CS:5810 Formal Methods in Software
Engineering

Reactive Systems and the Lustre Language
Part 2

Adrien Champion Cesare Tinelli

Lustre: a synchronous dataflow language

Design of reactive systems:
@ run in an infinite loop, and

o produce an output every n milliseconds

clock

CcPU Lerrerrerrerrerrerrerrerrrrrrd

2/16

Lustre: a synchronous dataflow language

Design of reactive systems:
@ run in an infinite loop, and
o produce an output every n milliseconds
inay

ing ing

clock | |

CcPU Lerrerrerrerrerrerrerrerrrrrrd

2/16

Lustre: a synchronous dataflow language

Design of reactive systems:
@ run in an infinite loop, and

o produce an output every n milliseconds

ing outg iny outy ina outs

clock | | |

CcPU Lerrerrerrerrerrerrerrerrrrrrd

2/16

Exercises

Model a switch with two buttons, Set and Reset.

node Switch(Set, Reset, Init : bool) returns (
State : bool);

such that:
o pressing Set turns the switch on;
o pressing Reset turns the switch off;

o the initial position of the switch is determined by a third signal Init
if Set and Reset are initially both unpressed.

3/16

Exercises

Model a switch with two buttons, Set and Reset.
node Switch(Set, Reset, Init : bool) returns (
State : bool);
such that:
o pressing Set turns the switch on;
o pressing Reset turns the switch off;

o the initial position of the switch is determined by a third signal Init
if Set and Reset are initially both unpressed.

node Switch(Set, Reset, Init : bool)
returns (X : bool);
let
X = if Set then true
else if Reset then false
else (Init -> pre X);
tel

3/16

Exercises

Model a switch with two buttons, Set and Reset.

node Switch(Set, Reset, Init : bool) returns (
State : bool);

such that:
o pressing Set turns the switch on;
o pressing Reset turns the switch off;

o the initial position of the switch is determined by a third signal Init
if Set and Reset are initially both unpressed.

Equivalently:

node Switch(Set, Reset, Init : bool)
returns (X : bool);

let

X = Set or (not Reset and (Init -> pre X)) ;
tel

4/16

Exercises

node 77?7 (r,b:

let

tel

out

else

else

bool) returns

if r then O
if b then (O
(0

(out:

-> pre
-> pre

int);

out) + 1

out) ;

5/16

Exercises

node 77?7 (r,b: bool) returns

if r then O

else if b then (O

let
out =
else
tel
ro bo
0 1

'

(0

(out: int);

-> pre out) + 1
-> pre out);

r1 b1 r2 b2
1 1

'

0 1

5/16

Exercises

node ??? (r,b: bool) returns (out: int);

let
out = if r then O
else if b then (0 -> pre out) + 1
else (0 -> pre out);
tel
To bo r1 by 2 b2
0 1 0 1 1 1

v v v
1 2 0

5/16

Exercises

Counter with reset:

node ??? (r,b: bool) returns (out: int);

let
out = if r then O
else if b then (0 -> pre out) + 1
else (0 -> pre out);
tel
To bo r1 by 2 b2
0 1 0 1 1 1
1 2 0

5/16

Exercises

Counter with reset:

node cnt (r,b: bool) returns (out: int);
var pre_out: int;
let pre_out = 0 -> pre out;
out = if r then O
else if b then pre_out + 1

else pre_out;
tel
ro by r1 by r2 b2
0 1 0 1 1 1
v v vd
1 2 0

6/16

Exercises

Counter with reset:

node cnt (r,b: bool) returns (out: int);
var pre_out: int;
let pre_out = 0 -> pre out;
out = if r then O
else if b then pre_out + 1

else pre_out;
tel
To bo r1 by r2 b2
0 1 0 1 1 1

6/16

Modularity

Once defined, a node can be used as a basic operator

7/16

Modularity

Once defined, a node can be used as a basic operator

What does A look like?

X = true -> (pre A = 3)
A = cnt(X, true);

7/16

Modularity

Once defined, a node can be used as a basic operator

What does A look like?

X = true -> (pre A = 3)
A = cnt(X, true);

A=0,

7/16

Modularity

Once defined, a node can be used as a basic operator

What does A look like?

X = true -> (pre A = 3)
A = cnt(X, true);

A=0, 1,

7/16

Modularity

Once defined, a node can be used as a basic operator

What does A look like?

X = true -> (pre A = 3)
A = cnt(X, true);

A=0, 1, 2,

7/16

Modularity

Once defined, a node can be used as a basic operator

What does A look like?

X = true -> (pre A = 3)
A = cnt(X, true);

A=0,1, 2, 3

7/16

Modularity

Once defined, a node can be used as a basic operator

What does A look like?

X = true -> (pre A = 3)
A = cnt(X, true);

A=0,1,2, 3,0,

7/16

Modularity

Once defined, a node can be used as a basic operator

What does A look like?

X = true -> (pre A = 3)
A = cnt(X, true);

A=0,1,23,01,2, 3,0 1...

7/16

Modularity

A node can have several outputs:

node MinMax(X : real) returns (Min, Max : real);
let
Min = X -> if (X < pre Min) then X else pre Min
Max = X -> if (X > pre Max) then X else pre Max
tel

B

B

node minMaxAverage (X: real) returns (Y: real) ;
var Min, Max: real ;
let
Min, Max = MinMax(X) ;
Y = (Min + Max)/2.0 ;
tel

8/16

Complete example: specification

Stopwatch:
@ one integer output: time “to display”;

@ three input buttons:
on_off starts and stops the stopwatch,
reset resets the stopwatch if not running,

freeze freezes the displayed time if running, cancelled if stopped

9/16

Complete example: available nodes

-- Bistable switch
node switch (on, off: bool) returns (state: bool);
let
state =
if (false -> pre state) then not off else on;
tel

-- Counts steps if inc is true, can be reset
node counter (reset,inc: bool) returns (out: int);

let
out = if reset then O
else if inc then (0 -> pre_out) + 1
else (0 -> pre_out);
tel

-- Detects raising edges of a signal
node edge (in: bool) returns (out: bool);
let
out = false -> in and (not pre in);
tel

10/16

Complete example: solution(s)

Unsatisfactory solution not using edge:

node stopwatch (on_off, reset, freeze: bool)
returns (time: int);
var actual_time: int;

running, frozen: bool;

let

running = switch(on_off, on_off);

frozen = switch(

freeze and running, freeze or on_off

)

actual_time = counter(reset and not running,

time = if frozen then (0 -> pre time) else actual_time;
tel

11/16

Complete example: solution(s)

Satisfactory solution:

node stopwatch (on_off, reset, freeze: bool)
returns (time: int);
var actual_time: int;
running, frozen,
on_off_pressed, r_pressed, f_pressed: bool;
let
on_off_pressed = edge(on_off);
r_pressed = edge(reset);
f_pressed = edge(freeze);
running = switch(on_off_pressed, on_off_pressed);
frozen = switch(

f_pressed and running, f_pressed or on_off_pressed

)

actual_time = counter(r_pressed and not running, running);

time = if frozen then (0 -> pre time) else actual_time;
tel

12/16

Credits

Part of these notes are based on the following lectures notes:

The Lustre Language — Synchronous Programming
by Pascal Raymond and Nicolas Halbwachs
Verimag-CNRS

13/16

