
22c181:
Formal Methods in Software Engineering

Spring 2008

Course Overview

The University of Iowa

22c181: Formal Methods in Software Engineering – p.1



Staff

• Instructor: Cesare Tinelli

• Office hours: Tue 4:00-5:30pm, Fri 2:00-3:30pm, and by

appointment.

• Teaching Assistant: George Hagen

• Office hours (in the lab): Wed 2:30-3:30pm, Thu 1:30-2:30

22c181: Formal Methods in Software Engineering – p.2



Course Info and Material

• All the relevant information about the course, including th e

syllabus, will be available on this website:

http://www.cs.uiowa.edu/~tinelli/181/

• There is no textbook for this course

• Class notes and related reading material will be posted on th e

website

• Long distance education students will also have access to re corded

lectures

• Check the website at least every other day!

22c181: Formal Methods in Software Engineering – p.3

http://www.cs.uiowa.edu/~tinelli/181/


Course Design Goals

• Understand how formal methods (FM) help
to produce high-quality software

• Understand the difference between:

• automatic vs interactive formal verification

• concrete vs abstract system models

Illustrate main approaches in formal software verification today

• Know when and which formal methods to use

• Write and understand formal requirement specifications

• Use automated and interactive tools to produce formal proof s

• Avoid overburdening with formal details —
Yet enough formality to let participants know what they are d oing

22c181: Formal Methods in Software Engineering – p.4



Course Topics

Major paradigms for formal validation of software:

• Model Checking (here using temporal induction)

automatic, abstract, not so expressiveness

• Deductive Verification:

semi-automatic, precise (source code level), expressive

• Automatic Test Case Generation:

complements model checking and deductive verification

22c181: Formal Methods in Software Engineering – p.5



Course Organization

Organization

Most of the course devoted to first two MC and DV

Will do ATCG time permits

Hands-on lab assignments where you specify, design, and ver ify

Several ungraded exercises

2-3 graded mini-projects for teams of 2

1 written midterm, 1 final exam

More details on the syllabus and the website

22c181: Formal Methods in Software Engineering – p.6



Part I: Model Checking with Lustre

Synchronous, declarative real-time programming language

Designed for efficient compilation and formal verification

Used in safety-critical applications industry:

• Aerospatiale: Airbus A310–340

• Eurocopter: World-leading civil helicopter manufacturer

• Schneider Electric: Nuclear power plant control

• Rockwell-Collins: Major avionics company

Learning Outcomes:

Write formal system and property specifications in Lustre

Execute simulation and verification of Lustre models

Understand what can and what cannot be expressed in Lustre

22c181: Formal Methods in Software Engineering – p.7



Part II: Deductive Verification with KeY

Integrated UML-based CASE tool/verification system:
conventional and formal development of OO software

Frontend: commercial CASE tool Borland Together

Specifications written in Object Constraint Language (OCL)

Verification of sequential Java programs (no floats)

Background knowlegde: Java, UML basics (class diagrams)

Learning Outcomes:

Write formal specifications and contracts in OCL

Understand how Java and OCL can be represented in logic

Verify functional properties of Java programs with KeY

22c181: Formal Methods in Software Engineering – p.8


	
	Staff
	Course Info and Material
	Course Design Goals
	Course Topics
	Course Organization
	Part I: Model Checking with Lustre
	Part II: Deductive Verification with KeY

