CS:5810
Formal Methods in Software
Engineering

Dynamic Models in Alloy

Copyright 2001-14, Matt Dwyer, John Hatcliff, Rod Howell, Laurence Pilard, and Cesare Tinelll.

Produced by Cesare Tinelli and Laurence Pilard at the University of lowa from notes originally developed by Matt Dwyer,
John Hatcliff and Rod Howell at Kansas State University. These notes are copyrighted materials and may not be used in
other course settings outside of the University of lowa in their current form or modified form without the express written
permission of one of the copyright holders. During this course, students are prohibited from selling notes to or being paid
for taking notes by any person or commercial firm without the express written permission of one of the copyright holder.

Overview

e Basics of dynamic models
— Modeling a system’s states and state transitions

— Modeling operations causing transitions

* Simple example of operations

Static Models

* So far we've used Alloy to define the allowable
values of state components

— values of sets
— values of relations

* A model instance is a set of state component
values that

— Satisfies the constraints defined by multiplicities,
fact, “realism” conditions, ...

Static Models

Person = {Matt, Sue}
Man = {Matt}

woman = {Sue}

Person = {Matt, Sue}

Man = {Matt}
woman = {Sue}
Married = {}
spouse = {}
children = {}
siblings = {}

Married = {Matt, Sue}

spouse = {(Matt,Sue), (Sue,Matt)}
children = {}

siblings = {}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

woman = {Sue}

Married = {Matt, Sue}

spouse = {(Matt,Sue), (Sue,Matt)}
children = {(mMatt,Sean), (Sue,Sean)}
siblings = {}

Dynamic Models

» Static models allow us to describe the legal
states of a dynamic system

* We also want to be able to describe the legal
transitions between states
E.g.

— To get married one must be alive and not currently
married

— One must be alive to be able to die
— A person becomes someone’s child after birth

Example

Family Model

abstract sig Person {
children: set Person,

siblings: set Person

¥

sig Man, woman extends Person {}

sig Married in Person {
spouse: one Married

¥

Transitions

* Two people get married

— At time t, spouse = {}

— At time t/, spouse = {(Matt, Sue), (Sue,Matt)}

= We add the notion of time in the relation spouse

Person = {Matt,Sue}
Man = {Matt}

woman = {Sue}
Married = {}

spouse = {}
children = {}

siblings = {3 Timet

Person = {Matt, Sue}

Man = {Matt}

woman = {Sue}

Married = {Matt, Sue}

spouse = {(Matt, Sue), (Sue, Matt)}
children = {}

siblings = {} Time t’

Modeling State Transitions

* Alloy does not have an embedded notions of
state transition

* However, there are several ways to model
dynamic aspects of a system

* A general and relative simple one is to:

— introduce a T1me signature expressing time and

— add a time component to each relation that
changes over time

Summarizing

Family Model

abstract sig Person {
children: set Person,
siblings: set Person

}

sig Man, woman extends Person {}

s1g Married 1n Person {
spouse: one Married

}

Example

Family Model

sig Time {}

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time

}

sig Man, woman extends Person {}

s1g Married 1n Person {
spouse: Married one -> Time

}

10

Transitions

* Two people get married

— At time t, Married = {}
— At time t’, Married = {Matt, Sue}

— Actually, we can’t have a time-dependent signature such as
Married because signatures are not time dependent.

Person = {Matt,Sue} Person = {Matt, Sue}

Man = {Matt} Man = {Matt}

woman = {Sue} woman = {Sue}

Married = {} "I Married = {Matt, Sue}

spouse = {} spouse = {(Matt, Sue), (Sue, Matt)}
children = {} children = {}

siblings = {3 Time't siblings = {} Time t’

11

Transitions

A personis born

— At time t, Person = {}
— At time t/, Person = {Sue}

— We cannot add the notion being born to the signature
Person because signatures are not time dependent.

