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Recall that the term binding is an association between
an entity (such as a variable) and a property (such
as its value).

A binding is static if the association occurs before
run-time.

A binding is dynamic if the association occurs at run-
time.

Name bindings play a fundamental role.
The lifetime of a variable name refers to the time

interval during which memory is allocated.
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Syntactic Issues

Lexical rules for names.
Collection of reserved words or keywords.
Case sensitivity

C-like: yes
Early languages: no
PHP: partly yes, partly no
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Reserved Words

Cannot be used as Identifiers
Usually identify major constructs: if while switch
Predefined identifiers: e.g., library routines
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Variables

Basic bindings
• Name
• Address
• Type
• Value
• Lifetime
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L-value - use of a variable name to denote its address.
Ex:  x = …

R-value - use of a variable name to denote its value.
Ex:  … = … x …

Some languages support/require explicit
dereferencing.
Ex:  x := !y + 1
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// Pointer example:
int x,y;
int *p;
x = *p;
*p = y;
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Scope

The scope of a name is the collection of statements
which can access the name binding.

In static scoping, a name is bound to a collection of
statements according to its position in the source
program.

Most modern languages use static (or lexical) scoping.
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Two different scopes are either nested or disjoint.
In disjoint scopes, same name can be bound to

different entities without interference.
What constitutes a scope?
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Algol C Java Ada
Package n/a  n/a  yes yes
Class  n/a  n/a nested yes
Function nested yes yes nested
Block  nested  nested  nested  nested
For Loop no no  yes automatic
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The scope in which a name is defined or delared is
called its defining scope.

A reference to a name is nonlocal if it occurs in a
nested scope of the defining scope; otherwise, it is
local.
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1    void sort (float a[ ], int size) {

2 int i, j;

3 i = j = 0;

4 for (i = 0; i < size; i++)

5   for (j = i + 1; j < size; j++)

6         if (a[j] < a[i]) {

7             float t1,t2;

8             t1 = a[i];

9             a[i] = a[j];

10             a[j] = t2;

11         };

12   j = i + 1

13   };

14 i = 2*j }
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1    void sort (float a[ ], int size) {  // C language

2 int i, j;

3 i = j = 0;

4 for (i = 0; i < size; i++)  // i, size local

5   for (j = i + 1; j < size; j++)  // j local

6         if (a[j] < a[i]) {  // a, i, j local

7             float t1,t2;

8             t1 = a[i]; // t1 local; a, i nonlocal

9             a[i] = a[j];    // j nonlocal

10             a[j] = t2;     // t2 local

11         };

12   j = i + 1  // i, j local

13   };

14 i = 2*j } // i, j local
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1    void sort (float a[ ], int size) {  // C++ language

2 int i, j;

3 i = j = 0;

4 for (int i = 0; i < size; i++) { // i local, size nonlocal

5   for (int j = i + 1; j < size; j++)  // j local

6         if (a[j] < a[i]) {  // j local,  a, i nonlocal

7             float t1,t2;

8             t1 = a[i]; // t1 local; a, i nonlocal

9             a[i] = a[j];    // j nonlocal

10             a[j] = t2;     // t2 local

11         };

12   j = i + 1;      // i local, j nonlocal

13   };

14 i = 2*j } // i, j local
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for (int i = 0; i < 10; i++) {
    System.out.println(i);
    ...
}
... i ... // invalid reference to i
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Symbol Table

A symbol table is a data structure kept by a translator
that allows it to keep track of each declared name
and its binding.

Assume for now that each name is unique within its
local scope.

The data structure can be any implementation of a
dictionary, where the name is the key.
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1. Each time a scope is entered, push a new
dictionary onto the stack.

2. Each time a scope is exited, pop a dictionary off
the top of the stack.

3. For each name declared, generate an appropriate
binding and enter the name-binding pair into the
dictionary on the top of the stack.

4. Given a name reference, search the dictionary on
top of the stack:

a) If found, return the binding.
b) Otherwise, repeat the process on the next dictionary

down in the stack.
c) If the name is not found in any dictionary, report an

error.
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1    void sort (float a[ ], int size) {  // C++ language

2 int i, j;

3 i = j = 0;

4 for (int i = 0; i < size; i++) { // i local, size nonlocal

5   for (int j = i + 1; j < size; j++)  // j local

6         if (a[j] < a[i]) {  // j local,  a, i nonlocal

7             float t1,t2;

8             t1 = a[i]; // t1 local; a, i nonlocal

9             a[i] = a[j];    // j nonlocal

10             a[j] = t2;     // t2 local

11         };

12   j = i + 1;      // i local, j nonlocal

13   };

14 i = 2*j } // i, j local
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Example: previous C++ program
Bindings: 〈var name, line location in code〉

Dictionary Stack at line 7:

{〈t1,7〉, 〈t2,7〉}
{〈j,4〉}
{〈i,4〉}
{〈a,1〉, 〈size,1〉, 〈i,2〉, 〈j,2〉}
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Resolving References

For static scoping, the referencing environment for a
name is its defining scope and all nested
subscopes.

