
22c:111 Programming Language Concepts - Fall 2008

22c:111 Programming Language Concepts

Fall 2008

Copyright 2007-08, The McGraw-Hill Company and Cesare Tinelli.
These notes were originally developed by Allen Tucker, Robert Noonan and modified by Cesare Tinelli. They are
copyrighted materials and may not be used in other course settings outside of the University of Iowa in their current form
or modified form without the express written permission of one of the copyright holders. During this course, students are
prohibited from selling notes to or being paid for taking notes by any person or commercial firm without the express
written permission of one of the copyright holders.

Names

22c:111 Programming Language Concepts - Fall 2008

4.1 Syntactic Issues
4.2 Variables
4.3 Scope
4.4 Symbol Table
4.5 Resolving References
4.6 Dynamic Scoping
4.7 Visibility
4.8 Overloading
4.9 Lifetime

22c:111 Programming Language Concepts - Fall 2008

Recall that the term binding is an association between
an entity (such as a variable) and a property (such
as its value).

A binding is static if the association occurs before
run-time.

A binding is dynamic if the association occurs at run-
time.

Name bindings play a fundamental role.
The lifetime of a variable name refers to the time

interval during which memory is allocated.

22c:111 Programming Language Concepts - Fall 2008

Syntactic Issues

Lexical rules for names.
Collection of reserved words or keywords.
Case sensitivity

C-like: yes
Early languages: no
PHP: partly yes, partly no

22c:111 Programming Language Concepts - Fall 2008

Reserved Words

Cannot be used as Identifiers
Usually identify major constructs: if while switch
Predefined identifiers: e.g., library routines

22c:111 Programming Language Concepts - Fall 2008

Variables

Basic bindings
• Name
• Address
• Type
• Value
• Lifetime

22c:111 Programming Language Concepts - Fall 2008

L-value - use of a variable name to denote its address.
Ex: x = …

R-value - use of a variable name to denote its value.
Ex: … = … x …

Some languages support/require explicit
dereferencing.
Ex: x := !y + 1

22c:111 Programming Language Concepts - Fall 2008

// Pointer example:
int x,y;
int *p;
x = *p;
*p = y;

22c:111 Programming Language Concepts - Fall 2008

Scope

The scope of a name is the collection of statements
which can access the name binding.

In static scoping, a name is bound to a collection of
statements according to its position in the source
program.

Most modern languages use static (or lexical) scoping.

22c:111 Programming Language Concepts - Fall 2008

Two different scopes are either nested or disjoint.
In disjoint scopes, same name can be bound to

different entities without interference.
What constitutes a scope?

22c:111 Programming Language Concepts - Fall 2008

Algol C Java Ada
Package n/a n/a yes yes
Class n/a n/a nested yes
Function nested yes yes nested
Block nested nested nested nested
For Loop no no yes automatic

22c:111 Programming Language Concepts - Fall 2008

The scope in which a name is defined or delared is
called its defining scope.

A reference to a name is nonlocal if it occurs in a
nested scope of the defining scope; otherwise, it is
local.

22c:111 Programming Language Concepts - Fall 2008

1 void sort (float a[], int size) {

2 int i, j;

3 i = j = 0;

4 for (i = 0; i < size; i++)

5 for (j = i + 1; j < size; j++)

6 if (a[j] < a[i]) {

7 float t1,t2;

8 t1 = a[i];

9 a[i] = a[j];

10 a[j] = t2;

11 };

12 j = i + 1

13 };

14 i = 2*j }

22c:111 Programming Language Concepts - Fall 2008

1 void sort (float a[], int size) { // C language

2 int i, j;

3 i = j = 0;

4 for (i = 0; i < size; i++) // i, size local

5 for (j = i + 1; j < size; j++) // j local

6 if (a[j] < a[i]) { // a, i, j local

7 float t1,t2;

8 t1 = a[i]; // t1 local; a, i nonlocal

9 a[i] = a[j]; // j nonlocal

10 a[j] = t2; // t2 local

11 };

12 j = i + 1 // i, j local

13 };

14 i = 2*j } // i, j local

22c:111 Programming Language Concepts - Fall 2008

1 void sort (float a[], int size) { // C++ language

2 int i, j;