Person =
Man = {}
woman =

spouse =

children

siblings

{}

{}

{}
= {}
= {}

Time t

Person = {Sue}

Man = {}

woman = {Sue}

spouse = {}

children = {}

siblings = {3 [imet’

12

Sighatures are static

Family Model

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time,
spouse: Person lone -> Time

¥

sig Man, woman extends Person {}

—sig Married in Person {
1ed

= Time

13

Sighatures are static

Family Model

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time,
spouse: Person lone -> Time

¥

s1g Man, Woman extends Person {}

wWe want to add this relation, but where?

alive: Person set -> Time

14

Sighatures are static

Family Model

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time,
spouse: Person lone -> Time
alive: set Time

}

sig Man, woman extends Person {}

15

Revising constraints

Family Model

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time,
spouse: Person lone -> Time,
alive: set Time
parents: Person set -> Time

}

sig Man, wWoman extends Person {}

—Fo—parerstt——PRersor—>Rersof—i—childran}
fact parentsbef
all t: Time | parents.t = ~(children.t)

}

16

Revising constraints

-- Time-dependent parents relation

fact parentsbef {
all t: Time | parents.t = ~(children.t)

}

-- Two persons are blood relatives 1ff
-- they have a common ancestor
pred BloodRelatives [p, q: Person, t: Time]

{
some p.*(parents.t) & g.*(parents.t)

¥

17

Revising static constraints

fact static {
-- People cannot be their own ancestors

all t: Time | no p: Person |
p in p.A(parents.t)

-- No one can have more than one father
-- or mother

all t: Time | all p: Person |
Tone (p.parents.t & Man)

and
lTone (p.parents.t & woman)

18

Revising static constraints

-- A person p's siblings are those people, other
-- than p, with the same parents as p

all t: Time | all p: Person |
some p.parents.t implies
p.siblings.t =
({q: Person | p.parents.t = q.parents.t} -

p)
else no p.siblings.t

-- Each married man (woman) has a wife (Chusband)
all t: Time | all p: Person |
let s = p.spouse.t |
(p 1in Man implies s 1n woman) and
(p 1n wWwoman implies s in Man)

19

Revising static constraints

all t: Time | no p: Person |
some p.spouse.t and
p.spouse.t 1n p.siblings.t

all t: Time | no p: Person |
let s = p.spouse.t |
some s and
BloodrRelatives [p, s, t]

20

Revising static constraints

all t: Time | all p, g: Person |
(some (p.children.t & gq.children.t) and
p I=q)
implies
not BloodrRelatives [p, q, t]

all t: Time |
spouse.t = ~(spouse.t)
}

21

Exercises

Load family-6.als
Execute it

Analyze the model

Look at the generated instance
Does it look correct?

What, if anything, would you change about
it?

Transitions

* A personis born
— Add to alive relation

— NB: No requirement that a person have parents

Person = {Matt, Sue, Sean} Person = {Matt, Sue, Sean}
Man = {Matt, Sean} Man = {Matt, Sean}

woman = {Sue} woman = {Sue}

spouse = {} spouse = {}

children = {} children = {}

siblings = {} siblings = {}

alive = {} Time t alive = {sue} [Imet’

Transitions

* A person is born to
parents

— Add to alive relation

— Modify children/
parents relations

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

woman = {Sue}

spouse = {(Matt,Sue), (Sue,Matt)}
children = {}

siblings = {}

alive = {Matt, Sue}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

woman = {Sue}

spouse = {(Matt,Sue), (Sue,Matt)}
children = {(Matt,Sean), (Sue,Sean)}
siblings = {}

alive = {Matt, Sue, Sean}

State Sequences

Person = {Matt, Sue, Sean}
Man = {Matt, Sean}

woman = {Sue}
spouse = {}

children = {}
siblings = {}
alive = {Sue}

Man = {Matt, Sean}
woman = {Sue}

children = {}
siblings = {}
alive = {Sue, Mmatt}

Person = {Matt, Sue, Sean}

spouse = {(Matt,sSue), (Sue,Matt)}

Person = {Matt, Sue, Sean}
Man = {Matt, Sean}

woman = {Sue}
spouse = {}
children = {}
siblings = {}
alive = {}

Man = {Matt, Sean}
woman = {Sue}

children = {(Matt,Sean),
siblings = {}
alive = {Sue, Matt, Sean}

Person = {Matt, Sue, Sean}

spouse = {(Matt,Sue), (Sue,Matt)}

(Sue,Sean)}

Express a transition in Alloy

e A transition can be modeled as a predicate between
two states:

