22c181:
 Formal Methods in Software Engineering

The University of lowa

Spring 2008

Typed First-order Logic

Copyright 2007-8 Reiner Hähnle and Cesare Tinelli.
Notes originally developed by Reiner Hähnle at Chalmers University and modified by Cesare Tinelli at the University of lowa. These notes are copyrighted materials and may not be used in other course settings outside of the University of lowa in their current form or modified form without the express written permission of one of the copyright holders.

Contents

- Overview of KeY
- UML and its semantics
- Introduction to OCL
- Specifying requirements with OCL
- Modelling of Systems with Formal Semantics
- Propositional \& First-order logic, sequent calculus
- OCL to Logic, horizontal proof obligations, using KeY
- Dynamic logic, proving program correctness
- Java Card DL
- Vertical proof obligations, using KeY
- Wrap-up, trends

Propositional Logic is insufficient

All persons are happy

Propositional Logic is insufficient

All persons are happy

Pat is a person

Propositional Logic is insufficient

A
B
?

All persons are happy
Pat is a Person

PAT IS HAPPY

Propositional logic lacks possibility to talk about individuals
In particular, need to model objects, attributes, associations, etc.

Propositional Logic is insufficient

A
B
?

All persons are happy
PAT IS A PERSON

PAT IS HAPPY

Propositional logic lacks possibility to talk about individuals In particular, need to model objects, attributes, associations, etc.
\Rightarrow First-Order Logic (FOL) with Types

First-Order Logic

OO Type Hierarchy

- Finite set \mathcal{T} of static types, subtype relation \sqsubseteq,
- Dynamic types $\mathcal{T}_{d} \subseteq \mathcal{T}$, where $T \in \mathcal{T}_{d}$
- Abstract types $\mathcal{T}_{a} \subseteq \mathcal{T}$, where $\perp \in \mathcal{T}_{a}$
- $\mathcal{T}_{d} \cap \mathcal{T}_{a}=\emptyset, \quad \mathcal{T}_{d} \cup \mathcal{T}_{a}=\mathcal{T}, \quad \perp \sqsubseteq z \sqsubseteq \top$ for all $z \in \mathcal{T}$

Signature of Typed First-Order Logic

Given type hierarchy $\left(\mathcal{T}, \mathcal{T}_{d}, \mathcal{T}_{a}\right.$, $\left.\sqsubseteq\right), \quad$ let $\mathcal{T}_{q}:=\mathcal{T} \backslash\{\perp\}$
Signature $\Sigma=(\mathbf{V}, \mathbf{P}, \mathbf{F}, \alpha)$

Signature of Typed First-Order Logic

Given type hierarchy $\left(\mathcal{T}, \mathcal{T}_{d}, \mathcal{T}_{a}\right.$, $\left.\sqsubseteq\right), \quad$ let $\mathcal{T}_{q}:=\mathcal{T} \backslash\{\perp\}$
Signature $\Sigma=(\mathbf{V}, \mathbf{P}, \mathbf{F}, \alpha)$
Variable Symbols $\quad \mathbf{V}=\left\{x_{i} \mid i \in \mathbb{N}\right\}$
Predicate Symbols $\quad \mathbf{P}=\left\{p_{i} \mid i \in \mathbb{N}\right\}$
Function Symbols $\quad \mathbf{F}=\left\{f_{i} \mid i \in \mathbb{N}\right\}$

Signature of Typed First-Order Logic

Given type hierarchy $\left(\mathcal{T}, \mathcal{T}_{d}, \mathcal{T}_{a}, \sqsubseteq\right)$, let $\mathcal{T}_{q}:=\mathcal{T} \backslash\{\perp\}$
Signature $\Sigma=(\mathbf{V}, \mathbf{P}, \mathbf{F}, \alpha)$
Variable Symbols $\quad \mathbf{V}=\left\{x_{i} \mid i \in \mathbb{N}\right\}$
Predicate Symbols $\quad \mathbf{P}=\left\{p_{i} \mid i \in \mathbb{N}\right\}$
Function Symbols $\quad \mathbf{F}=\left\{f_{i} \mid i \in \mathbb{N}\right\}$
Typing function α for all symbols:

- $\alpha(x) \in \mathcal{T}_{q}$ for all $x \in \mathbf{V}$

We write $x: z$ instead of $\alpha(x)=z \quad$ (in Java: " $z t$;")

- $\alpha(p) \in \mathcal{T}_{q}^{*}$ for all $p \in \mathbf{P}$

We write $p: z_{1}, \ldots, z_{r}$ intead of $\alpha(p)=\left(z_{1}, \ldots, z_{r}\right)$

- $\alpha(f) \in \mathcal{T}_{q}^{*} \times \mathcal{T}_{q}$ for all $f \in \mathbf{F}$

We write $f: z_{1}, \ldots, z_{r} \rightarrow z$ instead of $\alpha(f)=\left(\left(z_{1}, \ldots, z_{r}\right), z\right)$
$r=0 \mathbf{o k}$, No overloading of variables, functions, predicates!

Special Signature Symbols

An Equality symbol \doteq in \mathbf{P}, with typing $\doteq: \top, \top$
A type predicate symbol $巨_{z}$ in \mathbf{P} for each $z \in \mathcal{T}_{q}$. with typing $巨_{z}: T$

Type cast symbol (z) in \mathbf{F} for each $z \in \mathcal{T}_{q}$, with typing $(z): \top, z$

First-Order Signature Example

Sticks and stones may break your bones, but flowers will never hurt

First-Order Signature Example

Sticks and stones may break your bones, but flowers will never hurt
Types $\quad \mathcal{I}_{d}=\{$ Stick, Stone, Flower $\}, \quad \mathcal{T}_{a}=\{$ Weapon, Any $\}$ Stick, Stone \sqsubseteq Weapon \sqsubseteq Any, Flower \sqsubseteq Any

Predicates $\mathbf{P}=\{$ hurts: Any $\}$
Functions $\quad \mathbf{F}=\{$ stick $: \rightarrow$ Stick, stone $: \rightarrow$ Stone, $\mathbf{r}: \rightarrow$ Flower $\}$
Function with empty argument list: constant

First-Order Signature Example

Sticks and stones may break your bones, but flowers will never hurt
Types $\quad \mathcal{I}_{d}=\{$ Stick, Stone, Flower $\}, \quad \mathcal{T}_{a}=\{$ Weapon, Any $\}$ Stick, Stone \sqsubseteq Weapon \sqsubseteq Any, Flower \sqsubseteq Any

Predicates $\mathbf{P}=\{$ hurts: Any $\}$
Functions $\quad \mathbf{F}=\{$ stick $: \rightarrow$ Stick, stone $: \rightarrow$ Stone, $\mathbf{r}: \rightarrow$ Flower $\}$
Function with empty argument list: constant
cf. KeY book p28

