
Temporal Partition in Sensor Networks

Ted Herman1, Sriram Pemmaraju1, Laurence Pilard1,2, and Morten Mjelde1,3

1 Department of Computer Science,
University of Iowa, Iowa City, IA 52242-1419, U.S.A.

[herman,sriram]@cs.uiowa.edu
2 Somewhere in France pilard.laurence@gmail.com

3 Department of Informatics
University of Bergen

N-5020, Bergen, Norway mortenm@ii.uib.no

Abstract. Sensor networks are composed of nodes embedded in physical
environments where applications may be tasked to run for years with-
out human maintenance and without continuous external power supply.
Strategies for power conservation are thus important in sensor network
protocols and system architecture. One such strategy is to arrange node
sleeping schedules so that radios are powered off until communication is
necessary. Nodes cannot receive messages during periods when the ra-
dio is turned off. In this setting, there can arise situations where groups
of network nodes have somehow become temporally partitioned : due to
having different sleeping schedules, groups of nodes could be unaware of
each other. The paper presents several self-stabilizing protocols to solve
the problem of temporal partition; starting from an arbitrary temporally
partitioned state, these protocols lead the network to a state in which
all nodes have a perfectly aligned sleep schedule. Our techniques include
using randomly chosen relatively prime sleep periods and occasional, and
possibly random, probing of extra time slots. Our protocols aim for fast
convergence while imposing only a small energy consumption overhead.

1 Introduction

Efficient power utilization is widely studied in the Wireless Sensor Networks
(WSN) community. WSNs are composed of nodes embedded in physical envi-
ronments. In the literature, WSNs vary widely in their capabilities, ranging from
primitive computing devices with a few thousand bytes of memory to cell-phone
class machines that have tens of megabytes of memory. Similarly, there can be
wide variation of communication bandwidth, computing speed, and sensing ca-
pabilities. Network architectures for WSNs may depend on a gateway that is
the source of commands and the sink for sensor data; or the architecture may
be fully distributed, allowing even for mobile nodes. In some scenarios, selected
nodes could be attached to powered infrastructure, whereas others depend on
battery power, possibly supplemented by intermittent power supply (e.g., solar
or vibrational energy harvesting). Finally, users specify desired latency, network
lifetime, sensing accuracy, and so forth, leading to applications with differing

structures (sensed values can either be triggered by events and reported quickly
or can be sampled periodically and aggregated to be collected later). Taking this
broad spectrum of architectures and capabilities into account, efficient power uti-
lization depends on the selection of model details. Section 2 presents the model
choices for this paper.

Among the ideas for reducing power consumption, powering down the pro-
cessor is the simplest to implement (modern processor architectures typically
enable fast switching to low power idle states). Auxiliary devices in a sensor
node, including flash memory and radio, can also be put into low power modes
or turned off completely. To illustrate the utility of turning off the radio, we con-
sider power metrics for a widely used radio chip, the CC2420. During a transmit
operation, the radio draws between 8.5 to 17.4 milliAmps, depending on which
level of transmission power is selected; during a receive operation, the radio
draws 18.8 milliAmps. The radio can also be in idle mode, ready to receive a
message or sensing radio frequency activity. But, even in idle mode, the radio
uses 426 microAmps. Typical message transmission (or reception) time is 1.472
milliseconds. It follows that receiving a message consumes the same power as
running in idle mode only for about 65 milliseconds. Thus a significant power
saving is gained by turning the radio off rather than leaving it in idle mode. With
a battery rated at 1000 milliAmp-hours, maintaining the radio in idle mode con-
sumes the battery supply in a few months, which may be too short for some of
the applications being considered for WSNs.

The WSN literature refers to techniques that power off the radio (and other
devices) intermittently as duty cycling. A common strategy is to arrange periodic
time intervals, called cycles, that begin with the radio on for some fixed period
of activity, followed by turning the radio off for the remainder of the cycle. The
fixed period with the radio on is called the active period, and the remainder of
the cycle is the sleeping period (see Figure 1(a)). The duty cycle is defined as the
ratio of the active period length to the length of the entire cycle (sum of active
and sleeping periods). Typical WSN targets for duty cycles are 1% or below,
which can extend to years the life of a sensor network running on batteries.
Though duty cycling seems obviously a good idea to conserve power, there is
some risk associated with duty cycle implementation, as the following paragraph
explains.

