methods in Software Engineering – p.11/31

First-Order Syntax Example

Sticks and stones may break your bones, but flowers will never hurt

Types Td = {Stick,Stone,Flower}, Ta = {Weapon,Any}

Stick,Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates P = {hurts : Any}

Functions F = {stick :→ Stick, stone :→ Stone, r :→ Flower}

Variables V = {x : Weapon, y : Flower}

Examples:

∀x : Weapon .hurts(x) & ∀y : Flower . !hurts(y)

hurts(r) -> ∃y .hurts(y)

22c181: Formal Methods in Software Engineering – p.11/31

Semantics of First-Order Logic

I , |=

First-Order
Formulas

First-Order
Models

First-Order
Sequent
Calculus

⊢

22c181: Formal Methods in Software Engineering – p.12/31

Semantics of First-Order Logic

A model of FOL is a triple M = (D, δ,I) where

D is the universe or domain

Contains “objects” and “values”

δ is a dynamic typing function δ : D → Td

Each domain element has dynamic (“runtime”) type

I is an interpretation of the function and predicate symbols s.t.

• If p : z1, . . . , zr ∈ P, then I(p) ⊆ Dz1 × · · · ×Dzr

• If f : z1, . . . , zr → z ∈ F, then I(f) : Dz1 × · · · ×Dzr →Dz

Moreover, let Dz = {d ∈ D | δ(d) ⊑ z}

(the domain elements of type z).

The dynamic types z ∈ Td must be non-empty: Dz 6= ∅

22c181: Formal Methods in Software Engineering – p.13/31

Semantics of Special Symbols

Equality symbol
.
= in P, with typing

.
=: ⊤, ⊤

Semantics: I(
.
=) = {(d,d) | d ∈ D} ⊆ D⊤ ×D⊤

“Referential Equality”

22c181: Formal Methods in Software Engineering – p.14/31

Semantics of Special Symbols

Equality symbol
.
= in P, with typing

.
=: ⊤, ⊤

Semantics: I(
.
=) = {(d,d) | d ∈ D} ⊆ D⊤ ×D⊤

“Referential Equality”

Type predicate symbol <−z in P for each z ∈ Tq, with typing <−z : ⊤

Semantics: I(<−z) = Dz ⊆ D⊤

22c181: Formal Methods in Software Engineering – p.14/31

Semantics of Special Symbols

Equality symbol
.
= in P, with typing

.
=: ⊤, ⊤

Semantics: I(
.
=) = {(d,d) | d ∈ D} ⊆ D⊤ ×D⊤

“Referential Equality”

Type predicate symbol <−z in P for each z ∈ Tq, with typing <−z : ⊤

Semantics: I(<−z) = Dz ⊆ D⊤

Type cast symbol (z) in F for each z ∈ Tq, with typing (z) : ⊤, z

Semantics: I((z)) is a function such that

I((z))(x) =

x if δ(x) ⊑ z

d otherwise

with d an arbitrary but fixed element of Dz

22c181: Formal Methods in Software Engineering – p.14/31

Semantics of First-Order Logic: Example

Sticks and stones may break your bones, but flowers will never hurt

Types Td = {Stick,Stone,Flower}, Ta = {Weapon,Any}

Stick,Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates P = {hurts : Any}

Functions F = {stick :→ Stick, stone :→ Stone, r :→ Flower}

Variables V = {x : Weapon, y : Flower}

One of (infinitely) many possible models:

22c181: Formal Methods in Software Engineering – p.15/31

Semantics of First-Order Logic: Example

Sticks and stones may break your bones, but flowers will never hurt

Types Td = {Stick,Stone,Flower}, Ta = {Weapon,Any}

Stick,Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates P = {hurts : Any}

Functions F = {stick :→ Stick, stone :→ Stone, r :→ Flower}

Variables V = {x : Weapon, y : Flower}

One of (infinitely) many possible models:

Domain D = {o1, o2, o3, o4}

22c181: Formal Methods in Software Engineering – p.15/31

Semantics of First-Order Logic: Example

Sticks and stones may break your bones, but flowers will never hurt

Types Td = {Stick,Stone,Flower}, Ta = {Weapon,Any}

Stick,Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates P = {hurts : Any}