Terms of First-Order Logic

Given signature (V, P, F, α)
Terms: Set Term_{z} of terms of type z, one for each static type $z \in \mathcal{T}$

- x is term of type z for each variable $x: z$
- $f\left(t_{1}, \ldots, t_{r}\right)$ is term of type z for each function symbol $f: z_{1}, \ldots, z_{r} \rightarrow z$ and terms t_{i} of type $z_{i}^{\prime} \sqsubseteq z_{i}$ for $1 \leq i \leq r$

If f is constant $(r=0$) we write f instead of $f()$

Terms of First-Order Logic

Given signature ($\mathbf{V}, \mathbf{P}, \mathbf{F}, \alpha)$
Terms: Set Term_{z} of terms of type z, one for each static type $z \in \mathcal{T}$

- x is term of type z for each variable $x: z$
- $f\left(t_{1}, \ldots, t_{r}\right)$ is term of type z for each function symbol $f: z_{1}, \ldots, z_{r} \rightarrow z$ and terms t_{i} of type $z_{i}^{\prime} \sqsubseteq z_{i}$ for $1 \leq i \leq r$

If f is constant $(r=0$) we write f instead of $f()$

Example:
$\mathcal{T}_{d}=\{$ Car, Person, $\top\} \quad$ where Person $\sqsubseteq \top, \mathbf{C a r} \sqsubseteq \top$
F $=\{$ owner $:$ Car \rightarrow Person, pat $: \rightarrow$ Person, herbie $: \rightarrow$ Car $\}, x:$ Car
Terms: herbie, owner(herbie), owner((Car)pat) (!), owner(x)
Non-terms: Car, owner(pat), owner((Person)herbie)

Formulas of First-Order Logic

First-Order Formulas: Set For of (first-order) formulas

- $p\left(t_{1}, \ldots, t_{r}\right)$ is an atomic formula for predicate symbol $p: z_{1}, \ldots, z_{r}$ and terms t_{i} of type $z_{i}^{\prime} \sqsubseteq z_{i}$ for $1 \leq i \leq r$
- Truth constants, connectives as in propositional logic
- If x is any variable, ϕ a formula, then $\forall x . \phi$ and $\exists x . \phi$ are formulas

We call ϕ the scope of variable x. We say that x is bound by the quantifier \forall in $\forall x . \phi$ (similarly for $\exists x . \phi$)

Formulas of First-Order Logic

First-Order Formulas: Set For of (first-order) formulas

- $p\left(t_{1}, \ldots, t_{r}\right)$ is an atomic formula for predicate symbol $p: z_{1}, \ldots, z_{r}$ and terms t_{i} of type $z_{i}^{\prime} \sqsubseteq z_{i}$ for $1 \leq i \leq r$
- Truth constants, connectives as in propositional logic
- If x is any variable, ϕ a formula, then $\forall x . \phi$ and $\exists x . \phi$ are formulas

We call ϕ the scope of variable x. We say that x is bound by the quantifier \forall in $\forall x . \phi$ (similarly for $\exists x . \phi$)

Bound variables in quantified formulas are analogous to local variables/formal parameters in programs

Use pathentheses and usual precedence rules to avoid syntactic ambiguity

First-Order Syntax Example

Sticks and stones may break your bones, but flowers will never hurt
Types $\quad \mathcal{I}_{d}=\{$ Stick, Stone, Flower $\}, \quad \mathcal{T}_{a}=\{$ Weapon, Any $\}$
Stick, Stone \sqsubseteq Weapon \sqsubseteq Any, Flower \sqsubseteq Any
Predicates $\mathbf{P}=\{$ hurts: Any $\}$
Functions $\quad \mathbf{F}=\{$ stick $: \rightarrow$ Stick, stone $: \rightarrow$ Stone, $\mathbf{r}: \rightarrow$ Flower $\}$
Variables $\quad \mathbf{V}=\{x:$ Weapon, $y:$ Flower $\}$
Examples:

First-Order Syntax Example

Sticks and stones may break your bones, but flowers will never hurt
Types $\quad \mathcal{I}_{d}=\{$ Stick, Stone, Flower $\}, \quad \mathcal{T}_{a}=\{$ Weapon, Any $\}$
Stick, Stone \sqsubseteq Weapon \sqsubseteq Any, Flower \sqsubseteq Any
Predicates $\mathbf{P}=\{$ hurts: Any $\}$
Functions $\quad \mathbf{F}=\{$ stick $: \rightarrow$ Stick, stone $: \rightarrow$ Stone, $\mathbf{r}: \rightarrow$ Flower $\}$
Variables $\quad \mathbf{V}=\{x:$ Weapon, y : Flower $\}$
Examples:

$$
\forall x \cdot \operatorname{hurts}(x) \quad \& \quad \forall y .!\operatorname{hurts}(y)
$$

We sometimes write the type of quantified variables explicitly.

First-Order Syntax Example

Sticks and stones may break your bones, but flowers will never hurt
Types $\quad \mathcal{I}_{d}=\{$ Stick, Stone, Flower $\}, \quad \mathcal{T}_{a}=\{$ Weapon, Any $\}$ Stick, Stone \sqsubseteq Weapon \sqsubseteq Any, Flower \sqsubseteq Any

Predicates $\mathbf{P}=\{$ hurts: Any $\}$
Functions $\quad \mathbf{F}=\{$ stick $: \rightarrow$ Stick, stone $: \rightarrow$ Stone, $\mathbf{r}: \rightarrow$ Flower $\}$
Variables $\quad \mathbf{V}=\{x:$ Weapon, $y:$ Flower $\}$
Examples:
$\forall x$: Weapon. hurts $(x) \& \forall y$: Flower. ! hurts (y)

First-Order Syntax Example

Sticks and stones may break your bones, but flowers will never hurt
Types $\quad \mathcal{I}_{d}=\{$ Stick, Stone, Flower $\}, \quad \mathcal{T}_{a}=\{$ Weapon, Any $\}$ Stick, Stone \sqsubseteq Weapon \sqsubseteq Any, Flower \sqsubseteq Any

Predicates $\mathbf{P}=\{$ hurts: Any $\}$
Functions $\quad \mathbf{F}=\{$ stick $: \rightarrow$ Stick, stone $: \rightarrow$ Stone, $\mathbf{r}: \rightarrow$ Flower $\}$
Variables $\quad \mathbf{V}=\{x:$ Weapon, $y:$ Flower $\}$
Examples:
$\forall x$: Weapon. hurts $(x) \& \forall y$: Flower. !hurts (y)

$$
\text { hurts(r) -> } \exists y . \operatorname{hurts}(y)
$$

Semantics of First-Order Logic

Semantics of First-Order Logic

A model of FOL is a triple $\mathcal{M}=(\mathcal{D}, \delta, \mathcal{I})$ where

