CS:5810 Formal Methods in Software Engineering

Recursion and Termination

Copyright 2020-23, Graeme Smith and Cesare Tinelli.
Produced by Cesare Tinelli at the University of lowa from notes originally developed by Graeme Smith at the University of Queensland. These notes

are copyrighted materials and may not be used in other course settings outside of the University of lowa in their current form or modified form without
the express written permission of one of the copyright holders. During this course, students are prohibited from selling notes to or being paid for taking
notes by any person or commercial firm without the express written permission of one of the copyright holders.



Recursive methods

method Double(x: ) returns (d: )
requires x >= 0
ensures d == 2*x
{
it X ==
{
d := 0;
} else {
var dil;
dl := Double(x - 1);
d := dl + 2;
}
}



Recursive methods

method Double(x: ) returns (d: )
requires x >= 0
ensures d == 2*x

{

it X ==

{
d := 0;
} else {
var dil;

dl := Double(x - 1);
d := dl + 2;
}
}



method Double(x:
requires x >= 0

Recursive methods

) returns (d: )

Recursive methods can be analyzed
like any methods that call other
methods ...

if they terminate!

ensures d == 2%*x
{
it X ==
{
d := 0;
} else {
var dil;
dl := Double(x - 1);
d := dl + 2;
}

¥



Problematic recursion

method BadDouble(x: ) returns (d: )
ensures d == 2*x

{
var dl := Double(x - 1);

d :=dl + 2;
}

Does not terminate!

method BadIdentity(x: ) returns (y: )
ensures y == X
{
if X % 2 == 2
{y =x;}
else
{ y:= BadIdentity(x); }

Does not terminate!



Fibonacci function

) . non-negative integers
function Fib(n: ): { SAtVE TNEEE

if n < 2 then n else Fib(n - 2) + Fib(n - 1) }

Terminates! @
Crmen



How to prove termination?

function Fib(n: ):
{
if n < 2 then n else Fib(n - 2) + Fib(n - 1)
}
function Ack(m: , n: ):
{

Also terminates!
ifm==0 then n + 1

else if n == @ then Ack(m - 1, 1)
else Ack(m - 1, Ack(m, n - 1))



Termination metric

function Fib(n: ): et — Suggestion for Dafny
decreases n .

{
if n < 2 then n else Fib(n - 2) + Fib(n - 1)
}

function SeqgSum(s: <int>», lo:
requires @ <= lo <= hi <= |[s]
decreases hi - 1lo

, hi: ):

if lo == hi then @ else s[lo] + SeqgSum(s, lo + 1, hi)



Termination metric

Termination metrics do not have to be natural numbers
Any set of values with a well-founded order can be used

An order > is well-founded when
e >isirreflexive: a > a never holds

e > s transitive: ifa>bandb > c then a >c

* thereis no infinite descending chain: ay > a; > a, > ...



Well-founded orders in Dafny

X && 1Y true decreases to false
X>Y && X >= 0 negative ints not ordered

X -1.0>Y && X >= 0.0
<T> X is a proper superset of Y D not 2
<T> X strictly contains Y e.g., [a, b, c] > [b, ]
datatypes X structurally includes Y e.g., ((a, b), (c, d)) > (a, b)




Lexicographic tuples

A lexicographic order orders tuples of values

It does component-wise comparison,
where earlier components are more significant

Examples:

* 4, 12 > 4, 11 > 4, 2 > 3, 5260 > 2, ©
e 4, 12 > 4, 12, 365, ©
e 12, true, 1.9 > 12, false, 57.3



Lexicographic tuples

A lexicographic order orders tuples of values

It does component-wise comparison,
where earlier components are more significant

Theorem: A lexicographic order is well founded whenever all the
component orders are well-founded



Remaining study

The following method simulates your time until graduation, from when
you have h hours left in course ¢

method Study(c: , h: )
{ decreases ¢, h — ¢, h>c, h-1
if h 1= 90 { Study(c, h - 1); }
else if ¢ == 0 { }
else { var ch := ReqStudyTime(c - 1);
Study(c - 1, ch);

}
} — c, h > c-1, ch




Ackermann function

function Ack(m: , N: ) :
decreases m, n

if m==0 then n + 1
else if n == @ then Ack(m - 1, 1)
else Ack(m - 1, Ack(m, n - 1))



Mutually recursive functions

method StudyPlan(c: )
requires c <= 40 40-c > 40-c, h

decreases 40 - c /”//
{

if ¢ I= 40 { var h := ReqStudyTime(c); Learn(c, h); }
¥

method Learn(c: , h: y 40-¢, h > 48-(c+1)

requires c < 40

decreases 40 - c, h 40-c, h > 40-c, h-1
{ Vel

if h == 0 { StudyPlan(c + 1); } else { Learn(c, h - 1); }
}



