
Topology Control and Geographic Routing in Realistic

Wireless Networks

Kevin M. Lillis1,2, Sriram V. Pemmaraju1, and Imran A. Pirwani1

1 Department of Computer Science,
University of Iowa, Iowa City, IA 52242-1419, U.S.A.

[lillis,sriram,pirwani]@cs.uiowa.edu
2 Computer and Information Science,

St. Ambrose University, Davenport, IA 52803, U.S.A.
LillisKevinM@sau.edu

Abstract. We present a distributed topology control protocol that runs on a d-QUDG for d ≥
1/

√
2, and computes a sparse, constant-spanner, both in Euclidean distance and in hop distance.

QUDGs (short for Quasi Unit Disk Graphs) generalize Unit Disk Graphs and permit more realistic
modeling of wireless networks, allowing for imperfect and non-uniform transmission ranges as well
as uncertain node location information. Our protocol is local and runs in O(1) rounds. The output
topology permits memoryless (geographic) routing with guaranteed delivery. In fact, when our topol-

ogy control protocol is used as preprocessing step for the geographic routing protocol GOAFR+, we
get the routing time guarantee of O(`2) for any source-destination pair that are ` units away from
each other in the input d-QUDG. The key idea is simple: to obtain planarity, we replace each edge
intersection with a virtual node and have a real node serve as a proxy for the virtual node. This
idea is supported by other parts of our protocol that (i) use clustering to keep the density of edge
crossings bounded and (ii) guarantee that an edge between a virtual node and a neighbor is realized
by a constant-hop path in the real network. The virtual node idea is simple enough to be useful in
many contexts. For example, it can be combined with a scheme recently suggested by Funke and
Milosavljević (INFOCOM 2007) to guarantee delivery under uncertain node locations. Similarly, the
virtual nodes idea can also be used as a cheap alternative to edge-crossing removal schemes suggested
by Kim et al. (DIALM-POMC 2005, SENSYS 2006).

1 Introduction

A wireless ad-hoc network typically consists of battery-powered individual nodes that are
able to communicate with nodes in transmission range via radio broadcast and perform lo-
cal computations. Because there is no centralized control and because each node has only
a small amount of memory, memoryless routing protocols are highly desirable for wireless
ad-hoc networks. In memoryless routing protocols, each node decides whom a message should
be forwarded to based solely on the source and destination of the message and on information
gathered from nearby nodes. As a result, the per node memory used by a memoryless routing
protocol depends on the local density of nodes rather than on the total number of nodes.
Geographic routing protocols are memoryless routing protocols that use geographic informa-
tion such as coordinates of source and destination, and coordinates of nodes that are a small
number of hops away. Geographic routing protocols take advantage of the fact that nodes in
a wireless sensor network typically reside in low dimensional Euclidean space and may know
their coordinates, at least approximately, in some agreed-upon global coordinate system. For
the rest of the paper, we assume that nodes of the given wireless network reside in R

2, the
Euclidean plane.

Well-known methods in geographic routing are greedy routing, face routing, and dual-
mode routing. The last method combines greedy and face routing. In greedy routing each
node forwards a packet by choosing a neighbor that is closest to the destination. Greedy
routing guarantees message delivery only in special circumstances, for example, when the
communication graph of the wireless network happens to be a Delaunay triangulation [4]. In
general, this scheme cannot guarantee delivery because a routed message may be trapped in

a cycle [4]. In face routing it is assumed that the network is embedded in the plane with no
edge crossings and using the right-hand rule, messages are forwarded along the boundaries of
adjacent faces that intersect the line segment between the source node and the destination
node. There exists a trade-off between greedy and face routing. Greedy routing is fast but
cannot guarantee delivery, whereas face routing guarantees delivery, but is less efficient than
the greedy method [18]. These two techniques have been combined in an effort to garner
the benefits offered by each. Such dual-mode routing schemes [14, 16] oscillate between face
routing and greedy routing. A message is greedily forwarded until a local minimum is reached;
this is a node that is closer to the destination than any of its neighbors. Then face routing
is employed to forward the message until greedy routing can resume. Well known dual-mode
routing protocols include GPSR [14] and GOAFR+ [16].

A starting point of much of the algorithmic research on wireless sensor networks is a
graph-theoretic model of the pairwise communication between nodes in the network. The
unit disk graph (UDG) may be the simplest of these models. Though popular because of its
simplicity, the UDG model makes unrealistic assumptions such as radio transmission ranges
being perfect disks, nodes having uniform transmission ranges, etc. The Quasi Unit Disk
Graph model [2, 17] alleviates some of the shortcomings of the UDG model. A Quasi Unit
Disk Graph is parameterized by d, 0 ≤ d ≤ 1 and is usually denoted d-QUDG. This graph
consists of vertices in R

2 and an edge set E satisfying the rules: (i) {u, v} ∈ E if ‖u− v‖2 ≤ d
and (ii) {u, v} 6∈ E if ‖u − v‖2 > 1. Note that edges between pairs of vertices u, v with
d < ‖u − v‖2 ≤ 1 are left unspecified and are assumed to be provided by an adversary.
By adjusting the parameter d, a d-QUDG can model physical obstructions, imprecise location
information, and irregularity in transmission ranges. In this paper, we use the d-QUDG model
with d ≥ 1/

√
2.

It is easy to see that d-QUDGs and UDGs are locally dense graphs and are therefore
far from being planar. On the other hand, all known guaranteed-delivery geographic routing
schemes seem to require a planar embedding of the communication network. This has moti-
vated a large body of literature on topology control protocols. Informally speaking, topology
control usually refers to the process of dropping edges in the communication network so as to
construct a sparse spanning subgraph that has desirable properties such as planarity. Using a
sparse spanning subgraph for communication also has other benefits such as allowing nodes
to transmit at lower power and reducing interference between radio signals. The disadvantage
of topology control is that nodes u and v that might have been close to each other in the
original communication network may end up being far away from each other following topol-
ogy control. One precise statement of the topology control problem is this: given a network
G = (V, E) (modeled as a d-QUDG or as a UDG) embedded in R

2, find a spanning subgraph
H = (V, EH) such that H has the following properties:

Planarity: No two edges in EH cross in the embedding of G.