- \mathcal{D} is the universe or domain

Contains "objects" and "values"

- δ is a dynamic typing function $\delta: \mathcal{D} \rightarrow \mathcal{T}_{d}$

Each domain element has dynamic ("runtime") type

- \mathcal{I} is an interpretation of the function and predicate symbols s.t.
- If $p: z_{1}, \ldots, z_{r} \in \mathbf{P}$, then $\mathcal{I}(p) \subseteq \mathcal{D}^{z_{1}} \times \cdots \times \mathcal{D}^{z_{r}}$
- If $f: z_{1}, \ldots, z_{r} \rightarrow z \in \mathbf{F}$, then $\mathcal{I}(f): \mathcal{D}^{z_{1}} \times \cdots \times \mathcal{D}^{z_{r}} \rightarrow \mathcal{D}^{z}$

Moreover, let $\mathcal{D}^{z}=\{d \in \mathcal{D} \mid \delta(d) \sqsubseteq z\}$
(the domain elements of type z).
The dynamic types $z \in \mathcal{T}_{d}$ must be non-empty: $\mathcal{D}^{z} \neq \emptyset$

Semantics of Special Symbols

Equality symbol \doteq in \mathbf{P}, with typing $\doteq: \top, \top$
Semantics: $\mathcal{I}(\doteq)=\{(d, d) \mid d \in \mathcal{D}\} \subseteq \mathcal{D}^{\top} \times \mathcal{D}^{\top}$
"Referential Equality"

Semantics of Special Symbols

Equality symbol \doteq in \mathbf{P} ，with typing $\doteq: \top, \top$
Semantics： $\mathcal{I}(\doteq)=\{(d, d) \mid d \in \mathcal{D}\} \subseteq \mathcal{D}^{\top} \times \mathcal{D}^{\top}$
＂Referential Equality＂
Type predicate symbol $巨_{z}$ in \mathbf{P} for each $z \in \mathcal{T}_{q}$ ，with typing $巨_{z}: \top$ Semantics： $\mathcal{I}\left(モ_{z}\right)=\mathcal{D}^{z} \subseteq \mathcal{D}^{\top}$

Semantics of Special Symbols

Equality symbol \doteq in \mathbf{P} ，with typing $\doteq: \top, \top$
Semantics： $\mathcal{I}(\doteq)=\{(d, d) \mid d \in \mathcal{D}\} \subseteq \mathcal{D}^{\top} \times \mathcal{D}^{\top}$
＂Referential Equality＂
Type predicate symbol $巨_{z}$ in \mathbf{P} for each $z \in \mathcal{T}_{q}$ ，with typing $巨_{z}: \top$
Semantics： $\mathcal{I}\left(巨_{z}\right)=\mathcal{D}^{z} \subseteq \mathcal{D}^{\top}$
Type cast symbol (z) in \mathbf{F} for each $z \in \mathcal{T}_{q}$ ，with typing $(z): \top, z$ Semantics： $\mathcal{I}((z))$ is a function such that

$$
\mathcal{I}((z))(x)= \begin{cases}x & \text { if } \delta(x) \sqsubseteq z \\ d & \text { otherwise }\end{cases}
$$

with d an arbitrary but fixed element of \mathcal{D}^{z}

Semantics of First-Order Logic: Example

Sticks and stones may break your bones, but flowers will never hurt
Types $\quad \mathcal{I}_{d}=\{$ Stick, Stone, Flower $\}, \quad \mathcal{T}_{a}=\{$ Weapon, Any $\}$ Stick, Stone \sqsubseteq Weapon \sqsubseteq Any, Flower \sqsubseteq Any

Predicates $\mathbf{P}=\{$ hurts: Any $\}$
Functions \quad F $=\{$ stick $: \rightarrow$ Stick, stone $: \rightarrow$ Stone, $\mathbf{r}: \rightarrow$ Flower $\}$
Variables $\quad \mathbf{V}=\{x$: Weapon, y : Flower $\}$
One of (infinitely) many possible models:

Semantics of First-Order Logic: Example

Sticks and stones may break your bones, but flowers will never hurt
Types $\quad \mathcal{I}_{d}=\{$ Stick, Stone, Flower $\}, \quad \mathcal{T}_{a}=\{$ Weapon, Any $\}$ Stick, Stone \sqsubseteq Weapon \sqsubseteq Any, Flower \sqsubseteq Any

Predicates $\mathbf{P}=\{$ hurts: Any $\}$
Functions \quad F $=\{$ stick $: \rightarrow$ Stick, stone $: \rightarrow$ Stone, $\mathbf{r}: \rightarrow$ Flower $\}$
Variables $\quad \mathbf{V}=\{x$: Weapon, y : Flower $\}$
One of (infinitely) many possible models:
Domain $\mathcal{D}=\left\{o_{1}, o_{2}, o_{3}, o_{4}\right\}$

Semantics of First-Order Logic: Example

Sticks and stones may break your bones, but flowers will never hurt
Types $\quad \mathcal{T}_{d}=\{$ Stick, Stone, Flower $\}, \quad \mathcal{T}_{a}=\{$ Weapon, Any $\}$ Stick, Stone \sqsubseteq Weapon \sqsubseteq Any, Flower \sqsubseteq Any

Predicates $\mathbf{P}=\{$ hurts: Any $\}$
Functions \quad F $=\{$ stick $: \rightarrow$ Stick, stone $: \rightarrow$ Stone, $\mathbf{r}: \rightarrow$ Flower $\}$
Variables $\quad \mathbf{V}=\{x$: Weapon, y : Flower $\}$
One of (infinitely) many possible models:
Domain $\mathcal{D}=\left\{o_{1}, o_{2}, o_{3}, o_{4}\right\}$
Typing $\delta\left(o_{1}\right)=\delta\left(o_{4}\right)=$ Stick, $\delta\left(o_{2}\right)=$ Stone, $\delta\left(o_{3}\right)=$ Flower
$\mathcal{D}^{\text {Stick }}=\left\{o_{1}, o_{4}\right\}, \mathcal{D}^{\text {Stone }}=\left\{o_{2}\right\}, \mathcal{D}^{\text {Flower }}=\left\{o_{3}\right\}, \mathcal{D}^{\text {Any }}=\left\{o_{1}, o_{2}, o_{3}, o_{4}\right\}$

Semantics of First-Order Logic: Example

Sticks and stones may break your bones, but flowers will never hurt
Types $\quad \mathcal{T}_{d}=\{$ Stick, Stone, Flower $\}, \quad \mathcal{T}_{a}=\{$ Weapon, Any $\}$ Stick, Stone \sqsubseteq Weapon \sqsubseteq Any, Flower \sqsubseteq Any

