
22c181:
Formal Methods in Software Engineering

The University of Iowa

Spring 2008

Introduction

Copyright 2007-8 Reiner Hähnle and Cesare Tinelli.

Notes originally developed by Reiner Hähnle at Chalmers Uni versity and modified by Cesare Tinelli at the University of Io wa. These notes

are copyrighted materials and may not be used in other course settings outside of the University of Iowa in their current f orm or modified

form without the express written permission of one of the cop yright holders.

22c181: Formal Methods in Software Engineering – p.1



A Truism

Software has become critical to modern life.

Process Control (oil, gas, water, . . . )

Transportation (air traffic control, . . . )

Health Care (patient monitoring, device control . . . )

Finance (automatic trading, bank security . . . )

Defense (intelligence, weapons control, . . . )

Manufacturing (precision milling, assembly, . . . )

Failing software costs money and life!

22c181: Formal Methods in Software Engineering – p.2



Failing Software Costs Money

Thousands of dollars for each minute of factory down-time

Huge losses of monetary and intellectual investment

• Rocket boost failure (e.g., Arianne 5)

Business failures associated with buggy software

• (e.g., Ashton-Tate dBase)

22c181: Formal Methods in Software Engineering – p.3



Failing Software Costs Lives

Potential problems are obvious:

• Software used to control nuclear power plants

• Air-traffic control systems

• Spacecraft launch vehicle control

• Embedded software in cars

A well-known and tragic example:

Therac-25 radiation machine failures

22c181: Formal Methods in Software Engineering – p.4



The Peculiarity of Software Systems

Tiny faults can have catastrophic consequences

Software seems particularly prone to faults:

Ariane 5

Mars Climate Orbiter, Mars Sojourner

London Ambulance Dispatch System

Denver Airport Luggage Handling System

Pentium-Bug

. . .

22c181: Formal Methods in Software Engineering – p.5



Observation

Building software is what the majority of you will do after gr aduation

You’ll be developing systems in the context we just mentione d

Given the increasing importance of software,

• you may be liable for errors

• your job may depend on your ability to produce reliable syste ms

What are the challenges in building reliable software?

22c181: Formal Methods in Software Engineering – p.6



Achieving Reliability in Engineering

Some well-known strategies from civil engineering:

Precise calculations/estimations of forces, stress, etc.

Hardware redundancy (“make it a bit stronger than necessary ”)

Robust design (single fault not catastrophic)

Clear separation of subsystems

Any airplane flies with dozens of known and minor defects

Design follows patterns that are proven to work

22c181: Formal Methods in Software Engineering – p.7



Why This Does Not Work For Software

Software systems compute non-continuous functions

Single bit-flip may change behaviour completely

Redundancy as replication doesn’t help against bugs

Redundant SW development only viable in extreme cases

No physical or modal separation of subsystems

Local failures often affect whole system

Software designs have very high logic complexity

Most SW engineers untrained in correctness

Cost efficiency more important than reliability

Design practice for reliable software in immature state

22c181: Formal Methods in Software Engineering – p.8



How to Ensure Software Correctness/Compliance?

A Central Strategy: Testing

(others: SW processes, reviews, libraries, . . . )

Testing against inherent SW errors (“bugs”)

Design test configurations that hopefully are representati ve and

ensure that the system behaves intentionally on them

Testing against external faults

Inject faults (memory, communication) by simulation or rad iation

22c181: Formal Methods in Software Engineering – p.9



Limitations of Testing

Testing can show the presence of errors, but not their absenc e

(exhaustive testing viable only for trivial systems)

Representativeness of test cases/injected faults subject ive

How to test for the unexpected? Rare cases?

Testing is labor intensive, hence expensive

22c181: Formal Methods in Software Engineering – p.10



A Complement to Testing: Formal Verification

A Sorting Program:

public s t a t i c Integer[] sort(Integer[] a) {

...

