
The University of Iowa
22C:22 (CS:2820)

Object-Oriented Software
Development

Fall 2012

The Object Model
by

Cesare Tinelli

Thursday, 6 September 2012

• Built on the best ideas from previous
technologies

• Influenced by major trends in software
engineering:

1. increased focus on programming-in-
the-large

2. evolution of high-level programming
languages

The Object Model
of Development

Thursday, 6 September 2012

Object in Object-Oriented
Programming Languages

Entity that

• combines features of

• procedures: performs computations

• data: stores local state

• is characterized by certain invariants

Thursday, 6 September 2012

Essence of
OO Programming

• Programs are organized as cooperative
collections of objects

• Each object is an instance of some class

• Classes are related via an inheritance
relationship

Thursday, 6 September 2012

OO Analysis

• Builds a model of the real-world using
an object-oriented view

• Examines requirements in terms of
classes and objects found in the
problem domain

Thursday, 6 September 2012

OO Design

• Leads to an object-oriented decomposition

• Uses various notations to express various
views of the system being designed:

• logical (classes and objects) vs. physical
structure (modules and processes)

• static vs. dynamic aspects

Thursday, 6 September 2012

OO Software Development

• The products of OO Analysis serve as
starting points for OO Design

• The products of OO Design serve as
blueprints for an OO implementation

Thursday, 6 September 2012

The Object Model
of Development

Is built on the synergy among:

• abstraction

• encapsulation

• modularity

• hierarchy

• typing

• concurrency

• persistence

Thursday, 6 September 2012

Abstraction

• The process of identifying similarities
between objects, situations or processes
and ignoring their differences

• A description, or specification, of
something that emphasizes some details
or properties while ignoring others

• It focuses on the essential characteristics
of something relative to a viewer's
perspective

Thursday, 6 September 2012

Abstraction

• Main trait: it can be understood and
analyzed independently on how it is
realized

• Quality: it is relative to its viewers/users
and their current needs

Establishing the right set of
abstractions for a problem domain is

the main challenge of design

Thursday, 6 September 2012

Abstraction in OO Design
• We can characterize the behavior of an

object, the server, in terms of the services
it provides to other objects, the clients

• An object's abstraction defines a contract

• that other objects depend on and

• that must be honored by the object

• This contract establishes all assumptions
a client may make about the behavior of
the server

Thursday, 6 September 2012

Design by Contract

• Each service (operation) provided by an
object has a set of

• preconditions, to be satisfied by the
client when invoking the service

• postconditions, guaranteed by the
server upon completion of the service

• invariants, properties maintained
between operations

Thursday, 6 September 2012

Abstraction Examples

• Temperature Sensor

• Point on a plane

Thursday, 6 September 2012

The Object Model
of Development

Is built on the synergy among:

✓abstraction

• encapsulation

• modularity

• hierarchy

• typing

• concurrency

• persistence

Thursday, 6 September 2012

Encapsulation

• The abstraction of an object should
precede any decisions about its
implementation

• Implementation details should not be
accessible to clients

• Encapsulation is the process of hiding
such details

Thursday, 6 September 2012

Encapsulation
• Achieved in OO languages by hiding the

internals of an object (attributes and
method implementations)

• It greatly facilitates changes that do not
impact the abstraction (i.e., the object's
contract)

• Leads to a clear separation of concerns
(contract vs way to honor it)

• Localizes design decisions likely to change

Thursday, 6 September 2012

Encapsulation in OO Languages

• interface
captures outside view of the object
and its essential behavior

• implementation
provides a representation of the
abstraction and the mechanisms to
achieve its behavior

Classes of objects described in two parts:

Thursday, 6 September 2012

Encapsulation Examples

• Heater

• Heater Controller

• Point on plane

Thursday, 6 September 2012

The Object Model
of Development

Is built on the synergy among:

✓abstraction

✓encapsulation

• modularity

• hierarchy

• typing

• concurrency

• persistence

Thursday, 6 September 2012

Modularity

• Modularization divides a software
systems into components, modules

• Modules

‣ may have connections to other modules

‣ but can be compiled separately

‣ encapsulate sets of classes and objects

‣ have an interface and an implementation

Thursday, 6 September 2012

Crucial Point

• Classes and objects define a system's
logical structure

• Modules define a system's physical
structure

• The two structures are by and large
orthogonal

Thursday, 6 September 2012

Module Decomposition
• Decomposing a system into module

presents challenging design decisions

• There is a tension between the desire to
encapsulate abstractions vs need to
expose some of them to other modules