Functions F = {stick :→ Stick, stone :→ Stone, r :→ Flower}

Variables V = {x : Weapon, y : Flower}

One of (infinitely) many possible models:

Domain D = {o1, o2, o3, o4}

Typing δ(o1) = δ(o4) = Stick, δ(o2) = Stone, δ(o3) = Flower
DStick = {o1, o4}, DStone = {o2}, DFlower = {o3}, DAny = {o1, o2, o3, o4}

22c181: Formal Methods in Software Engineering – p.15/31

Semantics of First-Order Logic: Example

Sticks and stones may break your bones, but flowers will never hurt

Types Td = {Stick,Stone,Flower}, Ta = {Weapon,Any}

Stick,Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates P = {hurts : Any}

Functions F = {stick :→ Stick, stone :→ Stone, r :→ Flower}

Variables V = {x : Weapon, y : Flower}

One of (infinitely) many possible models:

Domain D = {o1, o2, o3, o4}

Typing δ(o1) = δ(o4) = Stick, δ(o2) = Stone, δ(o3) = Flower
DStick = {o1, o4}, DStone = {o2}, DFlower = {o3}, DAny = {o1, o2, o3, o4}

Interpretation I(hurts) = {o1, o2, o4}
I(stick) = o1, I(stone) = o2, I(r) = o3

22c181: Formal Methods in Software Engineering – p.15/31

Semantics of First-Order Logic, Cont’d

Assigning meaning to variables

Let x be variable of static type z

A Variable Assignment β maps x to an element of Dz

22c181: Formal Methods in Software Engineering – p.16/31

Semantics of First-Order Logic, Cont’d

Assigning meaning to variables

Let x be variable of static type z

A Variable Assignment β maps x to an element of Dz

Assigning meaning to terms: a mapping valM,β from Termz(t) to Dz

(dependind on model M and variable assignment β) such that

valM,β(x) = β(x) (element in Dz , where x has type z)

valM,β(f(t1, . . . , tr)) = I(f)(valM,β(t1), . . . , valM,β(tr))

22c181: Formal Methods in Software Engineering – p.16/31

Semantics of First-Order Logic, Cont’d

Assigning meaning to variables

Let x be variable of static type z

A Variable Assignment β maps x to an element of Dz

Assigning meaning to terms: a mapping valM,β from Termz(t) to Dz

(dependind on model M and variable assignment β) such that

valM,β(x) = β(x) (element in Dz , where x has type z)

valM,β(f(t1, . . . , tr)) = I(f)(valM,β(t1), . . . , valM,β(tr))

Modified variable assignment :

For d ∈ Dz let βd
y(x) :=

β(x) if x 6= y

d if x = y
22c181: Formal Methods in Software Engineering – p.16/31

Semantics of First-Order Logic, Cont’d

Assigning meaning to formulas

Validity relation: M, β |= φ for φ ∈ For

M, β |= p(t1, . . . , tr) iff (valM,β(t1), . . . , valM,β(tr)) ∈ I(p)

M, β |= φ&ψ iff M, β |= φ and M, β |= ψ

. . .

M, β |= ∀x .φ iff M, βd
x |= φ for all d ∈ Dz

where the type of x is z

M, β |= ∃x .φ iff M, βd
x |= φ for at least one d ∈ Dz

where the type of x is z

22c181: Formal Methods in Software Engineering – p.17/31

Semantics of First-Order Logic: Example

Sticks and stones may break your bones, but flowers will never hurt

Types Td = {Stick,Stone,Flower}, Ta = {Weapon,Any}

Stick,Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates P = {hurts : Any}

Functions F = {stick :→ Stick, stone :→ Stone, r :→ Flower}

Variables V = {x : Weapon, y : Flower}

In our previous model M:

DStick = {o1, o4}, DStone = {o2}, DFlower = {o3}

DWeapon = {o1, o2, o4}, I(hurts) = {o1, o2, o4} ⊆ DAny

Evaluate these formulas: ∃x .hurts(x), ∀x .hurts(x), ∃y .hurts(y)

22c181: Formal Methods in Software Engineering – p.18/31

Semantics of First-Order Logic: Evaluation Example

Let β be arbitrary.

