
CS:5810 Formal Methods in Software
Engineering

Reactive Systems and the Lustre Language
Part 2

Adrien Champion
adrien-champion@uiowa.edu

1 / 16

mailto:adrien-champion@uiowa.edu

Lustre: a synchronous dataflow language

Design of reactive systems:

run in an infinite loop, and

produce an output every n milliseconds

CPU

clock

0

in0
-

-

-

-

-

-

out0

1

in1
-

-

-

-

-

-

out1

2

in2
-

-

-

-

-

-

out2

2 / 16

Lustre: a synchronous dataflow language

Design of reactive systems:

run in an infinite loop, and

produce an output every n milliseconds

CPU

clock
0

in0

-

-

-

-

-

-

out0

1

in1

-

-

-

-

-

-

out1

2

in2

-

-

-

-

-

-

out2

2 / 16

Lustre: a synchronous dataflow language

Design of reactive systems:

run in an infinite loop, and

produce an output every n milliseconds

CPU

clock
0

in0
-

-

-

-

-

-

out0

1

in1
-

-

-

-

-

-

out1

2

in2
-

-

-

-

-

-

out2

2 / 16

Exercises

Design a node

node switch (on ,off: bool) returns (state: bool);

such that:
state raises (false to true) if on;
state falls (true to false) if off;
everything behaves as if state was false at the origin;
switch must work properly even if on and off are the same

node switch (on , off: bool) returns (state: bool);
let

state =
false -> if not (pre state) then on

else not off;
-- Equivalently:
-- false -> ((not pre state) and on)
-- or ((pre state) and not off)

tel

3 / 16

Exercises

Design a node

node switch (on ,off: bool) returns (state: bool);

such that:
state raises (false to true) if on;
state falls (true to false) if off;
everything behaves as if state was false at the origin;
switch must work properly even if on and off are the same

node switch (on , off: bool) returns (state: bool);
let

state =
false -> if not (pre state) then on

else not off;
-- Equivalently:
-- false -> ((not pre state) and on)
-- or ((pre state) and not off)

tel

3 / 16

Exercises

Compute the sequence 1, 1, 2, 3, 5, 8 . . .

Fibonacci sequence:
u0 = 1
u1 = 1
un = un−1 + un−2 for n ≥ 2

4 / 16

Exercises

Compute the sequence 1, 1, 2, 3, 5, 8, 13, 21 . . .

Fibonacci sequence:
u0 = 1
u1 = 1
un = un−1 + un−2 for n ≥ 2

4 / 16

Exercises

Fibonacci sequence:

node fib (a: bool) returns (uN: int);
let

uN =
1 -> pre (

1 -> uN + pre uN
);

tel

5 / 16

Exercises

Counter with reset:

node ??? (r,b: bool) returns (out: int);
let

out = if r then 0
else if b then (0 -> pre out) + 1
else (0 -> pre out);

tel

cnt at 0

r0

0

b0

1

1

cnt at 1

r1

0

b1

1

2

cnt at 2

r2

1

b2

1

0

6 / 16

Exercises

Counter with reset:

node ??? (r,b: bool) returns (out: int);
let

out = if r then 0
else if b then (0 -> pre out) + 1
else (0 -> pre out);

tel

cnt at 0

r0

0

b0

1

1

cnt at 1

r1

0

b1

1

2

cnt at 2

r2

1

b2

1

0

6 / 16

Exercises

Counter with reset:

node ??? (r,b: bool) returns (out: int);
let

out = if r then 0
else if b then (0 -> pre out) + 1
else (0 -> pre out);

tel

cnt at 0

r0

0

b0

1

1

cnt at 1

r1

0

b1

1

2

cnt at 2

r2

1

b2

1

0

6 / 16

Exercises

Counter with reset:

node ??? (r,b: bool) returns (out: int);
let

out = if r then 0
else if b then (0 -> pre out) + 1
else (0 -> pre out);

tel

cnt at 0

r0

0

b0

1

1

cnt at 1

r1

0

b1

1

2

cnt at 2

r2

1

b2

1

0

6 / 16

Exercises

Counter with reset:

node cnt (r,b: bool) returns (out: int);
var pre_out: int;
let pre_out = 0 -> pre out;

out = if r then 0
else if b then pre_out + 1
else pre_out;