Predicates $\mathbf{P}=\{$ hurts: Any $\}$
Functions \quad F $=\{$ stick $: \rightarrow$ Stick, stone $: \rightarrow$ Stone, $\mathbf{r}: \rightarrow$ Flower $\}$
Variables $\quad \mathbf{V}=\{x$: Weapon, y : Flower $\}$
One of (infinitely) many possible models:
Domain $\mathcal{D}=\left\{o_{1}, o_{2}, o_{3}, o_{4}\right\}$
Typing $\delta\left(o_{1}\right)=\delta\left(o_{4}\right)=$ Stick, $\delta\left(o_{2}\right)=$ Stone, $\delta\left(o_{3}\right)=$ Flower
$\mathcal{D}^{\text {Stick }}=\left\{o_{1}, o_{4}\right\}, \mathcal{D}^{\text {Stone }}=\left\{o_{2}\right\}, \mathcal{D}^{\text {Flower }}=\left\{o_{3}\right\}, \mathcal{D}^{\text {Any }}=\left\{o_{1}, o_{2}, o_{3}, o_{4}\right\}$
Interpretation \mathcal{I} (hurts) $=\left\{o_{1}, o_{2}, o_{4}\right\}$
$\mathcal{I}($ stick $)=o_{1}, \quad \mathcal{I}($ stone $)=o_{2}, \quad \mathcal{I}(\mathbf{r})=o_{3}$

Semantics of First-Order Logic, Cont'd

Assigning meaning to variables
Let x be variable of static type z
A Variable Assignment β maps x to an element of \mathcal{D}^{z}

Semantics of First-Order Logic, Cont'd

Assigning meaning to variables
Let x be variable of static type z
A Variable Assignment β maps x to an element of \mathcal{D}^{z}

Assigning meaning to terms: a mapping $\operatorname{val}_{\mathcal{M}, \beta}$ from $\operatorname{Term}_{z}(t)$ to \mathcal{D}^{z} (dependind on model \mathcal{M} and variable assignment β) such that

- $\operatorname{val}_{\mathcal{M}, \beta}(x)=\beta(x) \quad$ (element in \mathcal{D}^{z}, where x has type z)
- $\operatorname{val}_{\mathcal{M}, \beta}\left(f\left(t_{1}, \ldots, t_{r}\right)\right)=\mathcal{I}(f)\left(\operatorname{val}_{\mathcal{M}, \beta}\left(t_{1}\right), \ldots, \operatorname{val}_{\mathcal{M}, \beta}\left(t_{r}\right)\right)$

Semantics of First-Order Logic, Cont'd

Assigning meaning to variables
Let x be variable of static type z
A Variable Assignment β maps x to an element of \mathcal{D}^{z}

Assigning meaning to terms: a mapping $\operatorname{val}_{\mathcal{M}, \beta}$ from $\operatorname{Term}_{z}(t)$ to \mathcal{D}^{z} (dependind on model \mathcal{M} and variable assignment β) such that

- $\operatorname{val}_{\mathcal{M}, \beta}(x)=\beta(x) \quad$ (element in \mathcal{D}^{z}, where x has type z)
- $\operatorname{val}_{\mathcal{M}, \beta}\left(f\left(t_{1}, \ldots, t_{r}\right)\right)=\mathcal{I}(f)\left(\operatorname{val}_{\mathcal{M}, \beta}\left(t_{1}\right), \ldots, \operatorname{val}_{\mathcal{M}, \beta}\left(t_{r}\right)\right)$

Modified variable assignment:
For $d \in \mathcal{D}^{z}$ let $\beta_{y}^{d}(x):= \begin{cases}\beta(x) & \text { if } x \neq y \\ d & \text { if } x=y\end{cases}$

Semantics of First-Order Logic, Cont'd

Assigning meaning to formulas
Validity relation: $\mathcal{M}, \beta \models \phi$ for $\phi \in$ For

- $\mathcal{M}, \beta \models p\left(t_{1}, \ldots, t_{r}\right) \quad$ iff $\quad\left(\operatorname{val}_{\mathcal{M}, \beta}\left(t_{1}\right), \ldots, \operatorname{val}_{\mathcal{M}, \beta}\left(t_{r}\right)\right) \in \mathcal{I}(p)$
- $\mathcal{M}, \beta \models \phi \& \psi \quad$ iff $\quad \mathcal{M}, \beta \models \phi$ and $\mathcal{M}, \beta \models \psi$
- $\mathcal{M}, \beta \models \forall x . \phi \quad$ iff $\quad \mathcal{M}, \beta_{x}^{d} \models \phi$ for all $d \in \mathcal{D}^{z}$ where the type of x is z
- $\mathcal{M}, \beta \models \exists x . \phi \quad$ iff $\quad \mathcal{M}, \beta_{x}^{d} \models \phi$ for at least one $d \in \mathcal{D}^{z}$ where the type of x is z

Semantics of First-Order Logic: Example

Sticks and stones may break your bones, but flowers will never hurt
Types $\quad \mathcal{T}_{d}=\{$ Stick, Stone, Flower $\}, \quad \mathcal{T}_{a}=\{$ Weapon, Any $\}$ Stick, Stone \sqsubseteq Weapon \sqsubseteq Any, Flower \sqsubseteq Any

Predicates $\mathbf{P}=\{$ hurts: Any $\}$
Functions \quad F $=\{$ stick $: \rightarrow$ Stick, stone $: \rightarrow$ Stone, $\mathbf{r}: \rightarrow$ Flower $\}$
Variables $\quad \mathbf{V}=\{x$: Weapon, $y:$ Flower $\}$
In our previous model \mathcal{M} :
$\mathcal{D}^{\text {Stick }}=\left\{o_{1}, o_{4}\right\}, \quad \mathcal{D}^{\text {Stone }}=\left\{o_{2}\right\}, \quad \mathcal{D}^{\text {Flower }}=\left\{o_{3}\right\}$
$\mathcal{D}^{\text {Weapon }}=\left\{o_{1}, o_{2}, o_{4}\right\}, \quad \mathcal{I}($ hurts $)=\left\{o_{1}, o_{2}, o_{4}\right\} \subseteq \mathcal{D}^{\text {Any }}$

Evaluate these formulas: $\exists x . \operatorname{hurts}(x), \quad \forall x . \operatorname{hurts}(x), \quad \exists y . \operatorname{hurts}(y)$

Semantics of First-Order Logic: Evaluation Example

Let β be arbitrary.
$\mathcal{M}, \beta \models \exists x:$ Weapon. $\operatorname{hurts}(x) \quad$ iff