Selection of duty cycle parameters must be balanced against application and
network protocol performance. The question of what are optimal parameters
for duty cycling has been addressed in previous research (Section 3 covers some
results). Some other issues concerning duty cycle implementation are robustness
to deployment errors, adaptation dynamic changes to the network, and mobility
of sensor nodes. The basic problem we examine in this paper is temporal partition.
If different subnetworks of a WSN follow duty cycles that are “displaced” such
that one subnetwork is sleeping while another is active, can the duty cycling
protocol automatically bring the subnetworks together to a common duty cycle?
At any time, a set R of nodes in the WSN are called aligned if their cycles have
the same lengths (active and sleeping periods) and the time instants of when the

time

sleep

active

cycle

A

B

C

(a) (b)

Fig. 1. (a) The typical cycle of an active period followed by a sleep period. (b) Nodes
A and B are aligned, whereas node pairs (A,C) and (B, C) are displaced.

next active period starts, for nodes in R, all lie in some time interval of length ǫ
(a platform-dependent tolerance factor related to timekeeping abilities). If a pair
(x, y) of nodes is not aligned, then we say x and y are displaced ; more generally,
if a set R is aligned and a set S is aligned, but if R ∪ S is not aligned, then
R and S are displaced (see Figure 1(b)). This terminology enables a succinct
statement of the problem we consider, which is a problem of self-stabilization:
starting from an initial state where each node has some arbitrary cycle, does the
protocol eventually converge to state where the set of all nodes is aligned, and
remains aligned thereafter? Implicit in this problem statement is the fact that
a pair of displaced nodes may have no awareness of each other and cannot gain
this awareness until they are aligned.

One could argue that, in practice, temporal partition rarely if ever occurs,
because transient faults of state are very rare (we do not have any data on the
occurrence of such faults) and networks are carefully deployed. The addition
of new nodes to a network is simple to accommodate: after initialization, new
nodes remain active until they overhear the current cycle and then join the
network gracefully. Nevertheless, a protocol that can stabilize from temporal
partition has the virtue of relaxing constraints on deployment, say, that nodes
must be initialized in a controlled order, or disallowing that some group of nodes
accidentally initialized together could later be brought to the network as an
active group with their own established cycle.

2 Assumptions, Definitions, and Results

If two WSN nodes p and q are in bidirectional communication range, we say
there is a link between p and q. Let G be the graph induced by the nodes
and bidirectional links; we assume G is connected at any instant. Nodes have
immutable, distinct identifiers. A subset S of nodes in G is stably aligned if all
nodes in S are aligned and remain aligned forever in the absence of any transient
faults in the network. The length of the active period is given; we assume that
this is a fixed constant and sufficient for a node to perform local bidirectional

communication (i.e., with all neighbors). This assumption is partly justified by
the local broadcast model of communication that is typically used for WSNs; in
this model a message transmitted by a node can be heard by all other nodes in its
communication range. Our protocols remain correct even if the active periods
have larger length, e.g., proportional to the diameter of the network, and if
these lengths vary from cycle to cycle. However, our running time analysis is
considerably simplified by this assumption. To simplify exposition, we normalize
the active period length and take it to be 1 time unit. We are also given an upper
bound, denoted sleepupper, on the length of the sleeping period. This upper
bound is dictated by application latency and periodic reporting specification.
Given such an upper bound, 1/(1 + sleepupper) is a lower bound on the duty
cycle that our protocols can achieve.

We can now state the temporal partition problem precisely. The nodes of G
are partitioned into subsets N1, N2, . . . such that nodes in each subset Ni are
initially aligned, whereas nodes in any pair of distinct subsets (Ni, Nj), i 6= j,
are displaced. Devise a self-stabilizing protocol such that the set of all nodes in
G is eventually stably aligned. We use two measures for the performance of our
protocols: (i) duty cycle and (ii) convergence time, which we define (as usual)
for deterministic protocols to be the worst case time from initial state to a state
in which the set of all nodes in G is stably aligned. For randomized protocols
we compute the expected convergence time and when possible the convergence
time guaranteed with high probability (i.e., 1 − 1/n, where n is the number of
nodes in the network).

We now state our assumptions related to other important issues such as com-
munication, mobility, and clock synchrony. Nodes send and receive messages to
communicate and transmission of a message is not acknowledged. For simplicity
of exposition, we assume that messages are not lost. However, our results easily
extend to the case where messages can be lost, but if (p, q) remains a bidirec-
tional link for some constant number of cycles, then at least one of p’s messages
is received by q and vice versa. For simplicity of analysis, we assume that nodes
are not mobile, though our protocols are correct even in the presence of lim-
ited node mobility. Sensor nodes have discrete clocks that can provide relative
timing functions and scheduled wakeup signals and cycle scheduling is enabled
by clock synchronization. We assume that a clock synchronization protocol ex-
changes messages during the active period of the cycle. Consider a network of
two nodes, (p, q) that are displaced. The nodes remain displaced at least until
some communication occurs between them, so that they can adjust their cycles
to become aligned. It is therefore necessary that active periods of the two nodes
overlap for a long enough period of time to enable the requisite communica-
tion. Whereas clocks are discrete, the amount of displacement between clocks
of different nodes may be an arbitrarily small real number. To avoid dealing
with fractional overlap between active periods of different nodes, we make the
simplifying assumption that the clock “ticks” of all clocks are perfectly aligned.
For example, when clock(x) reads 10 units, at that very instant clock(y) reads t
time units for some integral t.