3 i = j = 0;

4 for (int i = 0; i < size; i++) { // i local, size nonlocal

5 for (int j = i + 1; j < size; j++) // j local

6 if (a[j] < a[i]) { // j local, a, i nonlocal

7 float t1,t2;

8 t1 = a[i]; // t1 local; a, i nonlocal

9 a[i] = a[j]; // j nonlocal

10 a[j] = t2; // t2 local

11 };

12 j = i + 1; // i local, j nonlocal

13 };

14 i = 2*j } // i, j local

22c:111 Programming Language Concepts - Fall 2008

for (int i = 0; i < 10; i++) {
 System.out.println(i);
 ...
}
... i ... // invalid reference to i

22c:111 Programming Language Concepts - Fall 2008

Symbol Table

A symbol table is a data structure kept by a translator
that allows it to keep track of each declared name
and its binding.

Assume for now that each name is unique within its
local scope.

The data structure can be any implementation of a
dictionary, where the name is the key.

22c:111 Programming Language Concepts - Fall 2008

1. Each time a scope is entered, push a new
dictionary onto the stack.

2. Each time a scope is exited, pop a dictionary off
the top of the stack.

3. For each name declared, generate an appropriate
binding and enter the name-binding pair into the
dictionary on the top of the stack.

4. Given a name reference, search the dictionary on
top of the stack:

a) If found, return the binding.
b) Otherwise, repeat the process on the next dictionary

down in the stack.
c) If the name is not found in any dictionary, report an

error.

22c:111 Programming Language Concepts - Fall 2008

1 void sort (float a[], int size) { // C++ language

2 int i, j;

3 i = j = 0;

4 for (int i = 0; i < size; i++) { // i local, size nonlocal

5 for (int j = i + 1; j < size; j++) // j local

6 if (a[j] < a[i]) { // j local, a, i nonlocal

7 float t1,t2;

8 t1 = a[i]; // t1 local; a, i nonlocal

9 a[i] = a[j]; // j nonlocal

10 a[j] = t2; // t2 local

11 };

12 j = i + 1; // i local, j nonlocal

13 };

14 i = 2*j } // i, j local

22c:111 Programming Language Concepts - Fall 2008

Example: previous C++ program
Bindings: 〈var name, line location in code〉

Dictionary Stack at line 7:

{〈t1,7〉, 〈t2,7〉}
{〈j,4〉}
{〈i,4〉}
{〈a,1〉, 〈size,1〉, 〈i,2〉, 〈j,2〉}

22c:111 Programming Language Concepts - Fall 2008

Resolving References

For static scoping, the referencing environment for a
name is its defining scope and all nested
subscopes.

The referencing environment defines the set of
statements which can validly reference a name.

22c:111 Programming Language Concepts - Fall 2008

1 int h, i;
2 void B(int w) {
3 int j, k;
4 i = 2*w;
5 w = w+1;
6 ...
7 }
8 void A (int x, int y) {
9 float i, j;
10 B(h);
11 i = 3;
12 ...
13 }

14 void main() {
15 int a, b;
16 h = 5; a = 3; b = 2;
17 A(a, b);
18 B(h);
19 ...
20 }

22c:111 Programming Language Concepts - Fall 2008

1. Outer scope: <h, 1> <i, 1> <B, 2> <A, 8>
<main, 14>

2. Function B: <w, 2> <j, 3> <k, 4>
3. Function A: <x, 8> <y, 8> <i, 9> <j, 9>
4. Function main: <a, 15> <b, 15>

22c:111 Programming Language Concepts - Fall 2008

Symbol Table Stack for Function B:
 <w, 2> <j, 3> <k, 4>
<h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

Symbol Table Stack for Function A:
 <x, 8> <y, 8> <i, 9> <j, 9>
<h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

Symbol Table Stack for Function main:
 <a, 15> <b, 15>
<h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

22c:111 Programming Language Concepts - Fall 2008

Line Reference Declaration
4 i 1
10 h 1
11 i 9
16 h 1
18 h 1

22c:111 Programming Language Concepts - Fall 2008

Dynamic Scoping

In dynamic scoping, a name is bound to its most
recent declaration based on the program’s call
history.