Semantic Rule

Information from model $(\mathcal{D}, \delta, \mathcal{I})$

Semantics of First-Order Logic: Evaluation Example

Let β be arbitrary.
$\mathcal{M}, \beta \models \exists x$: Weapon . hurts $(x) \quad$ iff
There exists $d \in \mathcal{D}^{\text {Weapon }}$ such that $\mathcal{M}, \beta_{x}^{d} \models \operatorname{hurts}(x) \quad$ if

Semantic Rule
$\mathcal{M}, \beta \models \exists x . \phi \quad$ iff $\quad \mathcal{M}, \beta_{x}^{d} \models \phi$ for at least one $d \in \mathcal{D}^{z}$
where the type of x is z

Information from model $(\mathcal{D}, \delta, \mathcal{I})$

Semantics of First-Order Logic: Evaluation Example

Let β be arbitrary.
$\mathcal{M}, \beta \models \exists x$: Weapon. hurts $(x) \quad$ iff
There exists $d \in \mathcal{D}^{\text {Weapon }}$ such that $\mathcal{M}, \beta_{x}^{d} \models \operatorname{hurts}(x) \quad$ if
$\mathcal{M}, \beta_{x}^{o_{1}} \models \operatorname{hurts}(x) \quad$ iff

Semantic Rule

Information from model $(\mathcal{D}, \delta, \mathcal{I})$
$\mathcal{D}^{\text {Weapon }}=\left\{o_{1}, o_{2}, o_{4}\right\}$

Semantics of First-Order Logic: Evaluation Example

Let β be arbitrary.
$\mathcal{M}, \beta \models \exists x$: Weapon. hurts $(x) \quad$ iff
There exists $d \in \mathcal{D}^{\text {Weapon }}$ such that $\mathcal{M}, \beta_{x}^{d} \models \operatorname{hurts}(x) \quad$ if
$\mathcal{M}, \beta_{x}^{o_{1}} \models \operatorname{hurts}(x) \quad$ iff
$\operatorname{val}_{\mathcal{M}, \beta_{x}^{o_{1}}}(x) \in \mathcal{I}$ (hurts)

Semantic Rule
$\mathcal{M}, \beta \models p\left(t_{1}, \ldots, t_{r}\right) \quad$ iff $\quad\left(\operatorname{val}_{\mathcal{M}, \beta}\left(t_{1}\right), \ldots, \operatorname{val}_{\mathcal{M}, \beta}\left(t_{r}\right)\right) \in \mathcal{I}(p)$

Information from model $(\mathcal{D}, \delta, \mathcal{I})$

Semantics of First-Order Logic: Evaluation Example

Let β be arbitrary.
$\mathcal{M}, \beta \models \exists x$: Weapon. $\operatorname{hurts}(x) \quad$ iff
There exists $d \in \mathcal{D}^{\text {Weapon }}$ such that $\mathcal{M}, \beta_{x}^{d} \models \operatorname{hurts}(x) \quad$ if
$\mathcal{M}, \beta_{x}^{o_{1}} \models \operatorname{hurts}(x) \quad$ iff
$\operatorname{val}_{\mathcal{M}, \beta_{x}^{o_{1}}}(x) \in \mathcal{I}$ (hurts)
since $\quad \operatorname{val}_{\mathcal{M}, \beta_{x}^{o_{1}}}(x)=\beta_{x}^{o_{1}}(x)=o_{1} \quad$ iff

Semantic Rule
$v a l_{\mathcal{M}, \beta}(x)=\beta(x), \quad \beta_{y}^{d}(x):= \begin{cases}\beta(x) & x \neq y \\ d & x=y\end{cases}$
Information from model $(\mathcal{D}, \delta, \mathcal{I})$

Semantics of First-Order Logic: Evaluation Example

Let β be arbitrary.
$\mathcal{M}, \beta \models \exists x$: Weapon. $\operatorname{hurts}(x) \quad$ iff
There exists $d \in \mathcal{D}^{\text {Weapon }}$ such that $\mathcal{M}, \beta_{x}^{d} \models \operatorname{hurts}(x) \quad$ if
$\mathcal{M}, \beta_{x}^{o_{1}} \models \operatorname{hurts}(x) \quad$ iff
$\operatorname{val}_{\mathcal{M}, \beta_{x}^{o_{1}}}(x) \in \mathcal{I}$ (hurts)
since $\quad \operatorname{val}_{\mathcal{M}, \beta_{x}^{o_{1}}}(x)=\beta_{x}^{o_{1}}(x)=o_{1} \quad$ iff
$o_{1} \in \mathcal{I}$ (hurts) $=\left\{o_{1}, o_{2}, o_{4}\right\}$

Semantic Rule

Information from model $(\mathcal{D}, \delta, \mathcal{I})$
$I($ hurts $)=\left\{o_{1}, o_{2}, o_{4}\right\}$

Semantics of First-Order Logic: Evaluation Example

Let β be arbitrary.
$\mathcal{M}, \beta \models \exists x$: Weapon. $\operatorname{hurts}(x) \quad$ iff
There exists $d \in \mathcal{D}^{\text {Weapon }}$ such that $\mathcal{M}, \beta_{x}^{d} \models \operatorname{hurts}(x) \quad$ if
$\mathcal{M}, \beta_{x}^{o_{1}} \models \operatorname{hurts}(x) \quad$ iff
$\operatorname{val}_{\mathcal{M}, \beta_{x}^{o_{1}}}(x) \in \mathcal{I}$ (hurts)
since $\quad \operatorname{val}_{\mathcal{M}, \beta_{x}^{o_{1}}}(x)=\beta_{x}^{o_{1}}(x)=o_{1} \quad$ iff
$o_{1} \in \mathcal{I}$ (hurts) $=\left\{o_{1}, o_{2}, o_{4}\right\}$

Semantic Rule

Information from model $(\mathcal{D}, \delta, \mathcal{I})$

First-Order Semantic Notions

Satisfiability, truth, and validity

$$
\begin{array}{rlrl}
\mathcal{M}, \beta & \models \phi & & (\phi \text { is satisfiable }) \\
\mathcal{M} & \models \phi \quad \text { iff } \quad \text { for all } \beta: \quad \mathcal{M}, \beta \models \phi & (\phi \text { is true in } \mathcal{M}) \\
& \models \phi \quad \text { iff } \quad \text { for all } \mathcal{M}: \quad \mathcal{M} \models \phi & (\phi \text { is valid })
\end{array}
$$

Formula containing only variables in scope of a quantifier is closed Closed formulas that are satisfiable are also true: only one notion

From now on only closed formulas are considered.