}

22c181: Formal Methods in Software Engineering – p.11



A Complement to Testing: Formal Verification

A Sorting Program:

public s t a t i c Integer[] sort(Integer[] a) {

...}

Testing sort():

sort({3,2,5}) == {2,3,5} �

sort({}) == {} �

sort({17}) == {17} �

22c181: Formal Methods in Software Engineering – p.12



A Complement to Testing: Formal Verification

A Sorting Program:

public s t a t i c Integer[] sort(Integer[] a) {

...}

Testing sort():

sort({3,2,5}) == {2,3,5} �

sort({}) == {} �

sort({17}) == {17} �

Missed Test Cases!

sort({2,1,2}) == {1,2,2} 4

sort(NULL) == {1,2,2} 4

22c181: Formal Methods in Software Engineering – p.13



Formal Verification as Theorem Proving

Theorem. The program sort() is correct.

For any given array of integers a, calling the program sort(a) returns

an array of integers that is sorted and is a permutation of a.

Proof.

Methodology differs from Mathematics!

1. Formalize the claim in a logical representation

2. Prove the claim with the help of a theorem prover

22c181: Formal Methods in Software Engineering – p.14



Formal Methods: The Scenario

Rigorous methods used in system design and development

Mathematics and symbolic logic ⇒ formal

Increase confidence in a system

Two aspects:

• System specification

• System implementation

Make formal model of both and use tools to prove mechanically

that formal execution model of the implementation satisfies formal

requirements of the specification

22c181: Formal Methods in Software Engineering – p.15



Formal Methods: The Vision

Complement other analysis and design methods

Are good at finding bugs

(in code and specification)

Reduce development (and test) time

Can ensure certain properties of the formal system model

Should ideally be automatic

22c181: Formal Methods in Software Engineering – p.16



Formal Methods and Testing

Run the system at chosen inputs and observe its behaviour

• Randomly chosen

• Intelligently chosen (by hand: expensive !)

• Automatically chosen (need formalized spec )

What about other inputs? (test coverage )

What about the observation? (test oracle )

Challenges can be addressed by/require formal methods

22c181: Formal Methods in Software Engineering – p.17



Specifications — What the System Should Do

Simple properties

• Safety properties

Something bad will never happen

• Liveness properties

Something good will happen eventually

• Non-functional properties

Runtime, memory, usability, . . .

“Complete” behaviour specification

• Equivalence check

• Refinement

• Data consistency

• . . . 22c181: Formal Methods in Software Engineering – p.18



Formal Specifications

The expression in some formal language and at some level of

abstraction of a collection of properties that some system

should satisfy [van Lamsweerde]

Formal language

• Syntax can be mechanically processed and checked

Abstraction:

• Above the level of source code

• Several levels possible

22c181: Formal Methods in Software Engineering – p.19



Formal Specifications

The expression in some formal language and at some level of

abstraction of a collection of properties that some system

should satisfy [van Lamsweerde]

Properties:

• Expressed in some formal logic

• Have a well-defined semantics

Satisfaction:

• Ideally (but not usually) decided mechanically

22c181: Formal Methods in Software Engineering – p.20



The Main Point of Formal Methods is Not

To show “correctness” of entire systems

What IS correctness? Always go for specific properties!

To replace testing entirely

Formal methods work on source code or, at most, bytecode leve l

Non-formalizable properties

To replace good design practices

There is no silver bullet!

No correct system w/o clear requirements & good design

This holds as well for Formal Methods

22c181: Formal Methods in Software Engineering – p.21



But . . .

Formal proof can replace (infinitely) many test cases

Formal methods can be used in automatic test case generation

Formal methods improve the quality of specs

(even without formal verification)