Results. The paper presents two classes of self-stabilizing protocols for the tem-
poral partition problem. The first class of protocols (Section 4.1) use a “no cost”
approach, which permits nodes to only vary their sleep periods and does not
allow them to remain active outside their given active periods. This class of pro-
tocols provide O(diam(G) · z2) convergence time with 1/z duty cycle for any
z ≤ sleepupper. The key step in these protocols is a randomized choice of rela-
tively prime sleep periods. The second class of protocols (Section 4.2) use probing.
These protocols permit nodes to remain active for a small number of time slots
outside their active period, for the purposes of probing other components. We
consider deterministic as well as randomized probing techniques. We present a

family of deterministic probing protocols that provide O(diam(G) · z2

c) conver-
gence time with a duty cycle of 1+c

z , for any integer c, 1 ≤ c ≤ z − 1. We show
that these protocols are optimal by providing matching lower bounds. For dense,
constant-diameter networks, randomized probing provides O(z·(log z+log log n))
convergence time with 2/z duty cycle, for any z ≤ sleepupper. We provide a com-
parison of the results for these classes of protocols in Section 5.

3 Related Work

In WSN research, problems of power conservation are found at all layers of
system architecture. Low-power radio operation has been investigated primarily
as part of the MAC layer or at the application layer. The MAC layer encapsulates
control of the radio chip, thereby shielding the application from low-level timing
of transmission, interrupt processing, and some details of error detection and
message acknowledgment.

One of the first MAC protocols engineered for power control in a WSN is
S-MAC [1, 4] (see also T-MAC [2] and Trama [3], which similarly schedule ac-
tive and sleeping periods). The S-MAC protocol uses active periods of fixed size
and sleeping periods of variable size. In S-MAC, nodes are aware of neighbors
and exchange schedules and synchronization information with neighbors to ad-
just sleeping periods. Typical choices in the design of MAC protocols beyond
the duty cycle include selecting a technique for resolving contention, and choos-
ing RTS/CTS signaling similar to 802.11. The B-MAC protocol [8] introduces
a simpler technique for duty cycling that relies on a hardware trade-off rather
than coordinated scheduling. The innovation of B-MAC is Low-Power Listening
(LPL), in which nodes sleep for some time, followed by a brief sampling of the ra-
dio to detect upcoming transmissions; if there is no radio activity, a node returns
to sleep following the sample. LPL requires that transmitters send a preamble
to each message such that the length of the preamble is at least the length of the
LPL sleeping time. Experiments validate that LPL can achieve a duty cycle of
1% (and if transmit operations are rare, the extra power cost of transmission is
tolerable). B-MAC has lower overhead than previous power-efficient MAC pro-
tocols, but requires hardware features to implement the preamble (not all radio
chips offer this feature). Analysis for a typical sensor network application in [8]
reveals that B-MAC’s advantage to extend node lifetime is limited: LPL duty

cycles cannot be pushed much below 1%. Subsequently, SCP-MAC [5] shows how
duty cycles below 0.1% can be obtained, reverting to the theme of scheduled,
coordinated sleeping periods rather than using the LPL technique.

Exploiting knowledge at the application layer can enable duty cycles far
below 0.1%. An application demonstrated at Intel [10] only requires that nodes
report sensor data once per day. Note that arranging all nodes to wake once per
day, and also to have a small tolerance interval ǫ, depends on the accuracy of
node clocks. It becomes necessary to estimate clock drift [7], which can change
significantly over the course of time. At the application layer, duty cycling is
useful not only to control radio power, but also to shift sensor coverage where
the WSN has sufficiently redundant coverage to allow rotation of sensing duty
[6].

Numerous WSN case studies feature scenarios that would enable simple ap-
proaches to dealing with temporal partition. For example, a single-hop network
(clique topology) eliminates the multi-hop issues. The existence of a gateway
or base-station and guaranteed (multi-hop) connectivity to base-station can be
leveraged: nodes that lose connectivity to the base-station can revert to a boot-
strap protocol, remaining active until connectivity is established. Similarly, the
availability of nodes powered by the electric grid can anchor scheduling, since
these nodes do not need to sleep. If nodes have access to GPS or some indepen-
dent source of global time, alignment is easy to obtain. Thus, clock synchroniza-
tion can be the basis for solving temporal partition, provided nodes are active
to exchange synchronization messages.

4 Protocols

We distinguish two approaches for protocol design: (i) the “no cost” approach
varies only the length of the sleep period up to the sleepupper bound; (ii) the
“probing” approach adds active periods for the purpose of accelerating conver-
gence.

Before we present our protocols in detail, we discuss the issue of how compo-
nents merge with each other after detection; this pertains to all our protocols.
When the active period of a node a overlaps with the active period of a node
b, both nodes acquire information about each other. Then using an unspecified
“merge rule,” either a decides to join b’s component or vice versa. There can
be a variety of deterministic or randomized merge rules. For example, a node
with smaller clock value may join the component of node with larger clock value;
alternately, IDs of component leaders may be used to make this decision. Ideally
a merge rule should be simple and not impose any communication overhead. Be-
sides the merge rule, there is also the issue of whether or not a node a takes its
component along when it joins node b’s component. If we assume yes, then node
a needs to communicate its decision to the rest of the nodes in its component
and this imposes a communication overhead. The advantage of this approach is
that for any component, each of its nodes is trying to detect other components,
thereby increasing the possibility that this component will join others. In order

to minimize communication overhead, our protocols assume that nodes individ-
ually make the decision to join other components, without taking the rest of
their component along. Exploring the trade-offs between these two approaches
is for the future.