Sparsity: The maximum degree of H is bounded, i.e., ∆(H) = O(1).

Spanner property: H is a t-spanner of G for t = O(1). Recall that H is a t-spanner of G
if for all u, v ∈ V , dH(u, v) ≤ t· dG(u, v). Here, dH(·, ·) and dG(·, ·) refer to distances in
H and G, respectively. These distances may be Euclidean distances or hop distances and
when the difference is important we will call H a Euclidean t-spanner or a hop t-spanner
respectively.

Given the many goals of topology control, the above stated problem is just one of many
possible variants of the topology control problem. For example, in some topology control
research, minimizing the total Euclidean weight of the spanner is a goal [19, 7]; in other work,
an important goal is to minimize an explicitly defined measure of signal interference [20].

Topology control protocols have been quite successful when the input graph is a UDG.
For example, Wang and Li [22] present a distributed local protocol that takes a UDG as
input and, in O(1) communication rounds, computes a bounded degree, planar, Euclidean
t-spanner, for constant t. This paper has been preceded by a number of papers on topology
control that use versions of geometric proximity structures such as Delaunay triangulations,
Gabriel graphs, Relative neighborhood graphs, Yao graphs, etc. The result that is critical to
some of this work is a classical result from computational geometry due to Dobkin et al. [8]
showing that “Delaunay graphs are almost as good as complete graphs” in the sense that
a Delaunay triangulation of any planar point set is a Euclidean t-spanner of the complete
graph on that point set. Topology control protocols for d-QUDG have been less common and
less successful due to the somewhat fundamental reason that for d-QUDGs it is not always
possible to obtain a spanning subgraph that is both planar and connected. See Figure 1(a) for
a simple example. The graph shown in this figure represents a family of d-QUDGs for d < 1.
This figure emphasizes the fact that even though UDGs (which are d-QUDGs with d = 1)
always have a planar spanner, d-QUDGs may not, even for values of d arbitrarily close to 1.
Thus, the standard approach to topology control in the plane - delete edges until a sparse,
planar spanner is obtained, does not work. Barriére et al. [2] add virtual edges to the given
d-QUDG to first obtain a supergraph and then run a standard topology control algorithm on
the supergraph. The resulting output is a mix of real edges and virtual edges, that are realized
by real paths. We propose adding virtual nodes, an approach that seems to be a simpler, more
flexible alternative and one for which provable performance guarantees are relatively easy to
obtain3. Next we describe our results in some detail.

y

u x

v y

u x

v y

u x

v

w

(a) (b) (c)

Fig. 1. (a) A d-QUDG G for which there is no connected, planar spanning subgraph. Here, 0 < d < 1,
‖u − v‖2 = ‖x − y‖2 = ‖u − x‖2 = 1 and ‖y − v‖2 = 1 − d. By the triangle inequality ‖u − y‖2 (and
similarly ‖x − v‖2) > d. In order to make G planar, edge {u, v} or {x, y} must be removed, thus
disconnecting G. (b) The algorithm of Barriére et al. [2] first adds virtual edges {u, y} and {x, v},
the Gabriel Graph construction then drops edges {u, v} and {x, y}. (c) Our algorithm adds virtual
node w at the intersection of edges {u, v} and {x, y}. The virtual node w is controlled by a real node
in {u, v, x, y}.

Our results. We present a distributed topology control protocol that runs on a d-QUDG for
d ≥ 1/

√
2, and computes a sparse, hop t-spanner, for constant t. As in other papers [2, 11, 17],

the constraint d ≥ 1/
√

2 is quite fundamental; otherwise two edges e1 = {u1, v1} and e2 =
{u2, v2} may cross even though the hop-distance between an endpoint of e1 and an endpoint of
e2 may be arbitrarily large. Our protocol is local and runs in O(1) rounds. The output topology
permits memoryless (geographic) routing with guaranteed delivery. In fact, when our topology
control protocol is used as preprocessing step for the geographic routing protocol GOAFR+

[16], we get a guarantee of O(`2) hops traveled by any message between a source-destination

3 An anonymous referee has pointed out to us that this idea has been briefly mentioned by Kuhn et
al [17].

pair that are ` hops away from each other in the input d-QUDG. The key idea is simple: to
obtain planarity, we replace each edge crossing by a virtual node and have a real node serve as
a proxy for the virtual node (see Figure 1(c) for an example). This idea is supported by other
parts of our protocol that (i) use clustering to keep the density of edge crossings bounded and
(ii) guarantee that an edge between a virtual node and a neighbor is realized by a constant-hop
path in the real network. A more complicated version of our protocol yields, in O(1) rounds,
a sparse Euclidean t-spanner, for constant t. When used in combination with GOAFR+ [16],
we get a routing guarantee of O(`2) Euclidean distance traveled by any message between
a source-destination pair that are a Euclidean distance ` apart in the input d-QUDG. In a
recent paper, Funke and Milosavljević [11] present a scheme, called Macroscopic Geographic
Greedy Routing (MGGR), that they claim guarantees geographic routing under uncertain
node locations. We show that MGGR can yield graphs with many connected components and
therefore no message delivery guarantee can be provided; the virtual nodes idea provides a
simple fix to this problem. However, a key idea from MGGR when combined with our scheme,
adds load balancing properties to our routing protocol. Since most known guaranteed-delivery
geographic routing schemes rely on planarity, some recent papers have focused on the problem
of removing edge crossings, for example the CLDP protocol [15] and the LCR protocol [13].
The virtual nodes idea provides a simple, cheap alternative to these schemes. To simplify our
presentation, we assume the LOCAL model of distributed computation [21] which assumes
that nodes have unique IDs, nodes run synchronously, and there is no bound on message sizes.
However, we do not misuse the unboundedness of message sizes; all messages exchanged in our
protocols contain a constant number of node IDs, a constant number of node locations, and
a constant amount of control bits. We further assume that the amount of memory available
to each node is a constant times the amount of memory required to store a node’s ID and its
Euclidean coordinates.