22c181: Formal Methods in Software Engineering – p.22



Successful Formal Methods

. . . are integrated into the development process,

in particular at early design stages

. . . avoid unreasonable new demands or skills from the user

FM should be learnable as part of Masters in CS

. . . work at large scale

. . . save time or money in getting a good quality product out

. . . increase the feasible complexity of products

22c181: Formal Methods in Software Engineering – p.23



Typical Areas

Saving time

Time to market

22c181: Formal Methods in Software Engineering – p.24



Typical Areas

Saving time

Time to market

Saving money

Intel Pentium bug

Smart cards in banking

22c181: Formal Methods in Software Engineering – p.24



Typical Areas

Saving time

Time to market

Saving money

Intel Pentium bug

Smart cards in banking

More complex products

Modern processors, fault tolerant software

22c181: Formal Methods in Software Engineering – p.24



Typical Areas

Saving time

Time to market

Saving money

Intel Pentium bug

Smart cards in banking

More complex products

Modern processors, fault tolerant software

Saving human lives

Avionics, X-by-wire

22c181: Formal Methods in Software Engineering – p.24



A Fundamental Fact

Formalisation of system requirements is hard

22c181: Formal Methods in Software Engineering – p.25



Difficulties in Creating Formal Models

Real

World
Abstraction

Formal

Execution

Model

Formal

Requirements

Specification

22c181: Formal Methods in Software Engineering – p.26



Difficulties in Creating Formal Models

Real

World

Formal

Model

wrong assumption

eg, zero delay

22c181: Formal Methods in Software Engineering – p.26



Difficulties in Creating Formal Models

Real

World

Formal

Model

missing requirement

eg, stack overflow

22c181: Formal Methods in Software Engineering – p.26



Difficulties in Creating Formal Models

Real

World

Formal

Model

misunderstood problem

eg, wrong integer model

22c181: Formal Methods in Software Engineering – p.26



Formalization Helps to Find Bugs in Specs

Wellformedness and consistency of formal specs

checkable with tools

Fixed signature (symbols) helps to spot incomplete specs

Failed verification of implementation against spec

gives feedback on erroneous formalization

22c181: Formal Methods in Software Engineering – p.27



Another Fundamental Fact

Proving properties of systems can be hard

22c181: Formal Methods in Software Engineering – p.28



Level of System (Implementation) Description

Low level

• Finitely many states

• Tedious to program, worse to maintain

• Automatic proofs are (in principle) possible

High level

• Complex datatypes and control structures,

general programs

• Easier to program

• Automatic proofs (in general) impossible!

22c181: Formal Methods in Software Engineering – p.29



Expressiveness of Specification

Simple

• Finitely many cases

• Approximation, low precision

• Automatic proofs are (in principle) possible

Complex

• General properties

• High precision, tight modeling

• Automatic proofs (in general) impossible!

22c181: Formal Methods in Software Engineering – p.30



Main Approaches

High-level programs , High-level programs,

Complex properties Simple properties

Low-level programs, Low-level programs ,

Complex properties Simple properties

22c181: Formal Methods in Software Engineering – p.31



Main Approaches

High-level programs , High-level programs,

Complex properties Simple properties

Low-level programs, Low-level programs ,

Complex properties Simple properties

Lustre

1st part of course

22c181: Formal Methods in Software Engineering – p.31



Main Approaches

KeY

2nd part of course

High-level programs , High-level programs,

Complex properties Simple properties

Low-level programs, Low-level programs ,

Complex properties Simple properties

Lustre

1st part of course

22c181: Formal Methods in Software Engineering – p.31



Proof Automation

“Automatic” Proof

• No interaction

• Sometimes help is required anyway

• Formal specification still “by hand”

“Semi-Automatic” Proof

• Interaction may be required

• Very often proof tool suggests proof rules

• Proof is checked by tool

22c181: Formal Methods in Software Engineering – p.32



Model Checking

System Model System Property

G(x→ Fy)

no

Model
Checker

yes

x=T,T,F,F,. . .
y=F,F,F,T,. . .

22c181: Formal Methods in Software Engineering – p.33



Model Checking in Industry

Hardware verification

• Good match between limitations of technology and applicati on

• Intel, Motorola, IBM, . . .