First-Order Logic Example

Types $\quad \mathcal{I}_{d}=\{$ Stick, Stone, Flower $\}, \quad \mathcal{T}_{a}=\{$ Weapon, Any $\}$ Stick, Stone \sqsubseteq Weapon \sqsubseteq Any, Flower \sqsubseteq Any

Predicates $\mathbf{P}=\{$ hurts: Any $\}$
Variables $\quad \mathbf{V}=\{x$: Weapon, y : Flower $\}$

First-Order Logic Example

$$
\begin{array}{ll}
\text { Types } & \mathcal{T}_{d}=\{\text { Stick, Stone, Flower }\}, \quad \mathcal{T}_{a}=\{\text { Weapon, Any }\} \\
& \text { Stick, Stone } \sqsubseteq \text { Weapon } \sqsubseteq \text { Any, Flower } \sqsubseteq \text { Any }
\end{array}
$$

Predicates $\mathbf{P}=\{$ hurts: Any $\}$
Variables $\quad \mathbf{V}=\{x:$ Weapon, y : Flower $\}$
$\forall x$: Weapon.hurts $(x) \quad \& \quad \forall y$:Flower.!hurts (y)
Satisfiable? True? Valid?

First-Order Logic Example

$\begin{array}{ll}\text { Types } & \mathcal{I}_{d}=\{\text { Stick, Stone, Flower }\}, \quad \mathcal{T}_{a}=\{\text { Weapon, Any }\} \\ & \text { Stick, Stone } \sqsubseteq \text { Weapon } \sqsubseteq \text { Any, Flower } \sqsubseteq \text { Any }\end{array}$
Predicates $\mathbf{P}=\{$ hurts: Any $\}$
Variables $\quad \mathbf{V}=\{x:$ Weapon, y : Flower $\}$

$$
\forall x: \text { Weapon.hurts }(x) \quad \& \quad \forall y: \text { Flower.!hurts }(y)
$$

Satisfiable? True? Valid?
Model:
$\mathcal{D}=\left\{o_{1}, o_{2}\right\}, \quad \delta\left(o_{1}\right)=$ Stone,$\quad \delta\left(o_{2}\right)=$ Flower
$\mathcal{I}($ hurts $)=\left\{o_{1}\right\}$

First-Order Logic Example

$\begin{array}{ll}\text { Types } & \mathcal{I}_{d}=\{\text { Stick, Stone, Flower }\}, \quad \mathcal{T}_{a}=\{\text { Weapon, Any }\} \\ & \text { Stick, Stone } \sqsubseteq \text { Weapon } \sqsubseteq \text { Any, Flower } \sqsubseteq \text { Any }\end{array}$
Predicates $\mathbf{P}=\{$ hurts: Any $\}$
Variables $\quad \mathbf{V}=\{x:$ Weapon, y : Flower $\}$

$$
\forall x: \text { Weapon.hurts }(x) \quad \& \quad \forall y: \text { Flower.!hurts }(y)
$$

Satisfiable? True? Valid?
Counter-model:
$\mathcal{D}=\left\{o_{1}, o_{2}\right\}, \quad \delta\left(o_{1}\right)=$ Stone,$\quad \delta\left(o_{2}\right)=$ Flower
$\mathcal{I}($ hurts $)=\{ \}$

First-Order Logic Example

$\begin{array}{ll}\text { Types } & \mathcal{I}_{d}=\{\text { Stick, Stone, Flower }\}, \quad \mathcal{T}_{a}=\{\text { Weapon, Any }\} \\ & \text { Stick, Stone } \sqsubseteq \text { Weapon } \sqsubseteq \text { Any, Flower } \sqsubseteq \text { Any }\end{array}$
Predicates $\mathbf{P}=\{$ hurts: Any $\}$
Variables $\quad \mathbf{V}=\{x:$ Weapon, y : Flower $\}$

$$
\forall x: \text { Weapon.hurts }(x) \quad \& \quad \forall y: \text { Flower.!hurts }(y)
$$

Satisfiable? True? Valid?
Another Counter-model:
$\mathcal{D}=\left\{o_{1}, o_{2}, o_{3}\right\}, \quad \delta\left(o_{1}\right)=$ Stone,$\quad \delta\left(o_{2}\right)=\delta\left(o_{3}\right)=$ Flower
$\mathcal{I}($ hurts $)=\left\{o_{1}, o_{3}\right\}$

Untyped First-Order Logic

Standard FOL (as in most logic textbooks is untyped [single typed])
Obtained as special case of typed signature:
$\mathcal{T}_{d}=\{T\}, \quad \mathcal{T}_{a}=\{\perp\}$
Hence, $\mathcal{D}=\mathcal{D}^{\top} \neq \emptyset, \quad \delta(d)=\top$ for all $d \in \mathcal{D}$
All variables, predicate and function symbols declared on \top
Don't need type information of variables (omit)
Only arity in signature of function/predicate symbols matters

Untyped First-Order Logic

Standard FOL (as in most logic textbooks is untyped [single typed])
Obtained as special case of typed signature:
$\mathcal{T}_{d}=\{T\}, \quad \mathcal{T}_{a}=\{\perp\}$
Hence, $\mathcal{D}=\mathcal{D}^{\top} \neq \emptyset, \quad \delta(d)=\top$ for all $d \in \mathcal{D}$
All variables, predicate and function symbols declared on \top
Don't need type information of variables (omit)
Only arity in signature of function/predicate symbols matters
Example: $\quad \mathbf{P}=\{$ person $/ 1$, happy $/ 1\}, \quad \mathbf{F}=\{$ pat $/ 0\}$

Untyped First-Order Logic

Standard FOL (as in most logic textbooks is untyped [single typed])
Obtained as special case of typed signature:
$\mathcal{T}_{d}=\{T\}, \quad \mathcal{T}_{a}=\{\perp\}$
Hence, $\mathcal{D}=\mathcal{D}^{\top} \neq \emptyset, \quad \delta(d)=\top$ for all $d \in \mathcal{D}$
All variables, predicate and function symbols declared on T
Don't need type information of variables (omit)
Only arity in signature of function/predicate symbols matters
Example: $\quad \mathbf{P}=\{$ person $/ 1$, happy $/ 1\}, \quad \mathbf{F}=\{$ pat $/ 0\}$
$\forall x .(\operatorname{person}(x)->\operatorname{happy}(x))$
All persons are happy

Untyped First-Order Logic

Standard FOL (as in most logic textbooks is untyped [single typed])
Obtained as special case of typed signature:
$\mathcal{T}_{d}=\{T\}, \quad \mathcal{T}_{a}=\{\perp\}$
Hence, $\mathcal{D}=\mathcal{D}^{\top} \neq \emptyset, \quad \delta(d)=\top$ for all $d \in \mathcal{D}$
All variables, predicate and function symbols declared on \top
Don't need type information of variables (omit)
Only arity in signature of function/predicate symbols matters
Example: $\mathbf{P}=\{$ person/1, happy $/ 1\}, \quad \mathbf{F}=\{$ pat $/ 0\}$
$\forall x \cdot(\operatorname{person}(x)->\operatorname{happy}(x))$
person(pat)

