Approximation Algorithms for the Max-Coloring Problem*

Sriram V. Pemmaraju and Rajiv Raman

The University of Iowa, Iowa City, TA 52242, USA,
[sriram, rraman]@cs.uiowa.edu

Abstract. Given a graph G = (V, E) and positive integral vertex weights w : V' — N, the maz-
coloring problem seeks to find a proper vertex coloring of G whose color classes C1,Co,...,Ck,
minimize Zi.;l mazyec;w(v). The problem arises in scheduling conflicting jobs in batches and in
minimizing buffer size in dedicated memory managers.

In this paper we present three approximation algorithms and one inapproximability result for the
max-coloring problem. We show that if for a class of graphs G, the classical problem of finding a
proper vertex coloring with fewest colors has a c-approximation, then for that class G of graphs,
max-coloring has a 4c-approximation algorithm. As a consequence, we obtain a 4-approximation
algorithm to solve max-coloring on perfect graphs, and well-known subclasses such as chordal graphs,
and permutation graphs. We also obtain constant-factor algorithms for max-coloring on classes of
graphs such as circle graphs, circular arc graphs, and unit disk graphs, which are not perfect, but
do have a constant-factor approximation for the usual coloring problem. As far as we know, these
are the first constant-factor algorithms for all of these classes of graphs. For bipartite graphs we
present an approximation algorithm and a matching inapproximability result. Our approximation
algorithm returns a coloring whose weight is within £ times the optimal. We then show that for
any € > 0, it is impossible to approximate max-coloring on bipartite graphs to within a factor of
(% —e¢) unless P = NP. Thus our approximation algorithm yields an optimum approximation factor.
Finally, we also present an exact subexponential algorithm and a PTAS for max-coloring on trees.

1 Introduction

The maz-coloring problem takes as input a vertex-weighted graph G = (V,E) with weight function
w : V. — N. The problem requires that we find a proper vertex coloring of G whose color classes
C1,Cs,...,Ck, minimize the sum of the weights of the heaviest vertices in the color classes, that is,
Zle mazycc;, w(v). When all the weights are one, this problem reduces to the classical problem of
finding a proper vertex coloring of a graph using fewest possible colors. For any color class C of G,
we will use weight(C) to denote max{w(v) | v € C}. The weight of a coloring Cy,Cs,...,C} is then
Zle weight(C;).

The max-coloring problem arises in two distinct applications. In one application the max-coloring
problem models the problem of minimizing the total buffer size needed for memory management in
wireless protocol stacks like GPRS or 3G [11] and in digital signal processing applications [6]. In general,
programs that run with stringent memory or timing constraints use a dedicated memory manager that
provides better performance than the general purpose memory management of the operating system. The
most commonly used memory manager design for this purpose is the segregated buffer pool. The problem
of minimizing the total size of the buffer pool corresponds to the max-coloring problem.

A second application of max-coloring arises in the scheduling of jobs with conflicts in a multiprocessor
environment. In systems in which jobs require exclusive access to certain resources, a fundamental problem
is of scheduling jobs onto processors such that jobs requiring access to the same resource are not scheduled
together. The problem of scheduling jobs in conflict to processors can be modeled as a graph coloring
problem. When jobs have different processing times, this is modeled as a generalized coloring problem on
vertex weighted graphs. One such generalization that models the problem of scheduling conflicting jobs
in batches to minimize the makespan or the time to complete all the jobs in the system corresponds to
the max-coloring problem.

* This research is partially supported by the National Science Foundation Grant DMS-0213305

Our Results. Although graph coloring is hopelessly hard to approximate on general graphs, the underlying
conflict graphs that arise in applications have more structure, and this structure can be exploited to obtain
efficient exact or approximation algorithms for max-coloring. However, the max-coloring problem is hard
even on instances where the coloring problem can be solved in polynomial time. In [11], the authors
prove that max-coloring is NP-hard on interval graphs, even though there is a simple greedy algorithm
for the usual coloring problem [5]. [11] also presents a 2-approximation for the max-coloring problem on
interval graphs. For other classes of graphs, very little seems to be known about how to solve the max-
coloring problem efficiently, either exactly or approximately. In this paper we present three approximation
algorithms and one inapproximability result. We show that for any hereditary! class of graphs G, if the
usual vertex coloring problem has a c-approximation, then max-coloring has a 4c-approximation on G.
One implication is that there is a 4-approximation algorithm to solve max-coloring on perfect graphs.
Perfect graphs include many well-known subclasses of graphs such as bipartite graphs, interval graphs,
chordal graphs, and permutation graphs. Thus max-coloring has a 4-approximation for all of these classes
of graphs. In addition, our result also implies a constant-factor approximation algorithm for classes of
graphs such as circle graphs, circular arc graphs, and unit disk graphs, which are not perfect, but do
have a constant-factor approximation for the usual coloring problem. For bipartite graphs we present an
approximation algorithm and a matching inapproximability result. Our approximation algorithm always
returns a coloring whose weight is within % times the optimal and following this we show that for any
€ > 0, it is impossible to approximate max-coloring on bipartite graphs to with a factor of (% —€) unless
P = NP. Thus our approximation algorithm yields an optimum approximation factor. Finally, we also
present an exact subexponential algorithm and a PTAS for trees.

