
The University of Iowa	

CS:2820 (22C:22)

Object-Oriented Software Development
Spring 2015	

	

Interaction Diagrams	

(Chapter 15)	

	

by

Mauricio Monsalve

Design Road	

Operation:
 enterItem(…)

Post-conditions:
- . . .

Operation Contracts

Sale

date
. . .

Sales
LineItem

quantity

1..*1 . . .

. . .

Domain Model

Use-Case Model

Design Model
: Register

enterItem
(itemID, quantity)

: ProductCatalog

spec = getProductSpec(itemID)

addLineItem(spec, quantity)

: Sale

Require-
ments

Business
Modeling

Design

Sample UP Artifact Relationships

: System

enterItem
(id, quantity)

Use Case Text

System Sequence Diagrams

make
NewSale()

system
events

Cashier

Process
Sale

: Cashier

use
case

names

system
operations

Use Case Diagram

Vision

Supplementary
Specification

Glossary

starting events to
design for, and
more detailed
requirements that
must be satisfied
by the software

Process Sale

1. Customer
arrives ...
2. ...
3. Cashier
enters item
identifier.

the domain
objects,
attributes,
and
associations
that undergo
changes

requirements
that must be
satisfied by
the software

ideas for
the post-
conditions

Interaction Diagrams	

l  UML interaction diagrams represent
interaction (communication, collaboration)
between objects/classes	

l  For dynamic object modeling	

l  UML interaction diagrams consist of	

-  Sequence diagrams	

- Communication diagrams	

Sequence Diagram	

: A myB : B

doTwo

doOne

doThree

We have used a simplified version of
these for System Sequence Diagrams	

Communication Diagram	

: A

myB : B

1: doTwo

2: doThree

doOne

Steps are enumerated and placed in
lines with arrows	

The diagrams compared	

Sequence diagram	

l  clearly shows sequence
or time ordering of
messages	

l  large set of detailed
notation options	

l  forced to extend to the
right when adding new
objects; consumes
horizontal space	

Communication diagram	

l  space economical;
flexibility to add new
objects in two
dimensions	

l  more difficult to see
sequence of messages	

l  fewer notation options	

Exercise	

: Register : Sale

makePayment(cashTendered)

makePayment(cashTendered)

: Paymentcreate(cashTendered)

Exercise	

: Register : Sale

makePayment(cashTendered)

makePayment(cashTendered)

: Paymentcreate(cashTendered)

1: makePayment(cashTendered)

1.1: create(cashTendered)

:Register :Sale

:Payment

makePayment(cashTendered)

direction of message

Drawing Sequence Diagrams	

sales:
ArrayList<Sale>

:Sale s1 : Sale

lifeline box representing an
instance of an ArrayList class,
parameterized (templatized) to
hold Sale objects

lifeline box representing an
unnamed instance of class Sale

lifeline box representing a
named instance

sales[i] : Sale

lifeline box representing
one instance of class Sale,
selected from the sales
ArrayList <Sale> collection

x : List

«metaclass»
Font

lifeline box representing the class
Font, or more precisely, that Font is
an instance of class Class – an
instance of a metaclass

related
example

List is an interface

in UML 1.x we could not use an
interface here, but in UML 2, this (or
an abstract class) is legal

Drawing Sequence Diagrams	

: Register 1
: Store

doA
doX

the ‘1’ implies this is a
Singleton, and accessed
via the Singleton pattern

l  In the case of singleton objects/classes, we put a
“1” on their boxes	

l  Singleton classes are the ones that only have one
instance	

-  Cf. Scala: singleton defined with “object”, not “class”	

Drawing Sequence Diagrams	

: Register : Sale

doA

doB

doX

doC

doD

typical sychronous message
shown with a filled-arrow line

a found message
whose sender will not
be specified

execution specification
bar indicates focus of
control

Drawing Sequence Diagrams	

: Register : Sale

d1 = getDate

getDate

doX

aDate

Two ways to specify a return value. 	

The first one is brief.	

The second one allows one to describe the information
contained in the returned value.	

Drawing Sequence Diagrams	

: Register : Sale

makePayment(cashTendered)
: Paymentcreate(cashTendered)

authorize

note that newly created
objects are placed at their
creation "height"

Drawing Sequence Diagrams	

: Sale

: Paymentcreate(cashTendered)

...
the «destroy» stereotyped
message, with the large
X and short lifeline
indicates explicit object
destruction

«destroy» X

Vertical “presence” or coverage demonstrates the life-cycle
of an object	

Drawing Sequence Diagrams	

enterItem(itemID, quantity)

: B

endSale

a UML loop
frame, with a
boolean guard
expression description, total

makeNewSale

[more items]loop

: A

Types of frames:	

loop—for repeated statements,	

opt—for if-statements without else,	

alt—for if-statements with else or else-if,	

par—for parallel execution,	

region—for critical region (concurrency).	

