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Overview

e Basics of dynamic models
— Modeling a system’s states and state transitions

— Modeling operations causing transitions

* Simple example of operations



Static Models

* So far we've used Alloy to define the allowable
values of state components

— values of sets
— values of relations

* A model instance is a set of state component
values that

— Satisfies the constraints defined by multiplicities,
fact, “realism” conditions, ...



Static Models

Person = {Matt, Sue}
Man = {Matt}

woman = {Sue}

Person = {Matt, Sue}

Man = {Matt}
woman = {Sue}
Married = {}
spouse = {}
children = {}
siblings = {}

Married = {Matt, Sue}

spouse = {(Matt,Sue), (Sue,Matt)}
children = {}

siblings = {}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

woman = {Sue}

Married = {Matt, Sue}

spouse = {(Matt,Sue), (Sue,Matt)}
children = {(mMatt,Sean), (Sue,Sean)}
siblings = {}




Dynamic Models

» Static models allow us to describe the legal
states of a dynamic system

* We also want to be able to describe the legal
transitions between states
E.g.

— To get married one must be alive and not currently
married

— One must be alive to be able to die
— A person becomes someone’s child after birth



Example

Family Model

abstract sig Person {
children: set Person,

siblings: set Person

¥

sig Man, woman extends Person {}

sig Married in Person {
spouse: one Married

¥



Transitions

* Two people get married

— At time t, spouse = {}

— At time t/, spouse = {(Matt, Sue), (Sue,Matt)}

= We add the notion of time in the relation spouse

Person = {Matt,Sue}
Man = {Matt}

woman = {Sue}
Married = {}

spouse = {}
children = {}

siblings = {3 Timet

Person = {Matt, Sue}

Man = {Matt}

woman = {Sue}

Married = {Matt, Sue}

spouse = {(Matt, Sue), (Sue, Matt)}
children = {}

siblings = {} Time t’




Modeling State Transitions

* Alloy does not have an embedded notions of
state transition

* However, there are several ways to model
dynamic aspects of a system

* A general and relative simple one is to:

— introduce a T1me signature expressing time and

— add a time component to each relation that
changes over time



Summarizing

Family Model

abstract sig Person {
children: set Person,
siblings: set Person

}

sig Man, woman extends Person {}

s1g Married 1n Person {
spouse: one Married

}



Example

Family Model

sig Time {}

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time

}

sig Man, woman extends Person {}

s1g Married 1n Person {
spouse: Married one -> Time

}
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Transitions

* Two people get married

— At time t, Married = {}
— At time t’, Married = {Matt, Sue}

— Actually, we can’t have a time-dependent signature such as
Married because signatures are not time dependent.

Person = {Matt,Sue} Person = {Matt, Sue}

Man = {Matt} Man = {Matt}

woman = {Sue} woman = {Sue}

Married = {} "I Married = {Matt, Sue}

spouse = {} spouse = {(Matt, Sue), (Sue, Matt)}
children = {} children = {}

siblings = {3 Time't siblings = {} Time t’
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Transitions

A personis born

— At time t, Person = {}
— At time t/, Person = {Sue}

— We cannot add the notion being born to the signature
Person because signatures are not time dependent.

Person =
Man = {}
woman =

spouse =

children

siblings

{}

{}

{}
= {}
= {}

Time t

Person = {Sue}

Man = {}

woman = {Sue}

spouse = {}

children = {}

siblings = {3 [imet’

12



Sighatures are static

Family Model

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time,
spouse: Person lone -> Time

¥

sig Man, woman extends Person {}

—sig Married in Person {
1ed

= Time
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Sighatures are static

Family Model

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time,
spouse: Person lone -> Time

¥

s1g Man, Woman extends Person {}

wWe want to add this relation, but where?

alive: Person set -> Time

14




Sighatures are static

Family Model

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time,
spouse: Person lone -> Time
alive: set Time

}

sig Man, woman extends Person {}
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Revising constraints