1.1 Related Work

Most papers on topology control and geographic routing assume the UDG model for wireless
networks. Here we review three papers that have considered topology control and memoryless
routing on d-QUDGs and are therefore most relevant to our work.

Barriére et al. [2] solve the same problem as we do. The wireless network is modeled as a
d-QUDG G with d ≥ 1/

√
2 and the authors note that computing a Gabriel graph of G (which

is a standard technique for topology control on UDGs, first introduced in [5]) may produce a
disconnected spanning subgraph. To overcome this problem virtual edges are added to G and
a Gabriel graph of the resulting supergraph H is computed. The output is a mixture of real
and virtual edges and is connected and planar (see Figure 1(b)). The shortcomings of this
approach are (i) virtual edges may be realized by arbitrarily long real paths, (ii) the Gabriel
graph is not a constant-spanner and in fact there are families of planar point sets for which
the Gabriel graph is an Ω(

√
n) spanner [3, 9], and (iii) the protocol is not local in the sense

that information may have to travel between nodes that are more than constant hops from
each other.

Kuhn et al. [17] model the wireless network as an arbitrary d-QUDG G, with 0 ≤ d ≤ 1.
Using a standard technique (as described by Alzoubi et al. [1]), a connected dominating set
(CDS) is first extracted from G. Clustering is then used to reduce the number of edges of
the CDS, resulting in a subgraph H of G. The authors show that using the Echo Flooding
Algorithm [6, 21] on H , yields asymptotically optimal routing on G. The authors then go on
to consider d-QUDGs with d ≥ 1/

√
2. For such d-QUDGs, it is shown that if the algorithm

of Barriére et al. [2] is executed on H , rather than on the original graph G, then the resulting
topology allows for geographic routing with good worst case guarantees. This result (at least

as described by Kuhn et al. [17]) is specific to the hop metric and does not seem to immediately
extend to the Euclidean metric. The paper also briefly mentions the idea of using virtual nodes
for topology control on d-QUDGs.

Funke and Milosavljević [11] also attempt to solve the problem of topology control and
memoryless routing on a d-QUDG input graph G, but do so via an interesting idea called
macroscopic routing. Their starting point is the selection of landmark nodes. For an integer
parameter k > 0, the landmarks form a k-independent set of V (G). Each node in G is then
“associated” with the landmark that is closest to it, in hops, effectively partitioning V (G) into
Voronoi tiles. From this combinatorial Voronoi tiling, a Combinatorial Delaunay Map (CDM)
is constructed. The vertex set of the CDM is the set of landmarks, {Li}. Edge {La, Lb} is then
added if the following local rule is satisfied: (i) there is a path in G from La to Lb consisting
of a sequence of nodes associated with La followed by a sequence of nodes associated with Lb,
and (ii) the one-hop neighborhood of this path contains only nodes associated with La and
Lb. As can be seen in Figure 2, even though this local rule yields a planar graph there are
instances of G for which the CDM has multiple connected components.

L0 L3 L6 L9

L1

L2

L4

L5

L7

L8

v01
v11

v21
v31

v32 v62
v41 v71

v61 v91
v51 v81

Fig. 2. Illustration of how the CDM constructed by Funke and Milosavljević [11] may have connected
components. Consider the d-QUDG shown above; let parameter k = 1 and let the set of landmarks
contain Li, 0 ≤ i ≤ 9. The Voronoi tile of each landmark Li contains nodes vij . None of the edges
{Li, Lj}, 0 ≤ i 6= j ≤ 9 are added to the CDM because part (ii) of the local rule is violated and
we get a CDM with at least 8 connected components. This construction can be easily extended to
produce a CDM with arbitrarily many connected components. Similar examples can be constructed
on UDGs and with any value of k ≥ 0.

Once the CDM is constructed, a routing algorithm such as GPSR [14] can be used to
determine in which direction to send a message. The Funke-Milosavljević routing protocol
only uses the CDM as a macroscopic guide for routing; a node u uses locations of nearby
landmarks to determine which neighboring Voronoi tile to forward the message to and then
the microscopic routing takes over and the message is forwarded to that neighboring tile using
the gradient descent method similar to that used in the GLIDER protocol [10].

2 The Concept of Virtual Nodes

Rather than attempt to eliminate edge crossings to obtain planarity, we simply treat each edge
crossing as a node — a virtual node. For the rest of the paper, we assume that G = (V, E) is
the input d-QUDG with d ≥ 1/

√
2. Furthermore, we assume that G comes with an embedding

in R
2; each vertex v ∈ V is at a point pv ∈ R

2 and each edge {u, v} is a straight line segment
connecting points pu and pv. We will think of vertices and edges as combinatorial objects as
well as geometric objects depending on the context. Now consider a pair of edges {u, v} and
{x, y} that cross. We deal with this edge crossing by modifying G as follows:

1. Add a virtual node w to G corresponding to the edge crossing. Associated with node w is a
point pw ∈ R

2, namely the point of intersection of edges {u, v} and {x, y}. Also associated
with w is a controller node, denoted w.controller, belonging to the set {u, v, x, y}, which
serves as the real proxy for w.

2. Delete edges {u, v} and {x, y} from G and add the four new edges {w, u}, {w, v}, {w, x},
and {w, y}. This transformation can be seen as going from the non-planar embedding of
the graph in Figure 1(a) to the planar embedding in Figure 1(c).

We can eliminate all edge crossings by repeatedly applying the above two steps. The resulting
plane graph (i.e., a planar graph along with a planar embedding) is denoted VN(G). It is
this plane graph on which we attempt to perform memoryless routing. First, we describe 3
properties that we seek for VN(G). If VN(G) were to satisfy all 3 properties, then we could
perform fast memoryless routing on it.