Drawing Sequence Diagrams	

: B: A

calculate

doX

: C

calculate

[x < 10]alt

[else]

Drawing Sequence Diagrams	

st = getSubtotal

lineItems[i] :
SalesLineItem

t = getTotal

[i < lineItems.size]loop

: Sale This lifeline box represents one
instance from a collection of many
SalesLineItem objects.

lineItems[i] is the expression to
select one element from the
collection of many
SalesLineItems; the ‘i” value
refers to the same “i” in the guard
in the LOOP frame

an action box may contain arbitrary language
statements (in this case, incrementing ‘i’)

it is placed over the lifeline to which it applies

i++

Vertical “presence” or coverage demonstrates the life-cycle
of an object	

Drawing Sequence Diagrams	

calculate

: Bar

xx

[color = red]opt

: Foo

loop(n)

Nesting of frames	

Drawing Sequence Diagrams	

interaction occurrence

note it covers a set of lifelines

note that the sd frame it relates to
has the same lifelines: B and C

doA

: A : B : C

doB

sd AuthenticateUser

ref AuthenticateUserauthenticate(id)

doX
doM1

: B : C

authenticate(id)

doM2

ref DoFoo sd DoFoo

doX

: B : C

doY

doZ

Polymorphism	

:Register

authorize
doX

:Payment {abstract}

polymorphic message object in role of abstract
superclass

:DebitPayment

doA
authorize

:Foo

stop at this point œ don‘t show any
further details for this message

doB

:CreditPayment

doX
authorize

:Bar

Payment {abstract}

authorize() {abstract}
...

CreditPayment

authorize()
...

DebitPayment

authorize()
...

Payment is an abstract
superclass, with concrete
subclasses that implement the
polymorphic authorize operation

separate diagrams for each polymorphic concrete case

Communication Diagrams	

1: makePayment(cashTendered)
2: foo

2.1: bar
: Register :Sale

link line

l  Numbering follows legalistic ordering	

l  1 < 2 < 2.1 < 3 < ...	

1: makePayment(cashTendered)
2: foo

2.1: bar
: Register :Sale

link line

Communication Diagrams	

: Amsg1 : B1: msg2

: C

1.1: msg3

2.1: msg5

2: msg4

: D

2.2: msg6

first second

fourth

sixth

fifth

third

Communication Diagrams	

1: create(cashier)

: Register :Sale

create message, with optional initializing parameters. This will
normally be interpreted as a constructor call.

«create»
1: make(cashier)

: Register :Sale

if an unobvious creation message name is used, the
message may be stereotyped for clarity

1: create(cashier)
: Register :Sale {new}

Three ways to show creation in a
communication diagram

Communication Diagrams	

1a [test1] : msg2

: A : B

: C

1a.1: msg3

msg1

: D

1b [not test1] : msg4

1b.1: msg5

: E

2: msg6

unconditional after
either msg2 or msg4 1a and 1b are mutually

exclusive conditional paths

Communication Diagrams	

1 * [i = 1..n]: num = nextInt: SimulatorrunSimulation : Random

iteration is indicated with a * and an optional
iteration clause following the sequence number

Communication Diagrams	

1 * [i = 1..n]: st = getSubtotal: Salet = getTotal

This lifeline box represents one instance from a
collection of many SalesLineItem objects.

lineItems[i] is the expression to select one
element from the collection of many
SalesLineItems; the ‘i” value comes from the
message clause.

lineItems[i]:
SalesLineItem

this iteration and recurrence clause indicates
we are looping across each element of the
lineItems collection.

1 *: st = getSubtotal: Salet = getTotal lineItems[i]:
SalesLineItem

Less precise, but usually good enough to imply
iteration across the collection members

Concurrency	

:ClockStarter

:Clock

run

startClock

create

a stick arrow in UML implies an asynchronous call

a filled arrow is the more common synchronous call

In Java, for example, an asynchronous call may occur as
follows:

// Clock implements the Runnable interface
Thread t = new Thread(new Clock());
t.start();

the asynchronous start call always invokes the run method
on the Runnable (Clock) object

to simplify the UML diagram, the Thread object and the
start message may be avoided (they are standard
“overhead”); instead, the essential detail of the Clock
creation and the run message imply the asynchronous call

runFinalization

System :
Class

active
object

Note the dependency with the programming language. For the sake of
abstraction and generality, you may want to express concurrency in its
simplest form here.	

Concurrency	

3: runFinalization
:ClockStarter System : Class

startClock

:Clock

1: create

2: run
asynchronous message

active object

Credits	

	

Notes and figures adapted from	

Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and Iterative
Development by C. Larman. 3rd edition. Prentice
Hall/Pearson, 2005.	