M, β |= ∃x : Weapon .hurts(x) iff

Semantic Rule

Information from model (D, δ, I)

22c181: Formal Methods in Software Engineering – p.19/31

Semantics of First-Order Logic: Evaluation Example

Let β be arbitrary.

M, β |= ∃x : Weapon .hurts(x) iff

There exists d ∈ DWeapon such that M, βd
x |= hurts(x) if

Semantic Rule

M, β |= ∃x .φ iff M, βd
x |= φ for at least one d ∈ Dz

where the type of x is z

Information from model (D, δ, I)
22c181: Formal Methods in Software Engineering – p.19/31

Semantics of First-Order Logic: Evaluation Example

Let β be arbitrary.

M, β |= ∃x : Weapon .hurts(x) iff

There exists d ∈ DWeapon such that M, βd
x |= hurts(x) if

M, βo1

x |= hurts(x) iff

Semantic Rule

Information from model (D, δ, I)

DWeapon = {o1, o2, o4} 22c181: Formal Methods in Software Engineering – p.19/31

Semantics of First-Order Logic: Evaluation Example

Let β be arbitrary.

M, β |= ∃x : Weapon .hurts(x) iff

There exists d ∈ DWeapon such that M, βd
x |= hurts(x) if

M, βo1

x |= hurts(x) iff

val
M,β

o1
x

(x) ∈ I(hurts)

Semantic Rule

M, β |= p(t1, . . . , tr) iff (valM,β(t1), . . . , valM,β(tr)) ∈ I(p)

Information from model (D, δ, I)

22c181: Formal Methods in Software Engineering – p.19/31

Semantics of First-Order Logic: Evaluation Example

Let β be arbitrary.

M, β |= ∃x : Weapon .hurts(x) iff

There exists d ∈ DWeapon such that M, βd
x |= hurts(x) if

M, βo1

x |= hurts(x) iff

val
M,β

o1
x

(x) ∈ I(hurts)

since val
M,β

o1
x

(x) = βo1

x (x) = o1 iff

Semantic Rule

valM,β(x) = β(x), βd
y(x) :=

β(x) x 6= y

d x = y

Information from model (D, δ, I) 22c181: Formal Methods in Software Engineering – p.19/31

Semantics of First-Order Logic: Evaluation Example

Let β be arbitrary.

M, β |= ∃x : Weapon .hurts(x) iff

There exists d ∈ DWeapon such that M, βd
x |= hurts(x) if

M, βo1

x |= hurts(x) iff

val
M,β

o1
x

(x) ∈ I(hurts)

since val
M,β

o1
x

(x) = βo1

x (x) = o1 iff

o1 ∈ I(hurts) = {o1, o2, o4}

Semantic Rule

Information from model (D, δ, I)

I(hurts) = {o1, o2, o4}

22c181: Formal Methods in Software Engineering – p.19/31

Semantics of First-Order Logic: Evaluation Example

Let β be arbitrary.

M, β |= ∃x : Weapon .hurts(x) iff

There exists d ∈ DWeapon such that M, βd
x |= hurts(x) if

M, βo1

x |= hurts(x) iff

val
M,β

o1
x

(x) ∈ I(hurts)

since val
M,β

o1
x

(x) = βo1

x (x) = o1 iff

o1 ∈ I(hurts) = {o1, o2, o4} ok!

Semantic Rule

Information from model (D, δ, I)

22c181: Formal Methods in Software Engineering – p.19/31

First-Order Semantic Notions

Satisfiability , truth , and validity

M, β |= φ (φ is satisfiable)

M |= φ iff for all β : M, β |= φ (φ is true in M)

|= φ iff for all M : M |= φ (φ is valid)

Formula containing only variables in scope of a quantifier is closed

Closed formulas that are satisfiable are also true: only one n otion

From now on only closed formulas are considered.

22c181: Formal Methods in Software Engineering – p.20/31

First-Order Logic Example

Types Td = {Stick,Stone,Flower}, Ta = {Weapon,Any}

Stick,Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates P = {hurts : Any}

Variables V = {x : Weapon, y : Flower}

22c181: Formal Methods in Software Engineering – p.21/31

First-Order Logic Example

Types Td = {Stick,Stone,Flower}, Ta = {Weapon,Any}

Stick,Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates P = {hurts : Any}

Variables V = {x : Weapon, y : Flower}

∀x : Weapon .hurts(x) & ∀y : Flower . !hurts(y)

Satisfiable? True? Valid?

