Scala Actors

-Terrance Dsilva



Concurrency

» Most programmers avoid by retreating to multiple
independent processes that share data externally
(for example, through a database or message queue)

» How do you know what your multithreaded program
is doing, and when? What value does a variable hold
when you have two threads running, or five, or fifty?

» How can you guarantee that your program’s many
tendrils aren’t clobbering one another in a race to
take action



Actors

» Thankfully, Scala offers a reasonable, flexible
approach to concurrency

» Actors aren’t a concept unique to Scala. Actors,
originally intended for use in Artificial Intelligence
research, were first put forth in 1973 (see
[Hewitt1973] and [Aghal1987]).

» Actors have appeared in a number of programming
languages, most notably in Erlang and lo.




tor?

What is an ac

Actor

Mailbox

ables

Internal \-a%

Methods




More on Actors

e Actors encapsulate state and behavior (like
objects)

e Actors are logically active (unlike most objects)

e Actors communicate through asynchronous

message passing (nonblocking send, locking
receive)



Actors in Abstract

e Actor is an object that receives messages and takes
action on those messages.

 The order in which messages arrive is unimportant to
an Actor, though some Actor implementations (such
as Scala’s) queue messages in order.

* An Actor might handle a message internally, or it
might send a message to another Actor, or it might
create another Actor to take action based on the
message.



Actors in Abstract- cont

e Actors don’t enforce a sequence or ordering to their
actions. This inherent eschewing of sequentiality,

coupled with independence from shared global state,
allow Actors to do their work in parallel.

e Actors are a very high-level abstraction.
* Enough theory. Let’s see Actors in action.



Actors in Scala

* Actors in Scala are objects that inherit from scala.actors.Actor.

import scala.actors.Actor
class Sample extends Actor {
def test () {
println (“Hello.")
}
}

val objectsample = new Sample

objectsample.start

» Actor defined in this way must be both instantiated and started, similar to
how threads are handled in Java. It must also implement the abstract
method act, which returns Unit.



Factory Made Actor

* The scala.actors package contains a factory method for creating Actors
that avoids much of the setup in the above example. We can import this
method and other convenience methods from scala.actors.Actors. .

import scala.actors.Actor

import scala.actors.Actor.

val paulNewman = actor {

println("To be an actor, you have to be a child.")

» While a subclass that extends the Actor class must define act in order to be
concrete, a factory-produced Actor has no such limitation. In this shorter example,
the body of the method passed to actor is effectively promoted to the act method
from our first example



Sending Messages to Actors

Actors can receive any sort of object as a message, from strings of text to numeric types
to whatever classes .

An Actor should only act on messages of familiar types; a pattern match on the class and/
or contents of a message is good defensive programming, and increases the readability of
Actor code.

val Testl = actor {
loop {
receive {
case s: String => println("I got a String: " + s)
case i: Int => println("I got an Int: " + i.toString)
}
}
}
Testl ! "hi there"

Test?2 ! 23



Sending Messages to Actors-cont

* The example prints
— | got a String: hi there
— lgotanint: 23

» The body of Testl is a receive method wrapped in a loop. loop is
essentially a nice shortcut for while(true); it does whatever is inside its
block repeatedly. receive blocks until it gets a message of a type that will
satisfy one of its internal pattern matching cases.

» The final lines of this example demonstrate use of the ! (exclamation point,
or bang) method to send messages to our Actor. If you've ever seen Actors
in Erlang, you’ll find this syntax familiar.

» The Actor is always on the left-hand side of the bang, and the message
being sent to said Actor is always on the right



The Mailbox

* Every Actor has a mailbox in which messages sent to that Actor are
gueued.

import scala.actors.Actor

import scala.actors.Actor.

val count = actor {
loop {
react {
case "how many?" => { println(mailboxSize.toString + " number

is mailbox.")



The Mailbox

* This example produces the following output.
3 messages in my mailbox.
* Tip
If you see an Actor’s mailbox size ballooning unexpectedly, you're probably

sending messages of a type that the Actor doesn’t know about. Include a

catchall case (_) when pattern matching received messages to find out
what’s harassing your Actors.



Effective Actors

In order to get the most out of Actors, there are few things to remember. First off, note that
there are several methods you can use to get different types of behavior out of your Actors.

The table below should help clarify when to use each method.

Method

act

receive

receiveWithin

react

reactWithin

Returns
Unit

Result of processing message

Result of processing message

Nothing

Nothing

Description

Abstract, top-level method for an Actor. Typically
contains one of the following methods inside it.

Blocks until a message of matched type is
received.

Like receive but unblocks after specified number
of milliseconds.

Requires less overhead (threads) than receive.

Like react but unblocks after specified number of
milliseconds.



Sending and receiving messages

» To send a message, use actor ! message

The thread sending the message keeps going--it doesn’t wait for a
response

» To receive a message (in an Actor), use either receive {...} or react {...}

-Both receive and react block until they get a message that they recognize
(with case)

-When receive finishes, it keeps its Thread
-Statements following receive{...} +will then be executed
-When react finishes, it returns its Thread to the thread pool

-Statements following the react{...} statement will not be
executed

-The Actor’s variable stack will not be retained
-This (usually) makes react more efficient than receive
» Hence: Prefer react to receive, but be aware of its limitations



Doing it correctly

 Martin Odersky gives some rules for using Actors effectively
— Actors should not block while processing a message
— Communicate with actors only via messages

* Scala does not prevent actors from sharing state, so it’s
(unfortunately) very easy to do

— Prefer immutable messages
 Mutable data in a message is shared state
— Make messages self-contained

 When you get a response from an actor, it may not be
obvious what is being responded to

* If the request is immutable, it’s very inexpensive to include
the request as part of the response

* The use of case classes often makes messages more
readable