4.1 No Cost Approaches

This section presents an efficient “no cost” protocol to solve the temporal par-
tition problem. The basic structure of protocols being considered here is the
following.

1. If v receives a message from a node u such that clock(v) 6= clock(u) and
if the “merge rule” is satisfied then v copies clock(u) and other associated
information.

2. Node v picks its sleep period sv ≤ sleepupper.

The above two steps are executed as part of node v’s active period. After
completion of its active period, v sleeps for sv slots and then repeats the above
protocol. Due to the assumption that the active period of a node occupies one
time slot, the cycle length of node v, zv = 1 + sv. Variants of the above protocol
are obtained by varying how the sleep period sv is chosen. For example, sv may
vary from node to node and from one cycle to the next, sv may be chosen using
a deterministic rule or a randomized rule, etc. In the rest of this subsection we
assume that all nodes in a stably aligned component choose the same sleep period
in each cycle, though this may vary from cycle to cycle. This can be achieved
without any communication because these nodes share common information (a
synchronized clock, the ID of the component leader, etc.) and the sleep period is
a function of such information. This is true even if the choice of the sleep period
is random; if all nodes in a stably aligned component use their clock value as a
seed for the random number generator, they obtain identical sleep periods with
no need for additional communication. The following lemma uses elementary
number-theoretic arguments to show that the choice of sv is critical.

Lemma 1. Let za and zb respectively be the cycle lengths of nodes a and b, in
every cycle.

(i) If za and zb are not relatively prime then there exists an initial displacement
of a and b such that the active periods never overlap.

(ii) If za and zb are relatively prime then the active periods of a and b overlap
is at most sa · sb time slots, regardless of the initial displacement.

Proof. (i) Let f > 1 be a common factor of za and zb. For any pair of positive
integers ma and mb, the quantity ma · za − mb · zb is a multiple of f and is
therefore distinct from 1. If nodes a and b start with an initial displacement of
1, then no matter how many cycles a runs for and no matter how many cycles
b runs for, the active periods of a and b never overlap.
(ii) Without loss of generality, suppose that za > zb. Then for any possible

displacement k, the equation ma ·za−mb ·zb = k has a positive integer solutions
for ma and mb satisfying ma ≤ sb and mb ≤ sa. Thus the active periods of a
and b overlap in at most sa · sb time slots.

The above lemma suggests the assignment of relatively prime cycle lengths to dif-
ferent components in order to guarantee convergence. For a pair of components,
an easy choice would be integers z and z+1 satisfying 2 ≤ z < z+1 ≤ sleepupper
because such a pair is guaranteed to be relatively prime. See Figure 2 for an il-

time

cycle

cycle

overlapz = 5

z = 4

node a

node b

Fig. 2. Illustration for two nodes, a with cycle length 5 and b with cycle length 4. In
this example, after the active periods of a and b overlap, node b adopts the cycle length
of a and the two nodes will continue to be aligned forever.

lustration of how convergence takes place for z = 4. However components are
unaware of each other’s existence and are therefore unaware of the choices that
other components make. Therefore deterministically guaranteeing that the two
components make distinct choices is difficult and so we resort to randomization.
Let z be a fixed integer satisfying 2 ≤ z ≤ sleepupper. Each node v performs the
following step in determining its sleep period.

NoCost1(v): In each cycle, node v picks its sleep period sv uniformly at
random from {z − 1, z}.

Thus the cycle length of each node v is either z or z + 1. Note that the above
protocol assumes that all nodes are aware of z. This is justified by assuming
that all nodes are informed of sleepupper and use a common, deterministic rule
for picking an integer z, 2 ≤ z ≤ sleepupper − 1 (e.g., pick the largest integer z:
2 ≤ z ≤ sleepupper − 1). We now prove an upper bound on the number of time
slots it takes for the active periods of a pair of nodes using the NoCost1 rule to
overlap. Define the displacement of a pair of nodes to be the minimum distance,
in time slots, between the active periods of the nodes.

Lemma 2. In a network in which nodes use the NoCost1 rule for picking sleep
periods, for any two nodes a and b, the active periods of a and b will overlap in
expected O(z3) time.

Proof. Let Z be the random variable denoting the displacement between nodes
a and b. Suppose that at the beginning of a cycle 0 < Z < ⌊z/2⌋. Then at
the end of the cycle, Z increases by 1 with probability 1/4, decreases by 1 with
probability 1/4, and retains the same value with probability 1/2. At the two
extreme values Z = 0 and Z = ⌊z/2⌋, the random variable behaves as follows:
(i) if Z = 0, then at the end of the cycle, Z increases by 1 with probability 1/2
and retains the same value with probability 1/2; (ii) if Z = ⌊z/2⌋, then at the
end of the cycle Z decreases by 1 with probability 1/2 and retains the same value
with probability 1/2. This behavior of Z as a function of the number of cycles
is a 1-dimensional random walk with reflecting barriers and it is well known [9]
that such a random walk will reach Z = 0 in expected O(z2) steps (cycles),
which translates to O(z3) time slots, independent of what the initial value of Z
is.