tel

cnt at 0

r0

0

b0

1

1

cnt at 1

r1

0

b1

1

2

cnt at 2

r2

1

b2

1

0

pre_out−1

= nil

pre_out0

= 0

pre_out1

= 1

pre_out2

= 2

7 / 16

Exercises

Counter with reset:

node cnt (r,b: bool) returns (out: int);
var pre_out: int;
let pre_out = 0 -> pre out;

out = if r then 0
else if b then pre_out + 1
else pre_out;

tel

cnt at 0

r0

0

b0

1

1

cnt at 1

r1

0

b1

1

2

cnt at 2

r2

1

b2

1

0

pre_out−1

= nil

pre_out0

= 0

pre_out1

= 1

pre_out2

= 2

7 / 16

Modularity

Once defined, a node can be used as a basic operator

Instantiation is function-like

What is the output of

A = cnt(true -> (pre A = 3), true);
-- |--------r--------| |-i-|

0,

1,

2,

3,

0,

1 , 2, 3, 0, 1 . . .

Several outputs:

node minMaxAverage (in: int) returns (out: int);
var min , max: int;
let

out = average(min ,max);
min , max = minMax(in);

tel

8 / 16

Modularity

Once defined, a node can be used as a basic operator

Instantiation is function-like
What is the output of

A = cnt(true -> (pre A = 3), true);
-- |--------r--------| |-i-|

0,

1,

2,

3,

0,

1 , 2, 3, 0, 1 . . .

Several outputs:

node minMaxAverage (in: int) returns (out: int);
var min , max: int;
let

out = average(min ,max);
min , max = minMax(in);

tel

8 / 16

Modularity

Once defined, a node can be used as a basic operator

Instantiation is function-like
What is the output of

A = cnt(true -> (pre A = 3), true);
-- |--------r--------| |-i-|

0,

1,

2,

3,

0,

1 , 2, 3, 0, 1 . . .

Several outputs:

node minMaxAverage (in: int) returns (out: int);
var min , max: int;
let

out = average(min ,max);
min , max = minMax(in);

tel

8 / 16

Modularity

Once defined, a node can be used as a basic operator

Instantiation is function-like
What is the output of

A = cnt(true -> (pre A = 3), true);
-- |--------r--------| |-i-|

0, 1,

2,

3,

0,

1 , 2, 3, 0, 1 . . .

Several outputs:

node minMaxAverage (in: int) returns (out: int);
var min , max: int;
let

out = average(min ,max);
min , max = minMax(in);

tel

8 / 16

Modularity

Once defined, a node can be used as a basic operator

Instantiation is function-like
What is the output of

A = cnt(true -> (pre A = 3), true);
-- |--------r--------| |-i-|

0, 1, 2,

3,

0,

1 , 2, 3, 0, 1 . . .

Several outputs:

node minMaxAverage (in: int) returns (out: int);
var min , max: int;
let

out = average(min ,max);
min , max = minMax(in);

tel

8 / 16

Modularity

Once defined, a node can be used as a basic operator

Instantiation is function-like
What is the output of

A = cnt(true -> (pre A = 3), true);
-- |--------r--------| |-i-|

0, 1, 2, 3,

0,

1 , 2, 3, 0, 1 . . .

Several outputs:

node minMaxAverage (in: int) returns (out: int);
var min , max: int;
let

out = average(min ,max);
min , max = minMax(in);

tel

8 / 16

Modularity

Once defined, a node can be used as a basic operator

Instantiation is function-like
What is the output of

A = cnt(true -> (pre A = 3), true);
-- |--------r--------| |-i-|

0, 1, 2, 3, 0,

1 , 2, 3, 0, 1 . . .

Several outputs:

node minMaxAverage (in: int) returns (out: int);
var min , max: int;
let

out = average(min ,max);
min , max = minMax(in);

tel

8 / 16

Modularity

Once defined, a node can be used as a basic operator

Instantiation is function-like
What is the output of

A = cnt(true -> (pre A = 3), true);
-- |--------r--------| |-i-|

0, 1, 2, 3, 0, 1 , 2, 3, 0, 1 . . .

Several outputs:

node minMaxAverage (in: int) returns (out: int);
var min , max: int;
let

out = average(min ,max);
min , max = minMax(in);

tel

8 / 16

Modularity

Once defined, a node can be used as a basic operator

Instantiation is function-like
What is the output of

A = cnt(true -> (pre A = 3), true);
-- |--------r--------| |-i-|

0, 1, 2, 3, 0, 1 , 2, 3, 0, 1 . . .