22c181: Formal Methods in Software Engineering – p.21/31

First-Order Logic Example

Types Td = {Stick,Stone,Flower}, Ta = {Weapon,Any}

Stick,Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates P = {hurts : Any}

Variables V = {x : Weapon, y : Flower}

∀x : Weapon .hurts(x) & ∀y : Flower . !hurts(y)

Satisfiable? True? Valid?

Model:

D = {o1, o2}, δ(o1) = Stone, δ(o2) = Flower

I(hurts) = {o1}

22c181: Formal Methods in Software Engineering – p.21/31

First-Order Logic Example

Types Td = {Stick,Stone,Flower}, Ta = {Weapon,Any}

Stick,Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates P = {hurts : Any}

Variables V = {x : Weapon, y : Flower}

∀x : Weapon .hurts(x) & ∀y : Flower . !hurts(y)

Satisfiable? True? Valid?

Counter-model:

D = {o1, o2}, δ(o1) = Stone, δ(o2) = Flower

I(hurts) = {}

22c181: Formal Methods in Software Engineering – p.21/31

First-Order Logic Example

Types Td = {Stick,Stone,Flower}, Ta = {Weapon,Any}

Stick,Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates P = {hurts : Any}

Variables V = {x : Weapon, y : Flower}

∀x : Weapon .hurts(x) & ∀y : Flower . !hurts(y)

Satisfiable? True? Valid?

Another Counter-model:

D = {o1, o2, o3}, δ(o1) = Stone, δ(o2) = δ(o3) = Flower

I(hurts) = {o1, o3}

22c181: Formal Methods in Software Engineering – p.21/31

Untyped First-Order Logic

Standard FOL (as in most logic textbooks is untyped [single t yped])

Obtained as special case of typed signature:

Td = {⊤}, Ta = {⊥}

Hence, D = D⊤ 6= ∅, δ(d) = ⊤ for all d ∈ D

All variables, predicate and function symbols declared on ⊤

Don’t need type information of variables (omit)

Only arity in signature of function/predicate symbols matt ers

22c181: Formal Methods in Software Engineering – p.22/31

Untyped First-Order Logic

Standard FOL (as in most logic textbooks is untyped [single t yped])

Obtained as special case of typed signature:

Td = {⊤}, Ta = {⊥}

Hence, D = D⊤ 6= ∅, δ(d) = ⊤ for all d ∈ D

All variables, predicate and function symbols declared on ⊤

Don’t need type information of variables (omit)

Only arity in signature of function/predicate symbols matt ers

Example : P = {person/1, happy/1}, F = {pat/0}

22c181: Formal Methods in Software Engineering – p.22/31

Untyped First-Order Logic

Standard FOL (as in most logic textbooks is untyped [single t yped])

Obtained as special case of typed signature:

Td = {⊤}, Ta = {⊥}

Hence, D = D⊤ 6= ∅, δ(d) = ⊤ for all d ∈ D

All variables, predicate and function symbols declared on ⊤

Don’t need type information of variables (omit)

Only arity in signature of function/predicate symbols matt ers

Example : P = {person/1, happy/1}, F = {pat/0}

∀x . (person(x) -> happy(x)) ALL PERSONS ARE HAPPY

22c181: Formal Methods in Software Engineering – p.22/31

Untyped First-Order Logic

Standard FOL (as in most logic textbooks is untyped [single t yped])

Obtained as special case of typed signature:

Td = {⊤}, Ta = {⊥}

Hence, D = D⊤ 6= ∅, δ(d) = ⊤ for all d ∈ D

All variables, predicate and function symbols declared on ⊤

Don’t need type information of variables (omit)

Only arity in signature of function/predicate symbols matt ers

Example : P = {person/1, happy/1}, F = {pat/0}

∀x . (person(x) -> happy(x))

person(pat)

ALL PERSONS ARE HAPPY

PAT IS A PERSON

22c181: Formal Methods in Software Engineering – p.22/31

Untyped First-Order Logic

Standard FOL (as in most logic textbooks is untyped [single t yped])