Property 1: For every pair of adjacent nodes u and v in VN(G), there is a constant-
length path in G from u.controller to v.controller. A routing step on VN(G) that
forwards a message from node u to its neighbor v is realized on the actual network G by a
message going from u.controller to v.controller. We want to show that the hop-distance
in G between u.controller and v.controller is bounded by a constant. Otherwise, even
though a pair of nodes u and v may be close together in VN(G), there may be no cheap
way of routing between u and v.

Property 2: Every real node in VN(G) is the controller for a constant number of
virtual nodes. For each node v in VN(G) a routing table containing information on the
neighbors of v in VN(G) must be maintained at v.controller. This means the a real node
u must store its own routing table as well as the routing table of each virtual node for
which it is the controller. Hence we require that each real node in VN(G) be the controller
for only a constant number of virtual nodes.

Property 3: The size of the routing table for each node in VN(G) is constant. For
our routing to be memoryless, we must guarantee not only that each real node maintain a
small number of routing tables, but also that the size of each routing table is small. One
way to ensure this is to bound the degrees of nodes in VN(G); a constant bound on the
degrees would be ideal. This would result in each node’s routing table consisting of the
IDs and Euclidean coordinates of a constant number of nodes.

Now we prove the first of the three desired properties mentioned above for d-QUDGs with
d ≥ 1/

√
2.

Lemma 1. Let G = (V, E) be a d-QUDG with d ≥ 1/
√

2. Then VN(G) is a plane graph
such that for adjacent nodes u and v in VN(G) the hop distance between u.controller and
v.controller in G is at most 5.

Proof. We start with an observation that due to Kuhn et al. (see Lemma 8.1 in [17]): for
intersecting edges {u, v} , {x, y} ∈ E(G) and any s, t ∈ {u, v, x, y} there is an st-path, that
has hop-length at most 3. The lemma follows easily because (i) if both u and v are real nodes,
then u = u.controller and v = v.controller are one hop apart, (ii) if one of u and v is a real
node then there is a path from u.controller to v.controller whose length is at most 3 hops,
and (iii) if both u and v are virtual nodes, then u.controller and v.controller are at most 5
hops apart.

It is easily checked that the upper bound of Lemma 1 is tight.

Corollary 1. Let G = (V, E) be a d-QUDG with d ≥ 1/
√

2 and let H be a hop t-spanner of
G. Then VN(H) is a plane graph such that for any pair of adjacent nodes u and v in VN(H),
the hop distance between u.controller to v.controller in G is at most 5 · t.

Property (2) above can be satisfied by ensuring that each edge in crossed at most a
constant number of times, whereas Property (3) can be satisfied by guaranteeing a constant
upper bound on the maximum vertex degree. This motivates the question of whether every
d-QUDG has an O(1)-spanner with (i) constant degree and (ii) constant number of edges
crossing every edge. An O(1)-hop spanner with constant degree is impossible, even for cliques
since with a constant degree bound it takes Ω(log n) hops to reach every vertex from any given
vertex. Unfortunately, as shown below, the constant edge crossing requirement is incompatible
with having an O(1)-Euclidean spanner. This example should be viewed as a generalization
of the example in Figure 1(a). There, 0 crossings were allowed and we could not guarantee
connectedness; here a constant number of crossings are allowed, but this still does not allow
for the Euclidean t-spanner property, for any constant t.

Lemma 2. Let G be a d-QUDG as shown in Figure 3 with d < 1, integer α > 0, and t ≥ 1.
If H is an arbitrary spanning subgraph of G such that every edge in H is intersected by at
most α other edges, then H is not a Euclidean t-spanner of G.

Proof. Let ` = ‖xi − xi+1‖2 = ‖yi − yi+1‖2 = 1−d
α , for 1 ≤ i ≤ α. Since G is connected and

NG(u) = {v}, edge {u, v} ∈ E(H). Since {u, v} is crossed by at most α other edges in H , there
exists a vertex xj that does not have an incident edge in H that intersects {u, v}. Specifically,
edge {xj , yj} /∈ E(H). Hence dH(xj , yj) > `. Combined with the fact that dG(xj , yj) = ε,

we get the ratio
dH(xj ,yj)
dG(xj ,yj)

> `
ε = (1−d)/α

ε > (1−d)/α
(1−d)/(t·α) = t. Therefore H is not a Euclidean

t-spanner of G.

1
1

2
1

−
−− ⋅≥ k

dl

() 1
11 −
−⋅−≥ k

d
l

1
1

2
1

−
−⋅ k

d

1
1

2
1

−
−⋅ k

d

αε ⋅
−< t

d1

x′� x′1 x′′

1-d d

v u

x2
x1 xa +1

y2
y1 ya +1

Fig. 3. This figure illustrates the proof of Lemma 2. In this graph G, NG(u) = {v} and the set of
vertices V (G) \ {u} form a clique. Note that each edge intersecting {u, v} has the form {xi, yj} and
that the length of each edge {xi, yi} = ε.

3 A Hop-Spanner with Virtual Nodes

Going from G to VN(G) gives us planarity and Lemma 1 tells us that adjacent nodes in
VN(G) are nearby in G (Property 1 holds for VN(G)). However, VN(G) does not support
memoryless routing because it does not guarantee Properties 2 or 3.

To get around this problem, we start by clustering G, sparsifying it and only then intro-
ducing virtual nodes (see Figure 4). Network clustering is a standard technique in routing
and our approach is similar to that of Gao et al. [12]. We start by constructing a backbone
graph GB whose vertex set is a small subset of V (G). A routing graph GR is constructed

by adding virtual nodes to GB and then attaching non-backbone nodes to GB . Algorithm
BuildBackbone describes the backbone construction and Algorithm Route1 describes how
routing is performed on GR.