All persons are happy
Pat is a person

Untyped First-Order Logic

Standard FOL (as in most logic textbooks is untyped [single typed])
Obtained as special case of typed signature:
$\mathcal{T}_{d}=\{T\}, \quad \mathcal{T}_{a}=\{\perp\}$
Hence, $\mathcal{D}=\mathcal{D}^{\top} \neq \emptyset, \quad \delta(d)=\top$ for all $d \in \mathcal{D}$
All variables, predicate and function symbols declared on \top
Don't need type information of variables (omit)
Only arity in signature of function/predicate symbols matters
Example: $\mathbf{P}=\{$ person/1, happy $/ 1\}, \quad \mathbf{F}=\{$ pat $/ 0\}$
$\forall x .(\operatorname{person}(x)->\operatorname{happy}(x))$
person(pat)
All persons are happy
PAT IS A PERSON
happy(pat)
Pat is happy

Types and Symbols with Fixed Interpretation

Certain symbols should have "standard" meaning in all interpretations
So far: $\doteq, 巨_{z},(z)$
For certain types we also fix domain and dynamic typing:
$\mathcal{D}^{\text {int }}=\{d \in \mathcal{D} \mid \delta(d)=$ int $\}=\mathbb{Z}$
These types appear between \perp and \top, uncomparable to others
Examples of types, function/predicate symbols with fixed meaning
$\mathcal{I}(17)$ should be always 17 , not e.g. towel
int KeY can switch between Java 32-bit integers and \mathbb{Z} but in FOL always math integers $\mathcal{I}(+)=+_{\mathbb{Z}}, \quad \mathcal{I}(*)=*_{\mathbb{Z}}, \ldots$
boolean

Some Predefined Symbols in KeY FO Logic

Types

int, short, byte, boolean with standard meaning
All classes of current UML context diagram and Null
If T is one of these types then also $\operatorname{Set}(T), \operatorname{Bag}(T), \operatorname{Sequence}(T)$
Predicates on integer types with standard meaning
>, <, >=, <=, ... (infix)
Functions and Constants with standard meaning
+, -, div, mod, $0,1, \ldots$
TRUE, FALSE
Notation for quantifiers, variables declared at quantifier symbol
\forall Type Variable; ScopeFormula

First-Order Problems in KeY Syntax: . key

\sorts $\{/ /$ types are called 'sorts' person; // one declaration per line, end with ';'
\}
\functions \{ // ResultType FctSymbol (ParType,.., ParType) int age(person); // 'int' predefined type
\}
\predicates \{ // PredSymbol (ParType,.., ParType) parent (person, person);
\}
\problem \{ // Goal formula
\forall person son; \forall person father; (parent (father,son) \rightarrow age (father) > age(son)) \}

Contents

- Overview of KeY
- UML and its semantics
- Introduction to OCL
- Specifying requirements with OCL
- Modelling of Systems with Formal Semantics
- Propositional \& First-order logic, sequent calculus
- OCL to Logic, horizontal proof obligations, using KeY
- Dynamic logic, proving program correctness
- Java Card DL
- Vertical proof obligations, using KeY
- Wrap-up, trends

Sequent Calculus for FOL

right side, succedent

- $\left[t / t^{\prime}\right] \phi$ is result of replacing each occurrence of t in ϕ with t^{\prime}
- $s^{z}, t^{z^{\prime}}$ and t are arbitrary variable free terms
- x and s^{z} have static type z and $t^{z^{\prime}}$ has static type $z^{\prime} \sqsubseteq z$
- c^{z} new constant of type z (does not occur in current proof branch)
- Equations can be reversed (by symmetry of equality)

Sequent Calculus for FOL

	left side, antecedent	right side, succedent
\forall	$\frac{\Gamma, \forall x \cdot \phi,\left[x / t^{z^{\prime}}\right] \phi==>\Delta}{\Gamma, \forall x \cdot \phi==>\Delta}$	$\frac{\Gamma==>}{}$

- $\left[t / t^{\prime}\right] \phi$ is result of replacing each occurrence of t in ϕ with t^{\prime}
- $s^{z}, t^{z^{\prime}}$ and t are arbitrary variable free terms
- x and s^{z} have static type z and $t^{z^{\prime}}$ has static type $z^{\prime} \sqsubseteq z$
- c^{z} new constant of type z (does not occur in current proof branch)
- Equations can be reversed (by symmetry of equality)

Sequent Calculus for FOL

- $\left[t / t^{\prime}\right] \phi$ is result of replacing each occurrence of t in ϕ with t^{\prime}
- $s^{z}, t^{z^{\prime}}$ and t are arbitrary variable free terms
- x and s^{z} have static type z and $t^{z^{\prime}}$ has static type $z^{\prime} \sqsubseteq z$
- c^{z} new constant of type z (does not occur in current proof branch)
- Equations can be reversed (by symmetry of equality)

Sequent Calculus for FOL

	left side, antecedent	right side, succedent
\forall	$\underline{\Gamma, \forall x \cdot \phi,\left[x / t^{z^{\prime}}\right] \phi==>\Delta}$	$\underline{\Gamma}==>\left[x / c^{z}\right] \phi, \Delta$
	$\Gamma, \forall x . \phi==>\Delta$	$\Gamma=\Rightarrow>x . \phi, \Delta$
\exists	$\underline{\Gamma,\left[x / c^{z}\right] \phi==>\Delta}$	$\Gamma=$ => $\left[x / t^{z^{\prime}}\right] \phi, \exists x \cdot \phi, \Delta$
	$\Gamma, \exists x . \phi==>\Delta$	$\Gamma==>~ \exists x . \phi, \Delta$
	$\Gamma, s^{z} \doteq t^{z^{\prime}},\left[s^{z} / t^{z^{\prime}}\right] \psi==>\left[s^{z} / t^{z^{\prime}}\right] \phi, \Delta$	
	$\Gamma, s^{z} \dot{\doteq} t^{z^{\prime}}, \psi==>\phi, \Delta$	$\Gamma==>t \doteq t, \Delta$

- $\left[t / t^{\prime}\right] \phi$ is result of replacing each occurrence of t in ϕ with t^{\prime}
- $s^{z}, t^{z^{\prime}}$ and t are arbitrary variable free terms
. x and s^{z} have static type z and $t^{z^{\prime}}$ has static type $z^{\prime} \sqsubseteq z$
- c^{z} new constant of type z (does not occur in current proof branch)
- Equations can be reversed (by symmetry of equality)