Obtained as special case of typed signature:

Td = {⊤}, Ta = {⊥}

Hence, D = D⊤ 6= ∅, δ(d) = ⊤ for all d ∈ D

All variables, predicate and function symbols declared on ⊤

Don’t need type information of variables (omit)

Only arity in signature of function/predicate symbols matt ers

Example : P = {person/1, happy/1}, F = {pat/0}

∀x . (person(x) -> happy(x))

person(pat)

happy(pat)

ALL PERSONS ARE HAPPY

PAT IS A PERSON

PAT IS HAPPY

22c181: Formal Methods in Software Engineering – p.22/31

Types and Symbols with Fixed Interpretation

Certain symbols should have “standard” meaning in all inter pretations

So far:
.
=, <−z , (z)

For certain types we also fix domain and dynamic typing:

Dint = {d ∈ D | δ(d) = int} = Z
These types appear between ⊥ and ⊤, uncomparable to others

Examples of types, function/predicate symbols with fixed me aning

I(17) should be always 17, not e.g. towel

int KeY can switch between J AVA 32-bit integers and Z

but in FOL always math integers I(+) = +Z, I(*) = ∗Z, . . .

boolean

22c181: Formal Methods in Software Engineering – p.23/31

Some Predefined Symbols in KeY FO Logic

Types

int, short, byte, boolean with standard meaning

All classes of current UML context diagram and Null

If T is one of these types then also Set(T), Bag(T), Sequence(T)

Predicates on integer types with standard meaning

>, <, >=, <=, . . . (infix)

Functions and Constants with standard meaning

+, -, div, mod, 0, 1, . . .

TRUE, FALSE

Notation for quantifiers , variables declared at quantifier symbol

\forall Type Variable; ScopeFormula

22c181: Formal Methods in Software Engineering – p.24/31

First-Order Problems in KeY Syntax: .key

\sorts { // types are called ’sorts’

person; // one declaration per line, end with ’;’

}

\functions { // ResultType FctSymbol(ParType,..,ParType)

int age(person); // ’int’ predefined type

}

\predicates { // PredSymbol(ParType,..,ParType)

parent(person,person);

}

\problem { // Goal formula

\forall person son; \forall person father;

(parent(father,son) -> age(father) > age(son)) }
22c181: Formal Methods in Software Engineering – p.25/31

Contents

Overview of KeY

UML and its semantics

Introduction to OCL

Specifying requirements with OCL

Modelling of Systems with Formal Semantics

Propositional & First-order logic, sequent calculus

OCL to Logic, horizontal proof obligations, using KeY

Dynamic logic, proving program correctness

Java Card DL

Vertical proof obligations, using KeY

Wrap-up, trends

22c181: Formal Methods in Software Engineering – p.26/31

Sequent Calculus for FOL

left side, antecedent right side, succedent

[t/t′]φ is result of replacing each occurrence of t in φ with t′

sz, tz
′

and t are arbitrary variable free terms
x and sz have static type z and tz

′

has static type z′⊑z
cz new constant of type z (does not occur in current proof branch)
Equations can be reversed (by symmetry of equality)

22c181: Formal Methods in Software Engineering – p.27/31

Sequent Calculus for FOL

left side, antecedent right side, succedent

∀
Γ, ∀x .φ,

h

x/tz
′

i

φ ==> ∆

Γ,∀x .φ ==> ∆

Γ ==> [x/cz]φ,∆

Γ ==> ∀x .φ, ∆

[t/t′]φ is result of replacing each occurrence of t in φ with t′

sz, tz
′

and t are arbitrary variable free terms
x and sz have static type z and tz

′

has static type z′⊑z
cz new constant of type z (does not occur in current proof branch)
Equations can be reversed (by symmetry of equality)

22c181: Formal Methods in Software Engineering – p.27/31

Sequent Calculus for FOL

left side, antecedent right side, succedent

∀
Γ, ∀x .φ,

h

x/tz
′

i

φ ==> ∆

Γ,∀x .φ ==> ∆

Γ ==> [x/cz]φ,∆

Γ ==> ∀x .φ, ∆

∃
Γ, [x/cz]φ ==> ∆

Γ, ∃x .φ ==> ∆

Γ ==>
h

x/tz
′

i

φ, ∃x .φ, ∆

Γ ==> ∃x .φ,∆

[t/t′]φ is result of replacing each occurrence of t in φ with t′

sz, tz
′

and t are arbitrary variable free terms
x and sz have static type z and tz

′

has static type z′⊑z
cz new constant of type z (does not occur in current proof branch)
Equations can be reversed (by symmetry of equality)

