Alloy Analyzer 4 Tutorial

Session 2: Language and Analysis

Greg Dennis and Rob Seater
Software Design Group, MIT

alloy language & analysis

* language = syntax for structuring specifications in logic
— shorthands, puns, sugar

» analysis = tool for finding solutions to logical formulas
— searches for and visualizes counterexamples

“I'm My Own Grandpa” Song

e popular radio skit originally written in the 1930's

« expanded into hit song by “Lonzo and Oscar” in 1948

“I'm My Own Grandpa” in Alloy

module grandpa

abstract sig Person {
father: lone Man,
mother: lone Woman

}

sig Man extends Person {
wife: lone Woman

}

sig Woman extends Person {
husband: lone Man

}

fact {
no p: Person |
p 1in p.” (mother + father)
wife = ~husband

assert noSelfFather {
no m: Man | m = m.father

}

check noSelfFather

fun grandpas|[p: Person]
p. (mother + father).father

}

pred ownGrandpa[p: Person]
P in grandpas|[p]
}

run ownGrandpa for 4 Person

set Person {

{

language: module header

module grandpa

* first non-comment of an Alloy model

language: signatures

sig A {}
set of atoms A

sig A {}
sig B {}
disjoint sets A and B (no A & B)

sig A, B {}
same as above

sig B extends A {}
set B is a subset of A (BinA)

sig B extends A {}

sig C extends A {}

B and C are disjoint subsets of A
(BinA && CinA && noB & C)

sig B, C extends A {}
same as above

abstract sig A {}

sig B extends A {}

sig C extends A {}

A partitioned by disjoint subsets B and C
(moB&C &&A=(B+C(C))

sig B in A {}
B is a subset of A — not necessarily
disjoint from any other set

sig C in A + B {}
C is a subset of the union of A and B

one sig A {}

lone sig B {}
some sig C {}

A is a singleton set

B is a singleton or empty
C is a non-empty set

grandpa: signatures

abstract sig Person {

}

sig Man extends Person ({

}

sig Woman extends Person {

}

e all men and women are persons
* NO person is both a man and a woman
« all persons are either men or women

language: fields

sig A {f: e}
fis a binary relation with domain A
and range given by expression e

fis constrained to be a function
(f: A->onee)or(alla: Al a.f: e)

sig A {
fl: one el,
f2: lone e2,
f3: some e3,
f4: set &4

}
(alla: Ala.fn:me)

sig A {f, g: e}
two fields with same constraints

sig A {f: el m —> n e2}
(f:A->(el m->ne2))or
(alla: Ala.f:elm->ne2)

sig Book {
names: set Name,
addrs: names —-> Addr

}
dependent fields

(all b: Book | b.addrs: b.names -> Addr)

grandpa: fields

abstract sig Person {
father: lone Man,
mother: lone Woman

}

sig Man extends Person {
wife: lone Woman

}

sig Woman extends Person ({
husband: lone Man

}

fathers are men and everyone has at most one
mothers are women and everyone has at most one
wives are women and every man has at most one
husbands are men and every woman has at most one

language: facts

fact { F } facts introduce constraints that
f*’flCt £ {F} are assumed to always hold
sig sSs { ... }{ F }

sig Host {}
sig Link {from, to: Host}

fact {all x: Link | x.from != x.to}
no links from a host to itself

fact noSelfl.inks {all x: Link | x.from != x.to}
same as above

sig Link {from, to: Host} {from != to}
same as above, with implicit 'this.’

grandpa: fact

fact {
no p: Person |
p 1n p.” (mother + father)
wife = ~husband

}

* N0 person is his or her own ancestor
e aman's wife has that man as a husband
e awoman's husband has that woman as a wife

language: functions

fun f[x1: el, ., Xn: en] : e { E }

functions are named expression with declaration
parameters and a declaration expression as a result
invoked by providing an expression for each parameter

sig Name, Addr {}
sig Book {

addr: Name —-> Addr
}

fun lookup[b: Book, n: Name] : set Addr {
b.addr[n]

}

fact everyNameMapped {
all b: Book, n: Name | some lookup[b, n]

}

language: predicates

pred p[xl: el, ..., xn: en] { F }

named formula with declaration parameters

sig Name, Addr {}
sig Book {

addr: Name —-> Addr
}

pred contains[b: Book, n: Name, d: Addr]
n->d in b.addr

}

fact everyNameMapped {
all b: Book, n: Name |
some d: Addr | contains[b, n, a]