• General approach:

‣ group together logically related classes and
objects and

‣ expose only those that are strictly
necessary to other modules

Thursday, 6 September 2012

Modularity
• Desiderata of module decomposition:

‣ modules designed and implemented
independently

‣ modules simple enough to be fully
understandable

‣ can change a module's implementation
without

‣ knowing that of other modules
‣ affecting their behavior

‣ reuse

Thursday, 6 September 2012

The Object Model
of Development

Is built on the synergy among:

✓abstraction

✓encapsulation

✓modularity

• hierarchy

• typing

• concurrency

• persistence

Thursday, 6 September 2012

Hierarchy

• A (partial) ordering of abstractions

• Most important hierarchies

‣ "is a" relation (class structure)

‣ "part of" relation (object structure)

Thursday, 6 September 2012

Class Structure

• The "is a" relation we consider is one
that relates classes

• Examples

A dog is a mammal

A dog is a pet

Fido is a dog (Fido is not a class)

Thursday, 6 September 2012

Class Structure
When B is A we also say that

• B is a subclass of A:

‣ every instance of B is an instance of A

• B extends (or specializes) A:

‣ B has all features and behaviors of A,
and possibly more

• B inherits from A:

‣ B inherits A's features and behaviors

Thursday, 6 September 2012

Class Structure
When B is A we also say, symmetrically,
that

• A is a superclass of B:

‣ every instance of B is an instance of A

• A is extended by (or generalizes) B:

‣ B has all features and behaviors of A,
and possibly more

Thursday, 6 September 2012

Inheritance Hierarchies

• Single inheritance:
‣ each class extends (inherits from) at

most one class

‣ the hierarchy is a tree, or a forest

• Multiple inheritance:
‣ each class extends one or more classes

‣ the hierarchy is graph

Thursday, 6 September 2012

Inheritance

A

B

FED

C

Q

R

VUT

SP

Single inheritance Multiple inheritance

is a

Thursday, 6 September 2012

The Object Model
of Development

Is built on the synergy among:

✓abstraction

✓encapsulation

✓modularity

✓hierarchy

• typing

• concurrency

• persistence

Thursday, 6 September 2012

Typing in
Programming Languages

• A type is a collection of values with same
structural or behavioral properties

‣ Ex: integer, string, integer list, integer
array, integer and string pair, ...

• The type system of a language

• imposes a division of values into types

• defines typing restrictions for each
operation (allowed input types, resulting
output type)

Thursday, 6 September 2012

Types in
Programming Languages

• A language is typed if it enforces a type
system

• It is untyped otherwise, that is, if it allows
operations to be applicable to any values

• Note:

• Most highly-level languages are typed to
some degree (strongly/weakly typed)

• All assembly languages are untyped

Thursday, 6 September 2012

Types in OO
Programming Languages

• Every class defines a type, consisting of
all objects that are instances of that
class

• However, not all types are classes. E.g.:

‣ Java's basic types (int, bool, ...)

‣ Java's interfaces

‣ function types in Scala

Thursday, 6 September 2012

Static vs Dynamic Typing

• Statically typed languages enforce
typing restrictions at compile time:

‣ the type of each expression denoting a
value is determined and checked before
running the program

• Dynamically typed languages enforce
typing restrictions at run time:

‣ types are determined and checked as
expressions are evaluated

Thursday, 6 September 2012

Static vs Dynamic Typing

• In statically typed languages types are
associated to expressions in the
source code

‣ C++, Java, Scala, ML, Haskell,...

• In dynamically typed languages types
are associated to values in memory

‣ Python, Ruby, Perl, Javascript, ...

Thursday, 6 September 2012

Enhanced Type Systems

• Overloading: same name for different
operations

‣ E.g.: + for integer addition, string
concatenation, list append in Scala

• Subtypes: types extending others
‣ E.g.: subclassing in OO languages

• Subtype polymorphism: same name
for inherited operations

‣ E.g.: inherited methods in OO languages

Thursday, 6 September 2012

Enhanced Type Systems

• Parametric types: structured types
with components of arbitrary type

‣ E.g.: List[X], Array[X], List[(X,Y)] for
any types X, Y in Scala

• Parametric polymorphism: generic
operations for parametric types

‣ E.g.: reverse: (l:List[X]) List[X],
head:(l:List[X]) X in Scala

Thursday, 6 September 2012