The referencing environment defines the set of
statements which can validly reference a name.
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1 int h, i;
2 void B(int w) {
3     int j, k;
4     i = 2*w;
5     w = w+1;
6     ...
7 }
8 void A (int x, int y) {
9     float i, j;
10   B(h);
11   i = 3;
12   ...
13 }

14 void main() {
15    int a, b;
16    h = 5; a = 3; b = 2;
17    A(a, b);
18    B(h);
19    ...
20 }
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1. Outer scope: <h, 1> <i, 1> <B, 2> <A, 8> 
<main, 14>

2. Function B: <w, 2> <j, 3> <k, 4>
3. Function A: <x, 8> <y, 8> <i, 9> <j, 9>
4. Function main: <a, 15> <b, 15>
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Symbol Table Stack for Function B:
 <w, 2> <j, 3> <k, 4>
<h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

Symbol Table Stack for Function A:
 <x, 8> <y, 8> <i, 9> <j, 9>
<h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

Symbol Table Stack for Function main:
 <a, 15> <b, 15>
<h, 1> <i, 1> <B, 2> <A, 8> <main, 14>
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Line Reference Declaration
4 i 1
10 h 1
11 i 9
16 h 1
18 h 1
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Dynamic Scoping

In dynamic scoping, a name is bound to its most
recent declaration based on the program’s call
history.

Used be early Lisp, APL, Snobol, Perl.
Symbol table for each scope built at compile time, but

managed at run time.
Scope pushed/popped on stack when entered/exited.
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1 int h, i;
2 void B(int w) {
3    int j, k;
4    i = 2*w;
5    w = w+1;
6    ...
7 }
8 void A (int x, int y) {
9    float i, j;
10  B(h);
11  i = 3;
12  ...
13 }

14 void main() {
15    int a, b;
16    h = 5; a = 3; b = 2;
17    A(a, b);
18    B(h);
19    ...
20 }
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Using Figure 4.2 as an example: call history
main (17) → A (10) → B

Function Dictionary
B <w, 2> <j, 3> <k, 3>
A <x, 8> <y, 8> <i, 9> <j, 9>
main <a, 15> <b, 15>

<h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

Reference to i (4) resolves to <i, 9> in A.
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1 int h, i;
2 void B(int w) {
3    int j, k;
4    i = 2*w;
5    w = w+1;
6        ...
7 }
8 void A (int x, int y) {
9     float i, j;
10   B(h);
11   i = 3;
12   ...
13 }

14 void main() {
15    int a, b;
16    h = 5; a = 3; b = 2;
17    A(a, b);
18    B(h);
19    ...
20 }
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Using Figure 4.2 as an example: call history
main (17)  → B

Function Dictionary
B <w, 2> <j, 3> <k, 3>
main <a, 15> <b, 15>

<h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

Reference to i (4) resolves to <i, 1> in global scope.
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Visibility

A name is visible if its referencing environment
includes the reference and the name is not reclared
in an inner scope.

A name redeclared in an inner scope effectively hides
the outer declaration.

Some languages provide a mechanism for referencing
a hidden name; e.g.: this.x in C++/Java.
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1 public class Student {
2    private String name;
3    public Student (String name, ...) {
4       this.name = name;
5       ...
6    }
7 }
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procedure Main is
    x : Integer;
    procedure p1 is
        x : Float;
        procedure p2 is
        begin
            ... x ...
        end p2;
    begin
        ... x ...
    end p1;

    procedure p3 is
    begin
        ... x ...
    end p3;
begin
    ... x ...
end Main; -- Ada
-- x in p2?
-- x in p1?  Main.x?
-- x in p3?  p1.x?
-- x in Main?
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Overloading

Overloading uses the number or type of parameters to
distinguish among identical function names or
operators.

Examples:
• +, -, *, /  can be float or int
• + can be float or int addition or string 

concatenation in Java
• System.out.print(x) in Java
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Modula: library functions
• Read( ) for characters
• ReadReal( ) for floating point
• ReadInt( ) for integers
• ReadString( ) for strings
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public class PrintStream extends
    FilterOutputStream {
    ...
    public void print(boolean b);
    public void print(char c);
    public void print(int i);
    public void print(long l);
    public void print(float f);
    public void print(double d);
    public void print(char[ ] s);
    public void print(String s);
    public void print(Object obj);
}
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Lifetime

The lifetime of a variable is the time interval during
which the variable has been allocated a block of
memory.

Earliest languages used static allocation.
Algol introduced the notion that memory should be

allocated/deallocated at scope entry/exit.
Remainder of section considers mechanisms which

break scope equals lifetime rule.
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C:
• Global compilation scope: static
• Explicitly declaring a variable static
• Remark: Java also allows a variable to be declared

static


