
The University of Iowa	

CS:2820 (22C:22)

Object-Oriented Software
Development

!

Spring 2015

Design Patterns	

by 	

Cesare Tinelli

Operation:
 enterItem(…)

Post-conditions:
- . . .

Operation Contracts

Sale

date
. . .

Sales
LineItem

quantity

1..*1 . . .

. . .

Domain Model

Use-Case Model

Design Model: Register

enterItem
(itemID, quantity)

: ProductCatalog

d = getProductDescription(itemID)

addLineItem(d, quantity)

: Sale

Require-
ments

Business
Modeling

Design

Sample UP Artifact Relationships

: System

enterItem
(id, quantity)

Use Case Text

System Sequence Diagrams

make
NewSale()

system
events

Cashier

Process
Sale

: Cashier

use
case

names

system
operations

Use Case Diagram

Supplementary
Specification

Glossary

starting events to
design for, and
detailed post-
condition to
satisfy

Process Sale

1. Customer
arrives ...
2. ...
3. Cashier
enters item
identifier.

inspiration for
names of
some
software
domain
objects

functional
requirements
that must be
realized by
the objects

ideas for
the post-
conditions

Register

...

makeNewSale()
enterItem(...)
...

ProductCatalog

...

getProductDescription(...)
...

1*

non-functional
requirements

domain rules

item details,
formats,
validation

Responsibility-Driven Design

Designing systems in terms of object
responsibilities, roles, and collaborations	

!

• Action responsibilities	

• Knowledge responsibilities

Design Patterns

Named and well-known problem/solution
pairs that can be applied in new contexts,
with advice on how to apply them in novel
situations
!

Design patterns help during responsibility
assignment in RDD

Advantages of Patterns

• They support chunking and incorporating
a concept into our understanding and
memory	

!

• They facilitate communication	

Established Design Patterns

• Creator	

• Information Expert	

• Low Coupling	

• Controller	

• High Cohesion

• Polymorphism	

• Pure Fabrication	

• Indirection	

• Protected Variation	

• …	

Creator Pattern

P: Who creates a new instance of some class
A?	

S: Class B get the responsibility if:	

- B “contains” or compositely aggregates A,	

- B closely uses A, or	

- B has the initializing data for A instances	

Monopoly Game

Who should create the squares?

Who should create the squares?

Information Expert Pattern

P: How to assign responsibilities to objects?	

!

S: Assign a responsibility to the class that
has the information needed to fulfill it	

Who should return a
square, given its name?

Applying the IE Pattern

Low Coupling Pattern

P: How to reduce the impact of change?	

!

S: 	

• Assign responsibilities so that
(unnecessary) coupling remains low	

• Use this principle to evaluate
alternatives

Not Applying Low Coupling

Observation

• Low Coupling is one of the most
important goals in design	

• It tends to reduce time, effort and
defects in software evolution	

• It is supported by Information Expert	

Controller Pattern
P: Which object beyond the UI layer first
receives and coordinates a system operation?	

!

S: Assign the responsibility to an object
representing:	

- the overall system, a root object, (facade
controller)	

- a use case scenario within which the
system operation occurs (session
controller)	

System Sequence Diagram

Who should be the controller
of playGame?

Who should be the controller
of playGame?

Who should be the controller
of playGame?

High Cohesion Pattern

P: How to keep objects focused, manageable,
and understandable?	

!

S: 	

• Assign responsibilities so that the
cohesion of an object remains high	

• Use this principle to evaluate
alternatives

Cohesion

Informally, a measure of	

• how functionally related the operations
of a software component are	

• how much work a software
component is doing

Cohesion

!

• Bad cohesion and high coupling are
positively correlated	

!

• All other things being equal, a design
with higher cohesion is preferable

Who has higher cohesion?

Credits

Notes and figures adapted from 	

Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and Iterative
Development by C. Larman. 3rd edition.
Prentice Hall/Pearson, 2005.	