22c181: Formal Methods in Software Engineering – p.27/31

Sequent Calculus for FOL

left side, antecedent right side, succedent

∀
Γ, ∀x .φ,

h

x/tz
′

i

φ ==> ∆

Γ,∀x .φ ==> ∆

Γ ==> [x/cz]φ,∆

Γ ==> ∀x .φ, ∆

∃
Γ, [x/cz]φ ==> ∆

Γ, ∃x .φ ==> ∆

Γ ==>
h

x/tz
′

i

φ, ∃x .φ, ∆

Γ ==> ∃x .φ,∆

.
=

Γ, sz .
= tz

′

,
h

sz/tz
′

i

ψ ==>
h

sz/tz
′

i

φ,∆

Γ, sz .
= tz

′

,ψ ==> φ,∆ Γ ==> t
.
= t,∆

[t/t′]φ is result of replacing each occurrence of t in φ with t′

sz, tz
′

and t are arbitrary variable free terms
x and sz have static type z and tz

′

has static type z′⊑z
cz new constant of type z (does not occur in current proof branch)
Equations can be reversed (by symmetry of equality)

22c181: Formal Methods in Software Engineering – p.27/31

A Simple Proof (Exercises p3.key)

∃x .∀y . p(x,y) ==> ∀y .∃x .p(x,y)

Let static type of x and y be ⊤

22c181: Formal Methods in Software Engineering – p.28/31

A Simple Proof (Exercises p3.key)

∀y . p(c, y) ==> ∀y .∃x .p(x,y)

∃x .∀y . p(x,y) ==> ∀y .∃x .p(x,y)

ex left: substitute new constant c of type ⊤ for x

22c181: Formal Methods in Software Engineering – p.28/31

A Simple Proof (Exercises p3.key)

∀y . p(c, y) ==> ∃x .p(x,d)

∀y . p(c, y) ==> ∀y .∃x .p(x,y)

∃x .∀y . p(x,y) ==> ∀y .∃x .p(x,y)

all right: substitute new constant d of type ⊤ for y

22c181: Formal Methods in Software Engineering – p.28/31

A Simple Proof (Exercises p3.key)

p(c, d), ∀y . p(c, y) ==> ∃x .p(x,d)

∀y . p(c, y) ==> ∃x .p(x,d)

∀y . p(c, y) ==> ∀y .∃x .p(x,y)

∃x .∀y . p(x,y) ==> ∀y .∃x .p(x,y)

all left: free to substitute any term of type ⊤ for y, choose d

22c181: Formal Methods in Software Engineering – p.28/31

A Simple Proof (Exercises p3.key)

p(c, d) ==> ∃x .p(x,d)

∀y . p(c, y) ==> ∃x .p(x,d)

∀y . p(c, y) ==> ∀y .∃x .p(x,y)

∃x .∀y . p(x,y) ==> ∀y .∃x .p(x,y)

all left not needed anymore (hide)

22c181: Formal Methods in Software Engineering – p.28/31

A Simple Proof (Exercises p3.key)

p(c, d) ==> p(c, d), ∃x .p(x,y)

p(c, d) ==> ∃x .p(x,d)

∀y . p(c, y) ==> ∃x .p(x,d)

∀y . p(c, y) ==> ∀y .∃x .p(x,y)

∃x .∀y . p(x,y) ==> ∀y .∃x .p(x,y)

ex right: free to substitute any term of type ⊤ for x, choose c

22c181: Formal Methods in Software Engineering – p.28/31

A Simple Proof (Exercises p3.key)

p(c, d) ==> p(c, d)

p(c, d) ==> ∃x .p(x,d)

∀y . p(c, y) ==> ∃x .p(x,d)

∀y . p(c, y) ==> ∀y .∃x .p(x,y)