The random walk described in the above proof is a somewhat inefficient way
of removing the displacement between a pair of nodes, especially given the fact
that if we could somehow force one component to pick z and the other to pick
z + 1 we could get convergence in O(z) cycles (= O(z2) time slots) because
in each cycle the displacement between the two components would consistently
change by one slot. This observation motivates the following rule for picking a
sleep period.

NoCost2(v): Node v picks sv uniformly at random from {z − 1, z} and
retains the same sleep period for z cycles.

The use of NoCost2 shaves off a factor of “z” from the expected time to overlap
and gets us to within a constant factor of the optimal deterministic selection.

Lemma 3. In a network in which nodes use the NoCost2 rule for picking sleep
periods, for any two nodes a and b, the active periods of a and b will overlap in
expected O(z2) time.

Proof. Let a phase denote z cycles. If a and b pick distinct cycle lengths then
they overlap in one phase; the probability of this event is 1/2. On the other hand,
with probability 1/2, a and b might pick the same cycle length and continue to
have the same displacement at the end of the phase. Therefore, the random
variable P , denoting the number of phases before overlap, has the geometric
distribution Prob[P = k] = 1/2k and therefore E[P] = O(1). This means that
the active periods of a and b overlap in expected O(1) phases, which translates
to expected O(z) cycles or expected O(z2) time slots.

The above lemma considers only two components. We now consider the gen-
eral case where the network has arbitrarily many stably aligned components of
arbitrary sizes. Each node executes NoCost2 and to be concrete we assume the
merge rule: if clock(a) < clock(b) then node a joins node b’s component.

Theorem 1. In expected O(diam(G) · z2) time slots, the network will have ex-
actly one stably aligned component. Here diam(G) refers to the diameter of the
network G.

Proof. Let v be a node with largest clock value. From Lemma 3 we see that
in expected O(z2) time slots, all neighbors of v would have inherited v’s clock
value. Note that the stably aligned component containing v will continue to
have the largest clock value in the network. Continuing inductively, we see that
in expected O(t · z2) time slots, all nodes within t hops from v would have
inherited v’s clock, leading to the theorem.

Corollary 1. There is a self-stabilizing protocol that solves the temporal parti-
tion problem without using any extra active time periods in O(diam(G) ·z2) time
with a 1/z duty cycle.

A cycle length of z and a duty cycle of 1/z prevents the nodes from using
any extra active time periods, besides the given active periods they are required
to have. In such a setting information takes Ω(z) time slots to traverse O(1)
hops in the network and therefore we get an Ω(diam(G) · z) lower bound on the
convergence time for any no cost protocol. The above result is thus a factor of
“z” away from this lower bound.

4.2 Probing Approaches

While the no-cost approach shows convergence with no additional power con-
sumption, it is possible to speed up the convergence by increasing the duty cycle
by only a constant factor. This is done by permitting nodes to be active for
additional time slots outside their active periods for the purposes of “probing”
for other components. During the additional activity each node will search for
nodes not belonging to its own stably aligned component. Contrary to the no-
cost approach, we make the sleep period identical for all nodes in all cycles.

In this section we will consider two methods for probing: deterministic and
randomized. In both approaches, during a component’s active period, every node
will select one probing period from the sleeping period during which it will turn
its radio on. This probing period may be selected deterministically or randomly,
as we shall see in the following.

Deterministic Probing We starts this section with a deterministic probing
protocol. Let z be the cycle length and assume that time slots in a cycle are
labeled 0, 1, . . . , z − 1. For an integer parameter c, 1 ≤ c ≤ z − 1, we define the
probing period to be a size-c set of consecutive integers in [1, z − 1]. The basic
structure of the protocol is the following: during its active period, a node chooses
its next probing period in a cyclic manner, i.e. slots [1, c], then slots [c + 1, 2c],
and so until the end of its cycle. The node starts again with slots [1, c], and so on.
Assuming that each component has an ID which is the greatest ID of any node in
the component, we have the following merging rule. During the probing period,
if a node v detects a node u which is not in its own component, then if the ID
of the u’s component is higher than the ID of the v’s component, v immediately
joins the u’s component, otherwise v sends a message containing its clock and

its ID’s component to u, then u immediately joins the v’s component. Recall
two assumptions we made in Section 2: ((i)) the length of the active period (i.e.,
1 time unit) is sufficiently large to allow reliable bidirectional communication
and ((ii)) the length of overlap between any two time periods is integral. These
two assumptions along with the fact that u and v are neighbors implies that all
of the communication described above completes before the end of the active
period of u. It is straight forward to see that the duty cycle of the protocol is
(1 + c)/z. We now analyze the convergence time of this protocol.