Algorithm BuildBackbone

Input: G = d-QUDG with d ≥ 1/
√

2
Output: Backbone Graph GB

1. Place an infinite grid of size d/
√

2 × d/
√

2 on the plane. Since nodes know their locations in a
global coordinate system, each node knows the identity of the grid cell to which it belongs. The
nodes in each grid cell form a cluster and the grid induces a partition of V (G) into clusters. Let
eG be the cluster graph of G in which the vertex set is the set of clusters and there is an edge
from vertex C to C ′ iff there is an edge in G with one end node in cluster C and the other in
cluster C′. Note that since the diagonal of each grid cell has length d, the nodes within any given
grid cell form a clique.

2. For each cluster Ci the nodes belonging to the cluster select a representative cluster head hi. Let
L be the set of all cluster heads.

3. Each cluster head hi (the head of cluster Ci) selects exactly one edge {u, v} in G corresponding

to each neighbor Cj of Ci in eG such that u is in cluster Ci and v is in cluster Cj . The number of
edges selected by hi is therefore equal to the degree of Ci in eG. Let S be the set of end nodes of
all such selected edges in G.

4. GB is then defined as the subgraph of G induced by L ∪ S.

a

C1

C2

C6

C5

C4

h1 h3

h6 h5

C1

C2

C3

C6

C5

C4

h3

h6 h5

C3 s

t

b′

(c)

C6

a′

C4

h1

h3

h6 h5

C3

(a) (b)

C6

C5

C4

h1

b

h6

Fig. 4. (a) A d-QUDG G with d = 1/
√

2 along with a 1/2×1/2 grid and cluster heads for nonempty
grid cells. (b) Backbone graph GB . Edges to neighboring clusters selected by the cluster heads are
bold. Other induced edges are non-bold. (c) Routing graph GR, comprised of (i) VN(GB), i.e. GB

with virtual nodes (squares) at edge intersections and (ii) remaining nodes in G attached to cluster
heads (dashed edges). To route a message M from s in cluster C1 to t in cluster C6, s forwards M to
cluster head h1, M is then routed from h1 to h6 using graph VN(GB) and a routing protocol such
as GPSR, and h6 broadcasts M to all of its neighbors, one of which is t.

Lemma 3. GB has the following properties: (i) ∆ (GB) is O(1), (ii) Each edge in GB is
crossed by O(1) other edges, (iii) V (GB) is a connected dominating set of G.

Proof. Let us begin with a definition and two facts. Definition: For each grid cell C let the
surrounding cells of C be the set of cells

{
C ′ | ∃x, y ∈ R

2 : x ∈ C ′, y ∈ C, ‖x − y‖2 ≤ 1
}
. Fact

1: For any grid cell C the number of surrounding cells of C is bounded above by a constant.
Fact 2: A constant number of nodes from each grid cell Ci are included in GB . These include
cluster head hi along with at most two nodes associated with each surrounding cell of Ci.

(i) Consider a node u in GB that lies in grid cell C. Since GB is an induced subgraph of G,
the degree of u in GB is bounded by the number of nodes in V (GB) that are at most
distance 1 from u. Since there are O(1) cells surrounding C (Fact 1) and since each such
cell contributes O(1) nodes to V (GB) (Fact 2), there are O(1) nodes whose distance from
u is at most 1. Hence degree of u in GB is O(1).

(ii) Consider an edge {u, v} in GB . Since the grid size is d/
√

2×d/
√

2 and the maximum edge
length is 1, edge {u, v} passes through at most five grid cells; call them C1 through C5.
Hence for any edge {x, y} that intersects {u, v}, x and y both must lie in the surrounding
cells of C1 through C5. From Facts 1 and 2 there are a constant number of such surrounding
cells, each with a constant number of nodes in GB . Therefore there are O(1) edges that
intersect {u, v}.

(iii) Since V (G) is partitioned into clusters, each of which forms a clique, and since V (GB)
includes at least one node from each cluster, V (GB) is a dominating set of G. We now
show that V (GB) is connected. Consider nodes s and t in GB . Since G is connected
there is a path in G from s to t. Let this path be s = x0, x1, . . . , xp = t. This st-path
corresponds to a sequence of adjacent clusters C0, C1, . . . , Cq , q ≤ p, with s being in
cluster C0 and t being in cluster Cq . To show s and t are connected in GB we show the
following pairs of nodes are connected in GB : (i) s and h0, (ii) t and hq, (iii) hi and
hi+1, 0 ≤ i ≤ q − 1. Since s and h0 are in the same cluster there is an edge between them
in G which means there is also an edge between them in GB . Likewise, there is an edge
between t and hq in GB . Since Ci and Ci+1 are adjacent in G̃ there is an edge {u, v} in
GB where u is in cluster Ci and v is in cluster Ci+1. Also since u and hi are in the same
cluster there is an edge between them in GB . Likewise there is an edge between v and
hi+1. Therefore hi and hi+1 are connected in GB .

Once GB is constructed we add virtual nodes at each edge intersection and obtain VN(GB).
The routing graph GR is then defined as VN(GB) along with all nodes V (G) \ V (GB) with
edges to their respective cluster heads. The following algorithm can then be used to route
messages using GR (see Figure 4(c)).

Algorithm Route1

Input: s, t ∈ V (G), message M , geographic routing protocol A

1. Node s forwards the message to its cluster head h.
2. The message is routed from cluster head h to cluster head h′ of t using geographic protocol A.
3. Cluster head h′ broadcasts the message to its neighbors, one of which is t.

Route1 is memoryless because each real backbone node maintains constant-sized routing
tables for itself and at most constant number of virtual nodes; each non-backbone node just
maintains the ID and position of its cluster head. Now we claim (without proof to conserve
space) a worst case upper bound on the number of hops it takes for a message to be delivered
by Algorithm Route1. The lemma not only claims a relatively short st-path, but also that
such a path uses only the backbone graph, with the possible exception of the two end nodes,
s and t.

Lemma 4. For any vertices s and t in G there is a path L = (s = z0, z1, . . . , z` = t) in
GR such that ` ≤ α · dG(s, t), for some constant α. Furthermore, z1, z2, . . . , z`−1 are nodes in
VN(GB).