A Simple Proof (Exercises p3.key)

$\exists x . \forall y \cdot p(x, y)==>\forall y \cdot \exists x \cdot p(x, y)$

Let static type of x and y be \top

A Simple Proof (Exercises p3.key)

\qquad
\qquad
$\forall y \cdot p(c, y)==>\forall y \cdot \exists x \cdot p(x, y)$
$\exists x \cdot \forall y \cdot p(x, y)==>\forall y \cdot \exists x \cdot p(x, y)$
ex left: substitute new constant c of type \top for x

A Simple Proof (Exercises p3.key)

$$
\begin{array}{r}
\hline \forall y \cdot p(c, y)==>\exists x \cdot p(x, d) \\
\hline \forall y \cdot p(c, y)==>\forall y \cdot \exists x \cdot p(x, y) \\
\exists x \cdot \forall y \cdot p(x, y)==>\forall y \cdot \exists x \cdot p(x, y)
\end{array}
$$

all right: substitute new constant d of type \top for y

A Simple Proof (Exercises p3.key)

$$
p(c, d), \forall y \cdot p(c, y)==>\exists x \cdot p(x, d)
$$

$$
\forall y \cdot p(c, y)==>\exists x \cdot p(x, d)
$$

$$
\forall y \cdot p(c, y)=\Longrightarrow \forall y \cdot \exists x \cdot p(x, y)
$$

$$
\exists x \cdot \forall y \cdot p(x, y)=\Rightarrow \forall y \cdot \exists x \cdot p(x, y)
$$

all left: free to substitute any term of type \top for y, choose d

A Simple Proof (Exercises p3.key)

$$
\begin{gathered}
p(c, d) \quad==>\exists x \cdot p(x, d) \\
\forall y \cdot p(c, y)==>\exists x \cdot p(x, d) \\
\forall y \cdot p(c, y)==>\forall y \cdot \exists x \cdot p(x, y) \\
\exists x \cdot \forall y \cdot p(x, y)==>\forall y \cdot \exists x \cdot p(x, y)
\end{gathered}
$$

all left not needed anymore (hide)

A Simple Proof (Exercises p3.key)

$$
\begin{array}{cc}
p(c, d) & ==> \\
\hline p(c, d) & p(c, d), \exists x \cdot p(x, y) \\
\hline \forall y \cdot p(c, y)=\ggg x \cdot p(x, d) \\
\hline \forall y \cdot p(c, y)=\Rightarrow & \forall y \cdot p(x, d) \\
\hline \exists x \cdot \forall y \cdot p(x, y)=\Rightarrow> & \forall y \cdot \exists x \cdot p(x, y)
\end{array}
$$

ex right: free to substitute any term of type \top for x, choose c

A Simple Proof (Exercises p3.key)

$$
\begin{array}{rr}
p(c, d) & ==>p(c, d) \\
\hline p(c, d) & =\gg x \cdot p(x, d) \\
\hline \forall y \cdot p(c, y)==> & \exists x \cdot p(x, d) \\
\hline \forall y \cdot p(c, y)==> & \forall y \cdot \exists x \cdot p(x, y) \\
\exists x \cdot \forall y \cdot p(x, y) & ==>\forall y \cdot \exists x \cdot p(x, y)
\end{array}
$$

ex right not needed anymore (hide)

A Simple Proof (Exercises p3.key)

$p(c, d) \quad==>$	$p(c, d)$
$p(c, d)$	$==>x \cdot p(x, d)$
$\forall y \cdot p(c, y)==>$	$\exists x \cdot p(x, d)$
$\forall y \cdot p(c, y)==>$	$\forall y \cdot \exists x \cdot p(x, y)$
$\exists \exists x \cdot \forall y \cdot p(x, y)$	$==>\forall y \cdot \exists x \cdot p(x, y)$

Close

Rules for Type Casts and Type Predicates

- Type predicate formulas $t \in z$ true iff dynamic type $\operatorname{val}_{\mathcal{M}}(t)$ is subtype of z
- Type cast terms $(z) t$ evaluates to $\operatorname{val}_{\mathcal{M}}(t)$ if cast succeeds, arb. element otherwise

Rules for Type Casts and Type Predicates

- Type predicate formulas $t \in z$ true iff dynamic type $\operatorname{val}_{\mathcal{M}}(t)$ is subtype of z
- Type cast terms $(z) t$ evaluates to $\operatorname{val}_{\mathcal{M}}(t)$ if cast succeeds, arb. element otherwise

Typical rule:

Rules for Type Casts and Type Predicates

- Type predicate formulas $t \in z$ true iff dynamic type $\operatorname{val}_{\mathcal{M}}(t)$ is subtype of z
- Type cast terms $(z) t$ evaluates to $\operatorname{val}_{\mathcal{M}}(t)$ if cast succeeds, arb. element otherwise

Typical rule:
The dynamic type of a term must be typeable to its static type

$$
\text { TYPESTATIC } \frac{\Gamma, t \in z==>\Delta}{\Gamma==>\Delta} \quad z \text { static (declared) type of } t
$$

Expresses type-safety of typed first-order logic

Rules for Type Casts and Type Predicates

- Type predicate formulas $t \in z$ true iff dynamic type $\operatorname{val}_{\mathcal{M}}(t)$ is subtype of z
- Type cast terms $(z) t$ evaluates to $\operatorname{val}_{\mathcal{M}}(t)$ if cast succeeds, arb. element otherwise

Typical rule:
The dynamic type of a term must be typeable to its static type

$$
\text { TYPESTATIC } \frac{\Gamma, t \in z=\Delta \Delta}{\Gamma==>\Delta} \quad z \text { static (declared) type of } t
$$

Expresses type-safety of typed first-order logic
KeY first-order strategy applies suitable typing rules automatically

Sequent Proofs: Important Issues

- Rules are applied to top-most connective/quantifier
- exLeft and allRight substitute new constant
- exRight and allLeft allow to substitute any variable-free term
- Formulas that are not needed in remaining proof may be hidden
- All branches must be closed with axiom
- There are many different possible proofs for a valid sequent
- KeY FO strategy applies all but exRight and allLeft automatically

Another Proof Example

Types $\mathcal{T}=\{\perp, \top\}$
Predicates $\mathbf{P S y m}=\{p\}, \quad p: \top, \top$
Functions \quad FSym $=\{ \}$

$$
(\exists x \cdot \exists y \cdot p(x, y) \& \forall x \cdot!p(x, x)) \quad->\quad \exists x \cdot \exists y \cdot(!x \doteq y)
$$

Intuitive Meaning? Satisfiable? True? Valid?
Demo
oclFol/rel.key