Lemma 4. The convergence complexity for two nodes is O(z2

c).

Proof. Observe that each cycles is divided up into z−1
c probing periods, and that

following z−1
c cycles every probing period has been selected by both nodes, and

thus the two nodes will detect each other. Since the length of one cycles is z
time slots the result follows.

Since from Lemma 4 we see that within O(z2

c) time slots every node that is
a neighbor of the component with the highest ID will join that component, we
can use a similar proof as Theorem 1to get the following result.

Theorem 2. The convergence complexity of the protocol is O(diam · z2

c) where
diam is the diameter of the network.

We now show that the above protocol is optimal to within a constant factor by

proving a Ω(z2

c ·diam) convergence time of any deterministic protocol with duty
cycle of 1+c

z . We say that two connected components detect each other if the
probing period of one overlaps with the active period of each other. We assume
that detection is a sufficient condition to ensure that at least one node belonging
to one of the two components will merge with the other.

Define probing frame as the union of all probing periods (over many cycles). For
instance, if the probing period of a node is {1, 2, . . . , z − 1} (the entire sleeping
period) each cycle, then the probing frame of the node is the sleeping period itself.
In the same way, if the probing period alternates between {1, 2} and {3, 4}, the
probing frame is {1, 2, 3, 4}. Moreover, we assume that the probing frame begins
just after the active period. Note that all nodes in one stably aligned component
have the same probing frame. The next lemma considers the minimum length of
the probing frame in order to guarantee that two connected components will be
able to detect each other.

Lemma 5. Let A and B be two stably aligned components. Regardless of the
initial temporal displacement, the active period of A is guaranteed to overlap
with the probing period of B or the active period of B is guaranteed to overlap
with the probing period of A if and only if the length of the probing frame is at
least ⌊ z

2
⌋ slots.

Proof. In this proof we denoted the length of the sleeping period as sleep slots
and the length of the probing frame as probe slots. Recall that one slot is the
length of the active period.

Assuming that the active period of A does not overlap with the probing frame
of B, this implies that the active period of A starts after the probing frame of B
ends. Thus the length of the remaining sleeping period for B is sleep−probe, and
in order to ensure that the probing frame of A overlaps with the active period
of B we require that

sleep− probe ≤ probe.

Note that z = sleep + 1, and thus the above equation becomes

z − 1 − probe ≤ probe ⇒
z

2
−

1

2
≤ probe.

Since the length of the probing frame must be an integer number of slots, we get
that in order for the active period of B to overlap with the probing frame of A
we require probe ≥

⌊

z
2

⌋

.

The following lemma computes the minimum time complexity for two con-
nected components to detect each other.

Lemma 6. Given a protocol solving temporal partition using a deterministic
probing approach. Let c be the length of each probing period for every node.
The minimum time complexity ensured by the protocol for two stably aligned

components to detect each other is Ω(z2

c) slots.

Proof. Lets assume there are two connected components in the graph, A and
B. First note from Lemma 5 that if the length of the probing frame is at least
⌊

z
2

⌋

, there exists at least one probing period of A, respectively B, that overlaps
with the active period of B, respectively A. Observe that there are ⌊ z

2
⌋ · 1

c
probing periods in each probing frame, and since one probing period overlaps
with an active period, it follows that Ω(z

c) cycles are required before detection
is guaranteed. The length of one cycle is z slots, and the result follows.

In the following, we will denote a component graph Gc = (Vc, Ec) such that
every stably aligned component in the network is a node in Vc and there exists
an edge between two nodes A and B in Gc if and only if there exists an edge
between at least one node in A and one node in B in the network. We denote
N [A] as the set of nodes in the component graph that are within distance 1 of
A (which includes A).

Theorem 3. Consider a protocol that uses the deterministic probing approach
to solve the temporal partition problem ensuing a 1+c

z duty cycles. Such a protocol

has a convergence time Ω(z2

c ·diam) where diam is the diameter of the network.

Proof. We are going to make a proof by contradiction. Let us assume that such
a protocol exists. In this case, a better complexity should be achievable by this

protocol for any component graph. We consider a component graph that is a
chain consisting of the components C1, C2, ..., Cdiam where Ci is a neighbor of
Ci−1 and Ci+1 for every 2 ≤ i ≤ diam − 1. We assume that initially every
component consists of a single node, and we assign an ID to each node such that
ID(C1) > ID(C2) > . . . > ID(Cdiam).

The result of Lemma 6 state that after Ω(z2

c) slots, a node will detect every
neighboring component. Observe that N(Ci) = {Ci−1, Ci, Ci+1} for any 1 ≤
i ≤ diam (within the constraints that i − 1 ≥ 1 and i + 1 ≤ diam). Note that

ID(Ci−1) > ID(Ci). Thus following Ω(z2

c) slots C2 will merge with C1, C3 will
merge with C2 etc. Then, after the merging, we obtain a new component graph
consisting of the components C1 ∪ C2, C3, . . . , Cdiam connected in a chain such
that ID(C1∪C2) > ID(C3) > ID(C4) > . . . > ID(Cdiam), since ID(C1∪C2) =
ID(C1). In this new component graph, the diameter has been reduced by 1. Note
that the new component graph retains the same properties as the previous one,
and that every component C3, C4, ..., Cdiam still only consists of a single node.
This allows us to apply an inductive argument.