To obtain worst case guarantees on the number of hops it takes to route using Algorithm
Route1, we use GOAFR+ [16] as the geographic routing protocol A in Step 2 of Algorithm

Route1. Like GPSR, GOAFR+ is a dual-mode routing protocol, but it uses a clever way of
controlling the face routing mode by using a set of bounding circles with geometrically varying
area. Kuhn et al. [16] prove the following theorem about the performance of GOAFR+.

Theorem 1. (Kuhn et al. [16]) Let p∗ be an optimal path from s to t. On a bounded degree
UDG, GOAFR+ reaches t with cost O(c2(p∗)).

Here c : (0, 1] → R
+ is an arbitrary cost function that associates a cost c(‖u − v‖2) to

every edge {u, v} in the graph. The only restriction on c is that it is non-decreasing, i.e.,
c(d′) ≥ c(d) if d′ > d. For any path P in the graph, c(P) is simply the sum of the costs of
the edges in P . Note that c(d) = 1 for all d ∈ (0, 1] models hop distances, whereas c(d) = d
for all d ∈ (0, 1] models Euclidean distances. Theorem 1 is proved for bounded degree UDGs,
however it easily extends to arbitrary subgraphs (not necessarily induced) of bounded degree
UDGs. Since VN(GB) is clearly such a graph, we can use GOAFR+ in Step 2 of Algorithm
Route1 on VN(GB), even though VN(() GB) may not be a UDG. As a result, we get the
following theorem providing worst case guarantees on the performance of Algorithm Route1.

Theorem 2. Let s and t be nodes in G and let ` be the hop-length of a shortest st-path in G.
If GOAFR+ is used as the geographic routing algorithm A in Route1, then the hop-distance
traveled by a message routed from s to t using Route1 is O(`2).

4 A Euclidean Spanner with Virtual Nodes

The routing graph GR constructed in Section 3 may not be a Euclidean t-spanner of G (see
nodes a and b in cell C1 of Figure 4(c) for an example). One possible solution is to compute
a bounded degree, planar, Euclidean t-spanner of the clique induced by the vertices in each
cell C rather than connecting all non-backbone nodes in C directly to C’s cluster head. In
order to account for nodes which may be arbitrarily close together yet lie in different grid cells
(see nodes a′ and b′ of Figure 4(c)) we utilize three vertex partitions of G induced by three
different grids obtained by “shifting” the grid of Section 3. This ensures every pair of vertices
that are close to each other will be contained completely in a grid cell of at least one of the
three grids. This construction is described in Algorithm BuildRoutingGraph and illustrated
in Figure 5.

A key ingredient to this solution is the construction of a bounded degree, planar, Euclidean
t-spanner of the cliques induced by the grid cells of the three grids. Wang and Li [22] have
proposed a local algorithm for computing just such a spanner. For concreteness, we fix the
Wang-Li algorithm and for any UDG H , let the Wang-Li spanner of H , denoted WL(H), be
the bounded degree, planar, Euclidean t-spanner of H computed by the algorithm of Wang
and Li [22]. Let G[C] be the subgraph of G induced by the vertices in cell C.

Algorithm BuildRoutingGraph

Input: G = d-QUDG with d ≥ 1/
√

2
Output: Routing Graph GR

1. Place a blue grid of d√
2
× d√

2
cells passing through (0, 0), a red grid of d√

2
× d√

2
cells passing

through (d

3
√

2
, d

3
√

2
), and a green grid of d√

2
× d√

2
cells passing through (2d

3
√

2
, 2d

3
√

2
).

2. For each edge e in G initialize color(e) to the empty set.
3. For each non-empty grid cell C in each grid, construct the Wang-Li spanner WL(G[C]). If

C belongs to a grid of color x ∈ {blue, red, green} then add x to color(e) for each edge e in
WL(G[C]).

4. Construct GB using the blue grid and algorithm BuildBackbone from Section 3.
5. GR is the union of VN(GB) and each WL(G[C]) from step 3.

To route a message from s to t, node s first checks to see if it shares a cell with t in any
of the three grids. If so, the message is routed from s to t using only edges of WL(G[C]). If
not, then the backbone graph is used for routing. The details of this protocol are given below
in Algorithm Route2.

Algorithm Route2

Input: s, t ∈ G, message M , geographic routing algorithm A.

1. If s and t share a cell C in a grid of color x then route M on edges colored x, using algorithm A.
STOP.

2. Otherwise, let C be the blue cell containing s. Route M from s to the cluster head s′ of C on
edges colored blue using A.

3. Let t′ be the cluster head in the blue cell containing t. Route from s′ to t′ using A on VN(GB)
constructed in Step 4 of BuildRoutingGraph.

4. Route from t′ to t on edges colored blue using algorithm A. STOP.

As in the case of Route1, it is easy to see that Route2 is memoryless. The following lemma
states that if s and t are nearby then one of the Wang-Li spanners will provide a short st-path.

Lemma 5. For any pair of vertices u and v in G with ‖u−v‖2 ≤ d
3
√

2
, there is a cell of some

color that contains both u and v.

In the following, let d′
H(s, t) denote the length of an st-path in H with smallest Euclidean

length.

Lemma 6. For any pair of vertices s and t in G, there exists a path L = (s = z0, z1, z2, . . . , zp =
t) whose Euclidean length is at most β ·d′

G(s, t) for some constant β. Furthermore, if ‖s−t‖2 >
d

3
√

2
then there are vertices zi and zj in L, i < j, such that (i) zi and zj are cluster heads

of the blue cells containing s and t respectively, (ii) the subpath L1 = (s = z0, z1, . . . , zi) lies
in the blue cell that s belongs to, (ii) the subpath L2 = (zi, zi+1, . . . , zj−1, zj) belongs entirely
to VN(GB), and (iii) the subpath L3 = (zj , zj+1, . . . , zp = t) lies entirely in the blue cell
containing t.

Proof. Consider an st pair. If s and t share a grid cell of color x, then according to “Step
1” of Route2, there is a path of length at most c1· d′G(s, t), for some constant c1, using only
edges of color x.