Used be early Lisp, APL, Snobol, Perl.
Symbol table for each scope built at compile time, but

managed at run time.
Scope pushed/popped on stack when entered/exited.

22c:111 Programming Language Concepts - Fall 2008

1 int h, i;
2 void B(int w) {
3 int j, k;
4 i = 2*w;
5 w = w+1;
6 ...
7 }
8 void A (int x, int y) {
9 float i, j;
10 B(h);
11 i = 3;
12 ...
13 }

14 void main() {
15 int a, b;
16 h = 5; a = 3; b = 2;
17 A(a, b);
18 B(h);
19 ...
20 }

22c:111 Programming Language Concepts - Fall 2008

Using Figure 4.2 as an example: call history
main (17) → A (10) → B

Function Dictionary
B <w, 2> <j, 3> <k, 3>
A <x, 8> <y, 8> <i, 9> <j, 9>
main <a, 15> <b, 15>

<h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

Reference to i (4) resolves to <i, 9> in A.

22c:111 Programming Language Concepts - Fall 2008

1 int h, i;
2 void B(int w) {
3 int j, k;
4 i = 2*w;
5 w = w+1;
6 ...
7 }
8 void A (int x, int y) {
9 float i, j;
10 B(h);
11 i = 3;
12 ...
13 }

14 void main() {
15 int a, b;
16 h = 5; a = 3; b = 2;
17 A(a, b);
18 B(h);
19 ...
20 }

22c:111 Programming Language Concepts - Fall 2008

Using Figure 4.2 as an example: call history
main (17) → B

Function Dictionary
B <w, 2> <j, 3> <k, 3>
main <a, 15> <b, 15>

<h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

Reference to i (4) resolves to <i, 1> in global scope.

22c:111 Programming Language Concepts - Fall 2008

Visibility

A name is visible if its referencing environment
includes the reference and the name is not reclared
in an inner scope.

A name redeclared in an inner scope effectively hides
the outer declaration.

Some languages provide a mechanism for referencing
a hidden name; e.g.: this.x in C++/Java.

22c:111 Programming Language Concepts - Fall 2008

1 public class Student {
2 private String name;
3 public Student (String name, ...) {
4 this.name = name;
5 ...
6 }
7 }

22c:111 Programming Language Concepts - Fall 2008

procedure Main is
 x : Integer;
 procedure p1 is
 x : Float;
 procedure p2 is
 begin
 ... x ...
 end p2;
 begin
 ... x ...
 end p1;

 procedure p3 is
 begin
 ... x ...
 end p3;
begin
 ... x ...
end Main; -- Ada
-- x in p2?
-- x in p1? Main.x?
-- x in p3? p1.x?
-- x in Main?

22c:111 Programming Language Concepts - Fall 2008

Overloading

Overloading uses the number or type of parameters to
distinguish among identical function names or
operators.

Examples:
• +, -, *, / can be float or int
• + can be float or int addition or string

concatenation in Java
• System.out.print(x) in Java

22c:111 Programming Language Concepts - Fall 2008

Modula: library functions
• Read() for characters
• ReadReal() for floating point
• ReadInt() for integers
• ReadString() for strings

22c:111 Programming Language Concepts - Fall 2008

public class PrintStream extends
 FilterOutputStream {
 ...
 public void print(boolean b);
 public void print(char c);
 public void print(int i);
 public void print(long l);
 public void print(float f);
 public void print(double d);
 public void print(char[] s);
 public void print(String s);
 public void print(Object obj);
}

22c:111 Programming Language Concepts - Fall 2008

Lifetime

The lifetime of a variable is the time interval during
which the variable has been allocated a block of
memory.

Earliest languages used static allocation.
Algol introduced the notion that memory should be

allocated/deallocated at scope entry/exit.
Remainder of section considers mechanisms which

break scope equals lifetime rule.

22c:111 Programming Language Concepts - Fall 2008

C:
• Global compilation scope: static
• Explicitly declaring a variable static
• Remark: Java also allows a variable to be declared

static