— the state right before the transition and
— the state right after it

 We define it as predicate with (at least) two formal
parameters: t, t’: Time

« Constraints over time t (resp., t ') model the state
right before (resp., after) the transition

Express a transition in Alloy

* Pre condition constraints
— Describe the states to which the transition applies

e Post condition constraints

— Describes the effects of the transition in generating
the next state

* Frame condition constraints

— Describes what does not change between pre-state
and post-state of a transition

Distinguishing the pre, post and frame conditions in
comments provides useful documentation

27

Example: Marriage

pred marriage [m: Man, w: woman, t,t'

m+w in alive.t
-- neither one is married
no (m+w).spouse.t

-- they are not be blood relatives
not BloodRelatives[m, w, t]

m.spouse.t' = w

: Time] {

28

Frame condition

How is each relation touched by marriage?
* 5relations:
— children, parents, siblings
— spouse
— alive
- parents and siblings relations are defined in
terms of the children relation

* Thus, the frame condition has only to consider
children, spouse and alive relations

29

Frame condition predicates

pred noChildrenChangeExcept [ps: set Person
t,t': Time] {
all p: Person - ps |
p.children.t' = p.children.t
¥

pred noSpouseChangeExcept [ps: set Person
t,t': Time] {
all p: Person - ps |

p.spouse.t' = p.spouse.t
}
pred noAliveChange [t,t': Time] {
alive.t’ = alive.t

}

30

Example: Marriage

pred marriage [m: Man, w: Woman, t,t': Time]

{

m+w in alive.t
no (m+w).spouse.t
not BloodRelatives[m, w, t]

m.spouse.t' = w
noChildrenChangeExcept[none, t, t’]
noSpouseChangeeExcept[m+w, t, t’]

noAliveChangel[t, t’]

31

Instance of marriage

open ordering [Time] as T

pred marriageInstance {
some t: Time |
some m: Man | some w: woman |
let t' = T/next[t] |
marriage[m, w, t, t’]
}

run { marriageInstance }

32

Example: Birth

pred birth[t, t': Time] {

one p: Person |
p !in alive.t and
alive.t’ = alive.t + p

noChildrenChangeExcept[none, t, t']
noSpouseChangeExcept[none, t, t']

33

Example: Birth from parents

pred birthFromParents [m, w: Person, t,t': Time] {
-- precondition

m+w in alive.t
m.spouse.t = w
-- precondition and post-condition
one p: Person | {
-- precondition
p !'in alive.t
-- postcondition

alive.t’ = alive.t + p
m.children.t’ = m.children.t + p
w.children.t’ = w.children.t + p

}

-- frame condition
noChildrenChangeExcept[m+w, t, t’]
noSpouseChangeExcept[none, t, t’]

Instance of birth

pred birthInstance {
some t: Time |
let t' = T/next[t] |
birth[t, t']
¥

pred birthFromParentsInstance {
some t: Time |
some m, w: Person |
Tlet t' = T/next[t] |
birthFromParents[m, w, t, t’]

35

Specifying a transition system
* A transition system can be defined as a set of

traces:
— sequences of time steps generated by the operators

* |n our example, for every trace:

— The first time step satisfies some initialization
condition

— Each pair of consecutive steps are related by
* a birth operation, or
* a marriage operation, or
* a birthFromParents operation

Initial State Specification

pred init [t: Time] {
ho children.t
no spouse.t
ho alive.t

}

37

Trace Specification

pred Trace {
init[T/first]
all t: Time - T/last | let t’° = T/next[t] |
birth[t, t’] or
(one m: Man | one w: woman |
marriage[m, w, t, t’]) or
(one m: Man | one w: woman |
birthFromParents[m, w, t, t’])
¥

run {Trace and some Man and some woman}

38

Realism Constraints

run {
marriageInstance
birthInstance
birthFromParentsInstance
} for 5

39

Constraint about al1ve relation

fact staticAlive {
all t: Time | all p: Person |
let mainRels = (children + spouse).t |
p 'in alive.t 1mplies (
no p.mainRels
and
no mainRels.p

)

40

Exercises

Load family-7.als

Execute it

Look at the generated instance

Does it look correct?

What if anything would you change about it?