We see that one component is removed from the graph each Ω(z2

c) slots. Thus

the convergence time is Ω(z2

c ·diam), contradicting the initial assumption. Since
each node is active during 1+c time slots each cycles, we see that the duty cycle
is 1+c

z .

Randomized Probing In this section we will use randomized probing to solve
the temporal partition. The basic idea of randomized probing is that each node
picks one slot at random, from its sleep period, and remains active during that
slot. This approach works best when there is a large component and its nodes
have picked different slots to probe, thus covering a large fraction of the sleep
period. Randomization helps to achieve this and our analysis uses standard ar-
guments similar to those in the “birthday paradox” or the “coupon collector”
problem to assert that if the size of a component is a “logn” factor times the
length of a cycle, the component will cover the entire cycle with high probability.

To keep exposition simple, we assume that the underlying network is a clique;
the technique works for more general constant-diameter, dense graphs. The basic
structure of the protocol is the similar to deterministic probing; recall that there
we assumed that all nodes have the same cycle length z in all cycles. The key
differences are enumerated below.

1. The “merge rule” is different. Node v merges with the component of node u
provided u’s component is larger in size. If the sizes of the two components
are identical, then the IDs of leaders are used to break the tie.

2. Let the time slots in a cycle be labeled {0, 1, . . . , z − 1}, with 0 denoting
the active period. During the active period each node also picks a time slot
t uniformly at random from {1, 2, . . . , z − 1}. After its active period, each
node goes to sleep for the next z − 1 time slots, with the exception of time
slot t.

For the purposes of ensuring enough “coverage” of the sleep period, it is critical
for this protocol that the random choices of t be independent even for the nodes
in the same component.

We start the analysis of this protocol be assuming that there are k compo-
nents, labeled C1, C2, . . . , Ck such that |C1| ≥ |C2| ≥ · · · ≥ |Ck| and furthermore
if |Ci+1| = |Ci| then the ID of the component leader of Ci+1 is greater than the
ID of the leader of Ci. Note that this labeling is just for the purposes of the proof
is not computed by the algorithm. This ordering of components guarantees that
if a node v ∈ Ci leaves its component to join another, then that component is
one of C1, C2, . . . , Ci−1. Our analysis assumes that z ≤ n/8 logn (used in the
proof of Lemma 7). There are two cases depending on the size of C1.

“Large” C1. Suppose that |C1| ≥ 2z · log n. We show that in this case, with high
probability, in one cycle, all nodes in C2 ∪C3 ∪ · · · ∪Ck will join component C1.
Consider a node v ∈ C2 ∪ C3 ∪ · · · ∪ Ck. The probability that v’s extra active
period will not overlap with the active periods of any node in C1 is

(

1 −
1

z

)|C1|

≤

(

1 −
1

z

)2z·log n

∼ e−2 log n =
1

n2
.

Since there are n nodes, by using the union bound we see that with probability
at most 1/n there is a node v ∈ C2 ∪ C3 ∪ · · · ∪ Ck whose extra active period
does not overlap with the extra active period of any node in C1. Therefore, with
probability at least 1 − 1/n every node outside C1 will join C1 in one cycle (of
length z time slots).

“Small” C1. Here we suppose that |C1| < 2z ·logn. In this case we show that the
number of components decreases by a constant fraction in each cycle. Consider
a permutation π of all nodes in which C1 comes first, followed by C2, followed
by C3, and so on. The nodes in each Ci appear in some arbitrary order in π.
Let v be the node with rank ⌊n/2⌋ in π and let Cj be the component that
contains v. Call Cj the middle component, C1, C2, . . . , Cj−1, the big components,
and Cj+1, Cj+2, . . . , Ck, the small components. We will show two properties.

Property 1. The number of small components is at least a constant fraction of
the number of large components.

Property 2. In one cycle, all the small components will disappear, with high
probability.

Together these properties lead to the claim that in the “small” C1 case a constant
fraction of the components disappear in each cycle. Property (2) follows from
the same argument that was used to deal with the “large” C1 case. Property (1)
is proved in the following lemma.

Lemma 7. The number of small components is at least a constant fraction of
the number of large components.

Proof. Since |C1| ≤ 2z log n, every component has size at most 2z log n. Using
the assumption that z ≤ n/8 logn yields an upper bound of n/4 on the size of
every component. From this it follows that the union of the small components
has size at least n/4. Let the number of small components be s. The average
size of the small components is at least n/4s. Therefore every big component
has size at least n/4s, implying that the number of big components is at most
2s.

