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Recursive methods

method Double(x: ) returns (d: )
requires x >= 0
ensures d == 2*x
{
it X ==
{
d := 0;
} else {
var dil;
dl := Double(x - 1);
d := dl + 2;
}
}
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method Double(x:
requires x >= 0

Recursive methods

) returns (d: )

Recursive methods can be analyzed
like any methods that call other
methods ...

if they terminate!

ensures d == 2%*x
{
it X ==
{
d := 0;
} else {
var dil;
dl := Double(x - 1);
d := dl + 2;
}

¥



Problematic recursion

method BadDouble(x: ) returns (d: )
ensures d == 2*x

{
var dl := Double(x - 1);

d :=dl + 2;
}

Does not terminate!

method BadIdentity(x: ) returns (y: )
ensures y == X
{
if X % 2 == 2
{y =x;}
else
{ y:= BadIdentity(x); }

Does not terminate!



Fibonacci function

) . non-negative integers
function Fib(n: ): { SAtVE TNEEE

if n < 2 then n else Fib(n - 2) + Fib(n - 1) }

Terminates! @
Crmen



How to prove termination?

function Fib(n: ):
{
if n < 2 then n else Fib(n - 2) + Fib(n - 1)
}
function Ack(m: , n: ):
{

Also terminates!
ifm==0 then n + 1

else if n == @ then Ack(m - 1, 1)
else Ack(m - 1, Ack(m, n - 1))



Termination metric

function Fib(n: ): et — Suggestion for Dafny
decreases n .

{
if n < 2 then n else Fib(n - 2) + Fib(n - 1)
}

function SeqgSum(s: <int>», lo:
requires @ <= lo <= hi <= |[s]
decreases hi - 1lo

, hi: ):

if lo == hi then @ else s[lo] + SeqgSum(s, lo + 1, hi)



Termination metric

Termination metrics do not have to be natural numbers
Any set of values with a well-founded order can be used

An order > is well-founded when
e >isirreflexive: a > a never holds

e > s transitive: ifa>bandb > c then a >c

* thereis no infinite descending chain: ay > a; > a, > ...



Well-founded orders in Dafny

X && 1Y true decreases to false
X>Y && X >= 0 negative ints not ordered

X -1.0>Y && X >= 0.0
<T> X is a proper superset of Y D not 2
<T> X strictly contains Y e.g., [a, b, c] > [b, ]
datatypes X structurally includes Y e.g., ((a, b), (c, d)) > (a, b)




Lexicographic tuples

A lexicographic order orders tuples of values

It does component-wise comparison,
where earlier components are more significant

Examples:

* 4, 12 > 4, 11 > 4, 2 > 3, 5260 > 2, ©
e 4, 12 > 4, 12, 365, ©
e 12, true, 1.9 > 12, false, 57.3



Lexicographic tuples

A lexicographic order orders tuples of values

It does component-wise comparison,
where earlier components are more significant

Theorem: A lexicographic order is well founded whenever all the
component orders are well-founded



Remaining study

The following method simulates your time until graduation, from when
you have h hours left in course ¢

method Study(c: , h: )
{ decreases ¢, h — ¢, h>c, h-1
if h 1= 90 { Study(c, h - 1); }
else if ¢ == 0 { }
else { var ch := ReqStudyTime(c - 1);
Study(c - 1, ch);

}
} — c, h > c-1, ch




Ackermann function

function Ack(m: , N: ) :
decreases m, n

if m==0 then n + 1
else if n == @ then Ack(m - 1, 1)
else Ack(m - 1, Ack(m, n - 1))



Mutually recursive functions

method StudyPlan(c: )
requires c <= 40 40-c > 40-c, h

decreases 40 - c /”//
{

if ¢ I= 40 { var h := ReqStudyTime(c); Learn(c, h); }
¥

method Learn(c: , h: y 40-¢, h > 48-(c+1)

requires c < 40

decreases 40 - c, h 40-c, h > 40-c, h-1
{ Vel

if h == 0 { StudyPlan(c + 1); } else { Learn(c, h - 1); }
}