∃x .∀y . p(x,y) ==> ∀y .∃x .p(x,y)

ex right not needed anymore (hide)

22c181: Formal Methods in Software Engineering – p.28/31

A Simple Proof (Exercises p3.key)

∗

p(c, d) ==> p(c, d)

p(c, d) ==> ∃x .p(x,d)

∀y . p(c, y) ==> ∃x .p(x,d)

∀y . p(c, y) ==> ∀y .∃x .p(x,y)

∃x .∀y . p(x,y) ==> ∀y .∃x .p(x,y)

Close

22c181: Formal Methods in Software Engineering – p.28/31

Rules for Type Casts and Type Predicates

Type predicate formulas t<− z
true iff dynamic type valM(t) is subtype of z

Type cast terms (z)t
evaluates to valM(t) if cast succeeds, arb. element otherwise

22c181: Formal Methods in Software Engineering – p.29/31

Rules for Type Casts and Type Predicates

Type predicate formulas t<− z
true iff dynamic type valM(t) is subtype of z

Type cast terms (z)t
evaluates to valM(t) if cast succeeds, arb. element otherwise

Typical rule:

22c181: Formal Methods in Software Engineering – p.29/31

Rules for Type Casts and Type Predicates

Type predicate formulas t<− z
true iff dynamic type valM(t) is subtype of z

Type cast terms (z)t
evaluates to valM(t) if cast succeeds, arb. element otherwise

Typical rule:

The dynamic type of a term must be typeable to its static type

TYPESTATIC
Γ, t<− z ==> ∆

Γ ==> ∆
z static (declared) type of t

Expresses type-safety of typed first-order logic

22c181: Formal Methods in Software Engineering – p.29/31

Rules for Type Casts and Type Predicates

Type predicate formulas t<− z
true iff dynamic type valM(t) is subtype of z

Type cast terms (z)t
evaluates to valM(t) if cast succeeds, arb. element otherwise

Typical rule:

The dynamic type of a term must be typeable to its static type

TYPESTATIC
Γ, t<− z ==> ∆

Γ ==> ∆
z static (declared) type of t

Expresses type-safety of typed first-order logic

KeY first-order strategy applies suitable typing rules auto matically

22c181: Formal Methods in Software Engineering – p.29/31

Sequent Proofs: Important Issues

Rules are applied to top-most connective/quantifier

exLeft and allRight substitute new constant

exRight and allLeft allow to substitute any variable-free term

Formulas that are not needed in remaining proof may be hidden

All branches must be closed with axiom

There are many different possible proofs for a valid sequent

KeY FO strategy applies all but exRight and allLeft automatically

22c181: Formal Methods in Software Engineering – p.30/31

Another Proof Example

Types T = {⊥, ⊤}

Predicates PSym = {p}, p : ⊤,⊤

Functions FSym = {}

(∃x .∃y . p(x,y) & ∀x . !p(x,x)) -> ∃x .∃y . (!x
.
= y)

Intuitive Meaning? Satisfiable? True? Valid?

Demo
oclFol/rel.key

22c181: Formal Methods in Software Engineering – p.31/31

	
	Contents
	Propositional Logic is insuf{f}icient
	First-Order Logic
	mbox {}OO Type Hierarchy
	Signature of Typed First-Order Logic
	Special Signature Symbols
	First-Order Signature Example
	Terms of First-Order Logic
	Formulas of First-Order Logic
	First-Order Syntax Example
	Semantics of First-Order Logic
	Semantics of First-Order Logic
	Semantics of Special Symbols
	Semantics of First-Order Logic: Example
	Semantics of First-Order Logic, Cont'd
	Semantics of First-Order Logic, Cont'd
	Semantics of First-Order Logic: Example
	Semantics of First-Order Logic: Evaluation Example
	First-Order Semantic Notions
	First-Order Logic Example
	Untyped First-Order Logic
	Types and Symbols with Fixed Interpretation
	Some Prede{f}ined Symbols in KeY FO Logic
	First-Order Problems in KeY {} Syntax: 	exttt {.key}
	Contents
	Sequent Calculus for FOL
	A Simple Proof (Exercises p3.key)
	Rules for Type Casts and Type Predicates
	Sequent Proofs: Important Issues
	Another Proof Example