Several outputs:

node minMaxAverage (in: int) returns (out: int);
var min , max: int;
let

out = average(min ,max);
min , max = minMax(in);

tel

8 / 16

Complete example: specification

Stopwatch:

one integer output: time “to display”;

three input buttons:
on_off starts and stops the stopwatch,
reset resets the stopwatch if not running,
freeze freezes the displayed time if running, cancelled if stopped

9 / 16

Complete example: available nodes

-- Bistable switch
node switch (on, off: bool) returns (state: bool);
let

state =
if (false -> pre state) then not off else on;

tel

-- Counts steps if inc is true , can be reset
node counter (reset ,inc: bool) returns (out: int);
let

out = if reset then 0
else if inc then (0 -> pre_out) + 1
else (0 -> pre_out);

tel

-- Detects raising edges of a signal
node edge (in: bool) returns (out: bool);
let

out = false -> in and (not pre in);
tel

10 / 16

Complete example: solution(s)

Unsatisfactory solution not using edge:
node stopwatch (on_off , reset , freeze: bool)
returns (time: int);
var actual_time: int;

running , frozen: bool;

let

running = switch(on_off , on_off);
frozen = switch(

freeze and running , freeze or on_off
);
actual_time = counter(reset and not running , running);
time = if frozen then (0 -> pre time) else actual_time;

tel

11 / 16

Complete example: solution(s)

Satisfactory solution:
node stopwatch (on_off , reset , freeze: bool)
returns (time: int);
var actual_time: int;

running , frozen ,
on_off_pressed , r_pressed , f_pressed: bool;

let
on_off_pressed = edge(on_off);
r_pressed = edge(reset);
f_pressed = edge(freeze);
running = switch(on_off_pressed , on_off_pressed);
frozen = switch(

f_pressed and running , f_pressed or on_off_pressed
);
actual_time = counter(r_pressed and not running , running);
time = if frozen then (0 -> pre time) else actual_time;

tel

12 / 16

Specification of Lustre systems

Past Time Linear Temporal Logic (ptLTL):

Safety properties:
“P holds in all steps”

e.g., “the output of this node is positive”

Liveness property:
“if P becomes true, then eventually P ′ will become true”

e.g., “if the brake pedal is pressed, then eventually the car should brake”

In practice, liveness properties are often bounded:
“if P becomes true, then P ′ will become true in at most n steps”
Bounded liveness properties can be represented as safety properties

13 / 16

Specification of Lustre systems

Past Time Linear Temporal Logic (ptLTL):

Safety properties:
“P holds in all steps”

e.g., “the output of this node is positive”

Liveness property:
“if P becomes true, then eventually P ′ will become true”

e.g., “if the brake pedal is pressed, then eventually the car should brake”

In practice, liveness properties are often bounded:
“if P becomes true, then P ′ will become true in at most n steps”
Bounded liveness properties can be represented as safety properties

13 / 16

Specification of Lustre systems: examples

node count (start: bool) returns (time: int);
var started: bool;
let

started = start or (false -> pre started);
time = if started then (0 -> pre time) + 1

else (0 -> pre time);
tel

node nodeName (in: ...) returns (out: ...);
var p1,p2,ok: bool; n: int;
let

-- ...
p1 = -- trigger
p2 = -- consequence
n = -- a constant
ok = (count(p1) >= n) => p2;

tel

14 / 16

Specification of Lustre systems: examples

node count (start: bool) returns (time: int);
var started: bool;
let

started = start or (false -> pre started);
time = if started then (0 -> pre time) + 1

else (0 -> pre time);
tel

node nodeName (in: ...) returns (out: ...);
var p1,p2,ok: bool; n: int;
let

-- ...
p1 = -- trigger
p2 = -- consequence
n = -- a constant
ok = (count(p1) >= n) => p2;

tel

14 / 16

Specification of Lustre systems: examples

Useful nodes for specification:

node first (x: int) returns (f: int);
let

f = x -> pre f;
tel

node soFar (p: bool) returns (out: bool);
let

out = p -> p and (pre out);
tel

node since (p1 , p2: bool) returns (out: bool);
let

out = p1 or (p2 and (false -> pre out));
tel

15 / 16

Credits

These notes are based on the following lectures notes:

The Lustre Language — Synchronous Programming
by Pascal Raymond and Nicolas Halbwachs
Verimag-CNRS

16 / 16

