
The University of Iowa
22C:22 (CS:2820)

Object-Oriented Software
Development

Fall 2013

Classes and Objects
by

Cesare Tinelli

Thursday, 19 September 13

Objects

An object is an entity that has

• Identity

• State

• Behavior

Thursday, 19 September 13

Object Identity

Essential feature that makes an object
distinct from another

Note:

• two distinct objects may as well be
identical in all other aspects

• two objects are distinct iff they have
different identities

Thursday, 19 September 13

Object State
A set of attributes (properties) together
with their values

• Attributes (aka fields in OO languages) are
usually static

• Attribute values are usually dynamic

• An object's state can be seen as a mapping from
attributes to their values

• An object's behavior depends on its state

• The internal representation of the state is
usually hidden

Thursday, 19 September 13

Object Behavior
How an object acts on other objects, reacts
to other objects, and changes its state

• behavior is defined by a set of
operations, or messages, the objects
responds to

• an operation is a service provided by the
object, possibly using services from other
objects

Thursday, 19 September 13

Common Operations

Modifier

‣ changes the object's state

Selector

‣ accesses the state without changing it

Iterator

‣ accesses parts of the object in some
well defined order

Thursday, 19 September 13

Common Operations

Constructor

‣ creates an object and initializes its
state

Destructor

‣ destroys the object and releases its
resources to the system

Thursday, 19 September 13

Objects vs Classes

• Attributes and behavior are defined
collectively in a class, for all objects that
are instances of that class

• An object's attributes and behavior are
then obtained from the class(es) it
instantiates

• Only identity and attribute values are
specific to each object

Thursday, 19 September 13

Classes as Contracts
• We can characterize the behavior of an

object, the server, in terms of the services
it provides to other objects, the clients

• An object's class defines a contract

• that other objects depend on and

• that must be honored by the object

• This contract establishes all assumptions
a client may make about the behavior of
the server

Thursday, 19 September 13

Contracts and Inheritance

• Subclassing implies contract inheritance

• If B is a subclass of A, its own contract
should be a refinement of A's contract:

‣ each instance of B should provide at least the
services provided by instances of A, and may
provide more

‣ a client of A should be able to work with
instances of B as if they were direct instances
of A (no surprises!)

Thursday, 19 September 13

Recall: Design by Contract

Each service provided by an object, the
server, has a set of

• preconditions, to be satisfied by the
client when invoking the service

• postconditions, guaranteed by the
server upon completion of the service

• invariants, properties maintained
between operations by the server

Thursday, 19 September 13

Inheriting Contracts
When a subclass modifies a service m
inherited from a superclass A, it

• may relax but not strengthen m's
preconditions

‣ i.e., may require less from the client, but not
more

• may strengthen but not relax m's
postconditions

‣ i.e., may offer more to the client, not less

• it must ensure that m preserve A's
invariants

Thursday, 19 September 13

Liskov's Substitution Principle

Informal version:
If a program P uses

• objects of class A and

• B is a subclass of A

replacing instances of A in P by instances
of B should not alter the expected
behavior of P

Thursday, 19 September 13

Liskov's Substitution Principle

More formal version
(behavioral subtyping):

For all types T and subtypes S of T,

every property of interest satisfied by
objects of type T should be satisfied by
objects of type S as well

Thursday, 19 September 13

Objects as Machines

• Objects can be also understood as
little machines

• Technically, they are transition systems:

• They have an initial state and

• they move from one state to another in
response to external messages or
internal events

Thursday, 19 September 13

Objects as Machines

• Objects can be active or passive

• An active object runs independently

• it can change its state autonomously from
other objects

• it is sometimes called an actor

• A passive object changes its state only
when acted upon by another object

Thursday, 19 September 13

The Role of Classes/Objects
in Analysis and Design

Primary tasks in analysis and early design

1. Identify relevant classes in the problem
domain

2. Figure out how instances of those
classes can cooperate to achieve the
desired functionality

This is an incremental, iterative process

Thursday, 19 September 13