Note that if the number of components is n/2z log n or fewer, then there is
at least one component of size at least 2z log n. Even if the network starts off
with n components (i.e., every node is a components by itself), the progress we
make in the “small” C1 case implies that in O(log(z log n)) cycles, we will reach
the “large” C1 case. Given that convergence takes one additional cycle (with
high probability) and given that each cycle has z time slots, we get the following
theorem.

Theorem 4. In expected O((log z + log log n) · z) time slots, the network will
have exactly one stably aligned component.

To compare this convergence time with the convergence time of the no cost
approach proved in Theorem 1, first note that since the network is assumed
to be a clique, the no cost approach guarantees O(z2) convergence time. It is
easy to compare O((log z + log log n) · z) with O(z2) and note that whenever
log log n = o(z), we get an asymptotically faster convergence time using ran-
domized probing. Informally speaking, unless z is very small, the randomized
probing approach is much faster than the no cost approach for dense network.

5 Conclusions

The “no cost” approach provides an O(diam(G) · z2) convergence time with 1/z
duty cycle for any z ≤ sleepupper. The optimality of this result is currently
unclear to us and it is possible that further randomization could improve the
convergence time to O(diam(G) · z log z). The deterministic probing approach
yields a spectrum of convergence times and duty cycles, obtained by varying c
relative to z such that the product of the convergence time and duty cycle equals
O(diam(G)·z). For example, if c is picked close to z1/2, we get a convergence time
of O(z3/2) and a duty cycle that is approximately 1/z1/2. While this flexibility
might seem like an advantage that the deterministic probing approach has over
the “no cost” approach, it is worth pointing out that we can pick any z ≤
sleepupper for the “no cost” approach and obtain a similar flexibility. In the light
of this, it is not clear if the deterministic probing approach has any advantage
over the “no cost” approach. However, the randomized probing approach does
yield asymptotically faster convergence (with the same duty cycle) relative to the
“no cost” approach under certain circumstances. If the network is assumed to be
a clique, then the “no cost” approach guarantees an O(z2) convergence time for a
1/z duty cycle. Comparing this with the O((log z+log log n)·z) convergence time
of the randomized probing approach, we note that whenever log log n = o(z),

we get an asymptotically faster convergence time using randomized probing.
Informally speaking, unless z is very small, the randomized probing approach is
much faster than the no cost approach for dense network. Given this positive
news for the randomized probing approach, it may be worthwhile to expand
this approach to more general classes of graphs. For example, we are currently
analyzing the randomized probing approach for classes of graphs whose min-cut
value is bounded from below.

References

1. W Ye, J Heidemann, D Estrin. An energy-efficient MAC protocol for wireless sensor
networks. In INFOCOMM’02: Proceedings of the 21st International Annual Joint

Conference of the IEEE Computer and Communication Societies, 2002.
2. T van Dam, K Langendoen. An adaptive energy-efficient MAC protocol for wire-

less sensor networks. In SenSys’03: Proceedings of the First ACM Conference on

Embedded Networked Sensor Systems, pp. 171-180, 2003.
3. V Rajendran, K Obraczka, JJ Garcia Luna Aceves. Energy-efficient collision-free

medium access control for wireless sensor networks. In SenSys’03: Proceedings of

the First ACM Conference on Embedded Networked Sensor Systems, pp. 181-193,
2003.

4. W Ye, J Heidemann, D Estrin. Medium access control with coordinated adaptive
sleeping for wireless sensor networks. IEEE Transactions on Networking, 2004.

5. W Ye, F Silva, J Heidemann. Ultra-low duty cycle MAC with scheduled channel
polling. In SenSys’06: Proceedings of the 4th International Conference on Embedded

Networked Sensor Systems, pp. 321-334, 2006.
6. Q Cao, T Abdelzaher, T He, J Stankovic. Towards optimal sleep scheduling in

sensor networks for rare-event detection. In IPSN’05: Proceedings of the 4th Inter-

national Symposium on Information Processing in Sensor Networks, 2005.
7. S Ganeriwal, D Ganesan, H Sim, V Tsiatsis, MB Srivastava. Estimating clock

uncertainty for efficient duty-cycling in sensor networks. In SenSys’05: Proceedings

of the 3rd International Conference on Embedded Networked Sensor Systems, pp.
130-141, 2005.

8. J Polastre, J Hill, D Culler. Versatile low power media access for wireless sen-
sor networks. In SenSys’04: Proceedings of the 2nd International Conference on

Embedded Networked Sensor Systems, pp. 95-107, 2004.
9. R Motwani and P Raghavan. Randomized Algorithms. Combridge University Press,

New York(NY), 1995.
10. N Ramanathan, M Yarvis, J Chhabra, N Kushainagar, L Krishnamurthy, D Estrin.

A stream-oriented power management protocol for low duty cycle sensor network
applications. In EMNETS’05: Proceedings of the Second IEEE Workshop on Em-

bedded Networked Sensors, 2005.
11. Y Li, W Ye, J Heidemann. Energy efficient network reconfiguration for mostly-

off sensor networks. In SECON’06: Proceedings of the Third IEEE Conference on

Sensor, Mesh and Ad Hoc Communications and Networks, pp. 527-535, 2006.