Software verification

• Specialized software: control systems, protocols

• Typically no checking of executable source code, but of

abstraction thereof

• Ericsson, Microsoft, Rockwell-Collins

22c181: Formal Methods in Software Engineering – p.34



Proof Based Methods (I)

System
Implementation

compilation

F

Formal
Requirements

compilation

P
yes/no

Proof rules establish relation “implementation conforms t o specs”

22c181: Formal Methods in Software Engineering – p.35



Proof Based Methods (II)

[

System
Implementation

]

Formal
Requirements

yes/no

Apply proof rules to establish validity of formula that enco des relation

“implementation conforms to specs”

22c181: Formal Methods in Software Engineering – p.36



Proof Methods in Industry

Hardware verification

• For large systems

• Intel, Motorola, AMD, . . .

Software verification

• Safety critical systems, libraries

• Paris driverless metro (Meteor), Emergency closing system

• Rockwell-Collins, Avionics software

22c181: Formal Methods in Software Engineering – p.37



SPIN at Bell Labs

Feature interaction for telephone call processing softwar e

Tool works directly on C source code , automatic abstraction

Web interface to track properties

Work farmed out to large numbers of computers

Finds shortest possible error trace

18 months, 300 versions, 75 bugs found

Main burden: Defining meaningful properties

22c181: Formal Methods in Software Engineering – p.38



Static Driver Verifier/SLAM at Microsoft

Device drivers running in “kernel mode” should respect API

Third-party device drivers do not respect APIs

responsible for 90% of Windows crashes

SLAM inspects C code, builds a finite state machine,

checks requirements

Static Driver Verifier β-released as part of the Windows Driver

Foundation

22c181: Formal Methods in Software Engineering – p.39



Static Driver Verifier/SLAM at Microsoft

Device drivers running in “kernel mode” should respect API

Third-party device drivers do not respect APIs

responsible for 90% of Windows crashes

SLAM inspects C code, builds a finite state machine,

checks requirements

Static Driver Verifier β-released as part of the Windows Driver

Foundation

22c181: Formal Methods in Software Engineering – p.39



Future Trends

Design for formal verification

Combining semi-automatic methods with SAT, theorem prover s

Combining static analysis of programs

with automatic methods and with theorem provers

Combining test and formal verification

Integration of formal methods into SW development process

Integration of formal method tools into CASE tools

Applying formal methods to dependable systems design

22c181: Formal Methods in Software Engineering – p.40



Summary

Formal Methods . . .

Are (more and more) used in practice

Can shorten development time

Can push the limits of feasible complexity

Can increase product quality

22c181: Formal Methods in Software Engineering – p.41



Summary

Formal Methods . . .

Are (more and more) used in practice

Can shorten development time

Can push the limits of feasible complexity

Can increase product quality

Those responsible for software management should

consider formal methods, especially within the realm of

safety-critical, security-critical, and cost-intensive software

22c181: Formal Methods in Software Engineering – p.41


	
	A Truism
	Failing Software Costs Money
	Failing Software Costs Lives
	The Peculiarity of Software Systems
	Observation
	Achieving Reliability in Engineering
	Why This Does Not Work For Software
	How to Ensure Software Correctness/Compliance?
	Limitations of Testing
	A Complement to Testing: Formal Verification
	A Complement to Testing: Formal Verification
	A Complement to Testing: Formal Verification
	Formal Verification as Theorem Proving
	Formal Methods: The Scenario
	Formal Methods: The Vision
	Formal Methods and Testing
	Specifications --- What the System 	extbf {Should} Do
		extbf {Formal} Specifications
		extbf {Formal} Specifications
	The Main Point of Formal Methods is 	extbf {Not}
	But ldots 
	Successful Formal Methods
	Typical Areas
	A Fundamental Fact
	Difficulties in Creating Formal Models
	Formalization Helps to Find Bugs in Specs
	Another Fundamental Fact
	Level of System (Implementation) Description
	Expressiveness of Specification
	Main Approaches
	Proof Automation
	Model Checking
	Model Checking in Industry
	Proof Based Methods (I)
	Proof Based Methods (II)
	Proof Methods in Industry
	SPIN at Bell Labs
	Static Driver Verifier/SLAM at Microsoft
	Future Trends
	Summary