���

�

�

�

�

�
�

�

���

�

�

�

�

�
�

�

���

���

��
�	

��
�	

�
�

�

	

�

�

�

�

���

�

�

�

�

 �

�

�

�

�

�

 �

�

��
�	

���	 ���

�

	

�

�

�

�

�

�

Fig. 5. (a) The three shifted grids with d√
2
× d√

2
dimensional cells. The grids are colored blue, red,

and green and are shown with dashed, heavy, and light lines, respectively. (b) A clique induced by
the blue cell Cb with lower left corner A. (c) A planar, constant-degree Euclidean t-spanner of G[Cb].
(d) A clique induced by the red cell Cr with lower left corner B. Note that vertices b, c, e, and f
are common to Cb and Cr. (e) A planar, constant-degree Euclidean t-spanner of G[Cr]. (f) A clique
induced by the green cell Cg with lower left corner C. Note that vertices e, f, h, and i are common
to Cr and Cg. (g) A planar, constant-degree Euclidean t-spanner of G[Cg]. Note that vertices e and
f are common to Cb, Cr, and Cg. Also note that edge {e, f} happens to be common to the spanners
in (c), (e), and (g) and hence has three colors in GR.

So, let s and t not share any grid cell. By Lemma 5, d′
G(s, t) > d

3
√

2
. Now, consider the

blue grid and the partition induced by it. Let GB be the backbone constructed in “Step 4” of
BuildRoutingGraph. Let P be a shortest Euclidean length path in G having fewest vertices.
Partition P into contiguous subsequences of vertices that belong to the same cell. Write these
sequences as B0, B1, . . . , Bq , each Bi belongs to Ci, and Bi and Bi+1 belong to distinct cells.
Now note that any vertex in Bi and any vertex in Bi+2 are more than d units apart. Hence,
q·d
2 ≤ d′G(s, t). Let hi denote the clusterhead of Ci. Consider Q = (s ; h0, h1, . . . , hq ; t),

where s ; h0 and hq ; t are paths in the blue Wang-Li spanner between s and its clusterhead
h0, and t and its clusterhead hq , respectively. Now, consider the backbone graph along with all
the blue Wang-Li spanners; call it H . Note that H has no virtual nodes. Q can be realized as
a path R = (s ; h0, x1, x2 . . . , xr−1, hr ; t) in H with r ≤ 3q. This is because GB contains
a path of at most 3 hops between hi and hi+1, 0 ≤ i < q. Furthermore, note that all the
xi’s belong to GB . GR is obtained from H by the introduction of virtual nodes into GB . The
introduction of virtual nodes expands each edge in GB by at most (c + 1) hops where c is the
constant upper bound on the number of edges of GB that can cross any edge in GB . Thus
the total Euclidean distance of the “expanded” path is 2c1 + 3(c + 1)q, where c1 is the upper
bound on the Euclidean stretch guaranteed by the Wang-Li spanner. Using the upper bound
of q ≤ 2d′

G(s, t)/d, we get the result.

We can combine the spanning property of the routing graph, proved in the above lemma, with
worst case performance guarantees for GOAFR+ to obtain the following result.

Theorem 3. Let s and t be nodes in G and let ` be the length of a shortest Euclidean st-path
in G. If GOAFR+ is used as the geographic routing algorithm A in Route2, then the Euclidean
distance traveled by a message routed from s to t using Route2 is O(`2).

Proof. If s and t are such that ‖s − t‖2 ≤ d
3
√

2
then Lemma 5 tells us that s and t are in a

cell C. In this case, Algorithm Route2 uses WL(G[C]) to route the message from s to t. By
construction, WL(G[C]) is guaranteed to be planar and contain a path of Euclidean length
at most c · ` for some constant c. Therefore, if GOAFR+ is used to route the message from s
to t in WL(G[C]), the message travels O((c`)2) = O(`2) Euclidean distance.

If ‖s−t‖2 > d
3
√

2
, then Lemma 6 tells us that there exists a path L = (s = z0, z1, z2, . . . , zp =

t) whose Euclidean length is at most β · ` for some constant β. Now consider the subpaths L1,
L2, and L3 of L, and let `1, `2, and `3 respectively be the Euclidean lengths of these subpaths.
Let C be the blue cell containing s. Since L1 is a path from s = z0 to zi in WL(G[C]) and since
Algorithm Route2 routes from s = z0 to zi using GOAFR+ on the graph WL(G[C]), the mes-
sage travels a distance of O(`2

1) from s to zi. Similarly, the message travels a distance of O(`2
2)

from zi to zj and O(`2
3) from zj to t. Thus the message travels a total distance of O(`2

1+`2
2+`2

3)
in GR. Using the fact that `1 + `2 + `3 =≤ β · ` and the fact that `2

1 + `2
2 + `2

3 ≤ (`1 + `2 + `3)
2,

we get that O(`2) is the total distance traveled by the message.

5 Suggestions for Load Balancing

The topology control and routing schemes proposed in the previous two sections tend to
overload the backbone nodes with the responsibility of forwarding most messages, with only a
tiny fraction of the network nodes bearing most of the responsibility for forwarding messages.
These schemes can be modified so the routing responsibility is more evenly distributed. Such
modifications could include the standard technique of rotating the cluster head designation
among all nodes in a cluster. Here we mention two other approaches. In the construction in
the previous section, we used 3 shifted grids to ensure that nodes that are close enough share
a grid cell in at least one of the three grids. This idea can also be used to construct 3 backbone
graphs instead of one and routing could “rotate” among the different backbone graphs. An
obvious extension would allow k ≥ 3 distinct grids, leading to k different backbone graphs;
this comes at the price of larger routing tables whose size would grow linearly in k. Another
approach to load balancing may be achieved by combining the virtual nodes idea with a key
idea from the MGGR protocol [11] mentioned in Section 1. An important idea in MGGR is to
use the backbone graph simply as a “guide” rather than for actual routing. Suppose a node s
has a message to send to node t. Rather than forwarding the message to its cluster head h, s
determines for itself to which backbone node h′, node h would have forwarded the message.
Node s then attempts to send the message to some node in the cluster of h′. Thus the message
moves from cluster to cluster without necessarily using the backbone, thereby reducing the
load on backbone nodes.