Family Model

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time,
spouse: Person lone -> Time,
alive: set Time
parents: Person set -> Time

}

sig Man, wWoman extends Person {}

—Fo—parerstt——PRersor—>Rersof—i—childran}
fact parentsbef
all t: Time | parents.t = ~(children.t)

}
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Revising constraints

-- Time-dependent parents relation

fact parentsbef {
all t: Time | parents.t = ~(children.t)

}

-- Two persons are blood relatives 1ff
-- they have a common ancestor
pred BloodRelatives [p, q: Person, t: Time]

{
some p.*(parents.t) & g.*(parents.t)

¥
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Revising static constraints

fact static {
-- People cannot be their own ancestors

all t: Time | no p: Person |
p in p.A(parents.t)

-- No one can have more than one father
-- or mother

all t: Time | all p: Person |
Tone (p.parents.t & Man)

and
lTone (p.parents.t & woman)
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Revising static constraints

-- A person p's siblings are those people, other
-- than p, with the same parents as p

all t: Time | all p: Person |
some p.parents.t implies
p.siblings.t =
({q: Person | p.parents.t = q.parents.t} -

p )
else no p.siblings.t

-- Each married man (woman) has a wife (Chusband)
all t: Time | all p: Person |
let s = p.spouse.t |
(p 1in Man implies s 1n woman) and
(p 1n wWwoman implies s in Man)
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Revising static constraints

all t: Time | no p: Person |
some p.spouse.t and
p.spouse.t 1n p.siblings.t

all t: Time | no p: Person |
let s = p.spouse.t |
some s and
BloodrRelatives [p, s, t]
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Revising static constraints

all t: Time | all p, g: Person |
(some (p.children.t & gq.children.t) and
p I=q)
implies
not BloodrRelatives [p, q, t]

all t: Time |
spouse.t = ~(spouse.t)
}
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Exercises

Load family-6.als
Execute it

Analyze the model

Look at the generated instance
Does it look correct?

What, if anything, would you change about
it?



Transitions

* A personis born
— Add to alive relation

— NB: No requirement that a person have parents

Person = {Matt, Sue, Sean} Person = {Matt, Sue, Sean}
Man = {Matt, Sean} Man = {Matt, Sean}

woman = {Sue} woman = {Sue}

spouse = {} spouse = {}

children = {} children = {}

siblings = {} siblings = {}

alive = {} Time t alive = {sue} [Imet’




Transitions

* A person is born to
parents

— Add to alive relation

— Modify children/
parents relations

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

woman = {Sue}

spouse = {(Matt,Sue), (Sue,Matt)}
children = {}

siblings = {}

alive = {Matt, Sue}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

woman = {Sue}

spouse = {(Matt,Sue), (Sue,Matt)}
children = {(Matt,Sean), (Sue,Sean)}
siblings = {}

alive = {Matt, Sue, Sean}




State Sequences

Person = {Matt, Sue, Sean}
Man = {Matt, Sean}

woman = {Sue}
spouse = {}

children = {}
siblings = {}
alive = {Sue}

Man = {Matt, Sean}
woman = {Sue}

children = {}
siblings = {}
alive = {Sue, Mmatt}

Person = {Matt, Sue, Sean}

spouse = {(Matt,sSue), (Sue,Matt)}

Person = {Matt, Sue, Sean}
Man = {Matt, Sean}

woman = {Sue}
spouse = {}
children = {}
siblings = {}
alive = {}

Man = {Matt, Sean}
woman = {Sue}

children = {(Matt,Sean),
siblings = {}
alive = {Sue, Matt, Sean}

Person = {Matt, Sue, Sean}

spouse = {(Matt,Sue), (Sue,Matt)}

(Sue,Sean)}




Express a transition in Alloy

e A transition can be modeled as a predicate between
two states:

— the state right before the transition and
— the state right after it

 We define it as predicate with (at least) two formal
parameters: t, t’: Time

« Constraints over time t (resp., t ') model the state
right before (resp., after) the transition