{

grandpa: function and predicate

fun grandpas[p: Person] : set Person {
p. (mother + father) .father
}

pred ownGrandpa[p: Person] {
P in grandpas|p]
}

e aperson's grandpas are the fathers of one's own mother and father

language: “receiver’ syntax

fun fx: X, yv: Y, ...] 2 {...x...} fix, vy,
fun X.f[y:Y, ...] : Z {...this...} x.fly,
pred p(x: X, y: Y,] {...x } plx, ¥,
pred X.ply:Y,] {...this...} x.ply,
fun Person.grandpas : set Person {

this. (mother + father).father
}

pred Person.ownGrandpa {
this in this.grandpas

}

language: assertions

assert a { F }

sig Node {

constraint intended to follow ,
children: set Node

from facts of the model }

one sig Root extends Node {}

Boss, may I fact {

attend the assertiveness

training seminar? Node in Root.*children

}

// invalid assertion:
assert someParent {
all n: Node | some children.n

}

// valid assertion:
assert someParent {
all n: Node - Root | some children.

}

language: check command

assert a { F }
check a scope

instructs analyzer to search for
counterexample to assertion within scope

if model has facts M
finds solution to M & & !F

check a
top-level sigs bound by 3

check a for default
top-level sigs bound by default

check a for default but list
default overridden by bounds in list

check a for 1Iist
sigs bound in list,
invalid if any unbound

check a

check a for
check a for
check a for
check a for
check a for
check a for
check a for
// invalid:
check a for
check a for

W W bbb DD

abstract sig Person {}

sig Man extends Person {}
sig Woman extends Person {}
sig Grandpa extends Man {}

but 3 Woman
but 3 Man, 5 Woman

Person
Person,

3 Woman

Man, 4 Woman
Man, 4 Woman, 2 Grandpa

Man
Woman,

2 Grandpa

grandpa: assertion check

fact {
no p: Person | p in p.” (mother + father)
wife = ~husband

}

assert noSelfFather {
no m: Man | m = m.father

}

check noSelfFather

sanity check

command instructs analyzer to search for
counterexample to noSelfFather within a scope of
at most 3 Persons

noSelfFather assertion follows from fact

language: run command

pred p(x: X, y: Y, ...] { F } instructs analyzer to search for
run p scope instance of predicate within scope

if model has facts M, finds solution to
M && (some x: X, y: Y, ... | F)

fun f[x: X, yv: Y, ...] : R {E } instructs analyzer to search for
run f scope instance of function within scope

if model has facts M, finds solution to
M && (some x: X, y: Y, ..., result: R | result = E)

grandpa: predicate simulation

fun grandpas[p: Person] : set Person {
p. (mother + father) .father

}

pred ownGrandpal[p: Person] {
p in grandpas|[p]
}

run ownGrandpa for 4 Person

 command instructs analyzer to search for configuration
with at most 4 people in which a man is his own
grandfather

exercise: barber paradox

> download barber.als from the tutorial website

> follow the instructions

>~ don't hesitate to ask questions

sig Man {shaves: set Man}
one sig Barber extends Man {}
fact {

Barber.shaves = {m: Man | m not in m.shaves}

}

Introduction to visualization

Download granapa.als from the tutorial website

Click “Execute”
C |C(uShOWu mather

kani
(v randpa_m)

father

Click “Theme”

i f e

superficial

* types and sets
— default color - gray

_ Apply mother

— man color = blue @
(ommGrandpa_m)

— woman color = red

- Apply
 also notice:

=

— hide unconnected nodes
— orientation
— layout backwards

types & sets

* types: from signatures
— person shape - trapezoid
— notice it carries down to man, woman
— woman: align by type
~ Apply

types & sets

mother

father

types & sets

 gets: from existentials, runs, checks
— somewhat intelligently named
— $ownGrandpa_m label - self-grandpa

- Apply

[t e

— pitfall: don't show vs. don't show as label
(vs. don't show in customizer...)

relations

e relations

— mother: show as attribute = check
(still shown as arc)

— gray = inherited (vs. overridden)
~ Apply

Wiam and
Wiarm ani mother: Womanl

LN AN

relations

* relations
— mother: show as attribute = uncheck
— father, mother, husband, wife: label = “”
— father, mother: color - green

— husband, wife: color - yellow
~ Apply

relations

finishing up

e save theme
e close theme

- create your own visualization for the barber exercise!