Acknowledgment. We thank an anonymous referee for useful comments and pointers to
the literature, especially for pointing out that the “virtual nodes idea” has been mentioned
before.

References

1. K. M. Alzoubi, P.-J. Wan, and O. Frieder. Message-optimal connected dominating sets in mobile
ad hoc networks. In Proceedings of the 3rd ACM international symposium on Mobile ad hoc
networking & computing (MobiHoc’02), pages 157–164, New York, NY, USA, 2002. ACM Press.

2. L. Barriére, P. Fraigniaud, and L. Narayanan. Robust position-based routing in wireless ad hoc
networks with unstable transmission ranges. In Proceedings of the 5th international workshop on
Discrete algorithms and methods for mobile computing and communications (DIALM’01), pages
19–27, 2001.

3. P. Bose, L. Devroye, W. S. Evans, and D. G. Kirkpatrick. On the spanning ratio of gabriel
graphs and beta-skeletons. In Proceedings of the 5th Latin American Symposium on Theoretical
Informatics (LATIN’02), pages 479–493, 2002.

4. P. Bose and P. Morin. Online routing in triangulations. In Proceedings of the 10th International
Symposium on Algorithms and Computation (ISAAC’99), pages 113–122, London, UK, 1999.
Springer-Verlag.

5. P. Bose, P. Morin, I. Stojmenović, and J. Urrutia. Routing with guaranteed delivery in ad hoc
wireless networks. Wireless Networks, 7(6):609–616, 2001.

6. E. Chang. Echo algorithms: Depth parallel operations on general graphs. IEEE Transactions on
Software Engineering, 8(4):391–401, July 1982.

7. M. Damian, S. Pandit, and S. Pemmaraju. Local approximation schemes for topology control.
In Proceedings of the twenty-fifth annual ACM symposium on Principles of distributed computing
(PODC’06), pages 208–217, New York, NY, USA, 2006. ACM Press.

8. D. P. Dobkin, S. J. Friedman, and K. J. Supowit. Delaunay graphs are almost as good as complete
graphs. Discrete and Computational Geometry, 5(4):399–407, 1990.

9. D. Eppstein. Spanning trees and spanners. In Jörg-Rudiger Sack and Jorge Urrutia, editors,
Handbook of Computational Geometry, chapter 9, pages 425–461. Elsevier, 2000.

10. Q. Fang, J. Gao, L. Guibas, V. Silva, and L. Zhang. GLIDER: Gradient landmark-based dis-
tributed routing for sensor networks. In Proceedings of the 24th Conference of the IEEE Com-
munication Society (INFOCOM’05), volume 1, pages 339–350, March 2005.

11. S. Funke and N. Milosavljević. Guaranteed-delivery geographic routing under uncertain node
locations. In Proceedings of the 26th Annual Joint Conference of the IEEE Computer and Com-
munications Societies (INFOCOM’07), 2007.

12. J. Gao, L. J. Guibas, J. Hershberger, L. Zhang, and A. Zhu. Geometric spanner for routing
in mobile networks. In Proceedings of the 2nd ACM international symposium on Mobile ad hoc
networking & computing (MobiHoc’01), pages 45–55, 2001.

13. Y.-J. Kim R. Govindan, B. Karp, and S. Shenker. Lazy cross-link removal for geographic rout-
ing. In Proceedings of the 4th international conference on Embedded networked sensor systems
(SenSys’06), pages 112–124, New York, NY, USA, 2006. ACM Press.

14. B. Karp and H. T. Kung. GPSR: Greedy perimeter stateless routing for wireless networks. In
Proceedings of the Sixth Annual ACM/IEEE International Conference on Mobile Computing and
Networking (MobiCom’00), pages 243–254, 2000.

15. Y.-J. Kim, R. Govindan, B. Karp, and S. Shenker. On the pitfalls of geographic face routing. In
Proceedings of the 2005 joint workshop on Foundations of mobile computing (DIALM-POMC’05),
pages 34–43, New York, NY, USA, 2005. ACM Press.

16. F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger. Geometric ad-hoc routing: Of theory
and practice. In Proceedings of the twenty-second annual symposium on Principles of distributed
computing (PODC’03), pages 63–72, New York, NY, USA, 2003. ACM Press.

17. F. Kuhn, R. Wattenhofer, and A. Zollinger. Ad-hoc networks beyond unit disk graphs. In
Proceedings of the 2003 joint workshop on Foundations of mobile computing (DIALM-POMC’03),
pages 69–78, New York, NY, USA, 2003. ACM Press.

18. F. Kuhn, R. Wattenhofer, and A. Zollinger. Worst-case optimal and average-case efficient geo-
metric ad-hoc routing. In Proceedings of the 4th ACM international symposium on Mobile ad hoc
networking & computing (MobiHoc’03), pages 267–278, New York, NY, USA, 2003. ACM Press.

19. X.-Y. Li, W.-Z. Song, and W. Wang. A unified energy-efficient topology for unicast and broadcast.
In Proceedings of the 11th annual international conference on Mobile computing and networking
(MobiCom’05), pages 1–15, New York, NY, USA, 2005. ACM Press.

20. T. Moscibroda and R. Wattenhofer. Minimizing interference in ad hoc and sensor networks. In
Proceedings of the 2005 joint workshop on Foundations of mobile computing (DIALM-POMC’05),
pages 24–33, New York, NY, USA, 2005. ACM Press.

21. D. Peleg. Distributed computing: a locality-sensitive approach. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2000.

22. Y. Wang and X.-Y. Li. Localized construction of bounded degree and planar spanner for wireless
ad hoc networks. In Proceedings of the Joint Workshop on Foundations of Mobile Computing
(DIALM-POMC’03), pages 59–68, 2003.