Express a transition in Alloy

* Pre condition constraints
— Describe the states to which the transition applies

e Post condition constraints

— Describes the effects of the transition in generating
the next state

* Frame condition constraints

— Describes what does not change between pre-state
and post-state of a transition

Distinguishing the pre, post and frame conditions in
comments provides useful documentation
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Example: Marriage

pred marriage [m: Man, w: woman, t,t'

m+w in alive.t
-- neither one is married
no (m+w).spouse.t

-- they are not be blood relatives
not BloodRelatives[m, w, t]

m.spouse.t' = w

: Time] {
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Frame condition

How is each relation touched by marriage?
* 5relations:
— children, parents, siblings
— spouse
— alive
- parents and siblings relations are defined in
terms of the children relation

* Thus, the frame condition has only to consider
children, spouse and alive relations

29



Frame condition predicates

pred noChildrenChangeExcept [ps: set Person
t,t': Time] {
all p: Person - ps |
p.children.t' = p.children.t
¥

pred noSpouseChangeExcept [ps: set Person
t,t': Time] {
all p: Person - ps |

p.spouse.t' = p.spouse.t
}
pred noAliveChange [t,t': Time] {
alive.t’ = alive.t

}
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Example: Marriage

pred marriage [m: Man, w: Woman, t,t': Time]

{

m+w in alive.t
no (m+w).spouse.t
not BloodRelatives[m, w, t]

m.spouse.t' = w
noChildrenChangeExcept[none, t, t’]
noSpouseChangeeExcept[m+w, t, t’]

noAliveChangel[t, t’]
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Instance of marriage

open ordering [Time] as T

pred marriageInstance {
some t: Time |
some m: Man | some w: woman |
let t' = T/next[t] |
marriage[m, w, t, t’]
}

run { marriageInstance }
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Example: Birth

pred birth[t, t': Time] {

one p: Person |
p !in alive.t and
alive.t’ = alive.t + p

noChildrenChangeExcept[none, t, t']
noSpouseChangeExcept[none, t, t']
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Example: Birth from parents

pred birthFromParents [m, w: Person, t,t': Time] {
-- precondition

m+w in alive.t
m.spouse.t = w
-- precondition and post-condition
one p: Person | {
-- precondition
p !'in alive.t
-- postcondition

alive.t’ = alive.t + p
m.children.t’ = m.children.t + p
w.children.t’ = w.children.t + p

}

-- frame condition
noChildrenChangeExcept[m+w, t, t’]
noSpouseChangeExcept[none, t, t’]



Instance of birth

pred birthInstance {
some t: Time |
let t' = T/next[t] |
birth[t, t']
¥

pred birthFromParentsInstance {
some t: Time |
some m, w: Person |
Tlet t' = T/next[t] |
birthFromParents[m, w, t, t’]
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Specifying a transition system
* A transition system can be defined as a set of

traces:
— sequences of time steps generated by the operators

* |n our example, for every trace:

— The first time step satisfies some initialization
condition

— Each pair of consecutive steps are related by
* a birth operation, or
* a marriage operation, or
* a birthFromParents operation



Initial State Specification

pred init [t: Time] {
ho children.t
no spouse.t
ho alive.t

}
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Trace Specification

pred Trace {
init[T/first]
all t: Time - T/last | let t’° = T/next[t] |
birth[t, t’] or
(one m: Man | one w: woman |
marriage[m, w, t, t’]) or
(one m: Man | one w: woman |
birthFromParents[m, w, t, t’])
¥

run {Trace and some Man and some woman}
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Realism Constraints

run {
marriageInstance
birthInstance
birthFromParentsInstance
} for 5
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Constraint about al1ve relation

fact staticAlive {
all t: Time | all p: Person |
let mainRels = (children + spouse).t |
p 'in alive.t 1mplies (
no p.mainRels
and
no mainRels.p

)
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Exercises

Load family-7.als

Execute it

Look at the generated instance

Does it look correct?

What if anything would you change about it?