Related problems. There are two classes of problems that seem related to max-coloring in the sense
that techniques for solving those problems might be applicable to max-coloring and vice versa. One of
these is the interval coloring problem, also known as the dynamic storage allocation problem. Like the
max-coloring problem, the interval coloring problem takes as input a graph G = (V, E) and positive
integral vertex weights w : V' — N. The problem seeks to find an assignment of an interval I(u) to
each vertex u € V such that two constraints are satisfied: (i) for every vertex u € V, |I(u)] = w(u)
and (ii) for every pair of adjacent vertices v and v, I(u) N I(v) = @. The goal is to minimize the span
| Uy I(v)|. The interval coloring problem has a fairly long history dating back, at least to the 70’s.
For example, Stockmeyer showed in 1976 that the interval coloring problem is NP-complete even when
restricted to interval graphs and vertex weights in {1,2} (see problem SR2 in Garey and Johnson [4]).
Currently, the best approximation algorithm for the interval coloring problem on interval graphs is a
(2 + €)-approximation algorithm due to [2]. It is easy to see that any feasible solution to max-coloring is
also a feasible solution to the interval coloring problem. Thus the weight of an optimal max-coloring of
a graph is bounded below by the span of an optimal interval coloring of that graph. However, as pointed
out in [11], even for interval graphs, the weight of an optimal max-coloring of a graph may be 2(logn)
times the span of an optimal interval coloring. Despite this, we hope that some of the ideas in this paper,
will help us devise constant-factor approximation algorithms for the interval coloring problem on perfect
graphs — the current best approximation factor is O(logn).

Another class of problems that has connections to max-coloring is the class of graph multicoloring
problems. The input to this class of problems, is also a graph G = (V, E) with a weight functionw : V - N
on the vertices. A multicoloring of G is an assignment of a set S(v) of natural numbers to each vertex,
where |S(v)| = w(v), and adjacent vertices receive distinct colors. i.e., S(u) N S(v) = ¢, for all {u,v} € E.
The set of colors, or numbers assigned to each vertex correspond to time units when the job is run, and
this assignment gives us a pre-emptive schedule. Let fy(v) = max{i | i € Sy(v)} denote the completion
time of the job v in a multicoloring . In the standard multicoloring problem, the goal is to minimize
the makespan max, fy(v). The non-preemptive version of multicoloring imposes the restriction that the
set S(v) of colors assigned to any vertex be consecutive numbers. It is not difficult to see that the
non-preemptive multicoloring problem is just the interval coloring problem.

1 A class G of graphs is hereditary, if for any G € G, every induced subgraph of G is also in G.

The papers [1,8] introduced the sum multicoloring problem which seeks to minimize the average
completion time of the jobs. Given a multicoloring 1, the average completion time of the schedule corre-
sponding to this multicoloring is) 7, .y fy(v). The best results currently on the sum multicoloring problem
are due to [3], who present (along with some other results) a 5.536-approximation algorithm for the sum
multicoloring problem on perfect graphs, and a 11.273-approximation algorithm for the non-preemptive
version of sum multicoloring on interval graphs.

[1] also studies the co-scheduling version of multicoloring. Here, the jobs are to be scheduled in batches
with one batch of jobs starting only after all jobs in the previous batch have ended. Let ¢y, (v) =
min{i | ¢ € S(v)} denote the minimum number in S(v). Then, a feasible co-schedule is a multicoloring
of G where for all u,v € V, S(u) N S() # ¢ = cmin(t) = Cmin(v). In other words, if there is a
common time instant at which two jobs u and v execute, then it must be the case that both belong
to the same batch and therefore start at the same time. In [1], the objective of minimizing the average
completion time of a co-schedule has been studied and this paper presents a 16-approximation algorithm
for problem of minimizing the average completion time of a co-schedule on perfect graphs. It is easy to
see that the max-coloring problem has the same set of feasible solutions as the co-scheduling problem,
but with the objective of minimizing the makespan rather than the average completion time. Thus, the
4c-approximation result in this paper provides a 4-approximation algorithm for the co-scheduling problem
with minimum makespan.

A note on notation. Throughout this paper all graphs are finite and simple, and vertices of these graphs
usually have associated positive integral weights. We let A, x, a,w denote the maximum degree, the
chromatic number, the stability number and clique number respectively of a graph. When we use OPT,
it will typically denote both an optimum max-coloring of G and the weight of an optimal max-coloring.
Which of these two OPT exactly stands for will be clear from the context. Let xmc(G) denote the
maz-color number of G; i.e., the minimum k such that G has a max-coloring of weight OPT with k
colors.

2 Max-Coloring Trees

The max-coloring problem has turned out to be surprisingly hard even for trees. Though we believe that
the problem can be solved in polynomial time, the two best algorithms we have are (i) a subexponen-
tial exact algorithm and (ii) a PTAS. We present these in this section. Our first observation is on the
distribution of weights of color classes in an optimal max-coloring of bipartite graphs.

Lemma 1. Let G be a bipartite graph. In any optimal maz-coloring {C1,Cs,...,Cr} of G with w; =
weight(C;) and wy > wa > -+ > wy, we have that w; > Zf:iH wj,i=1,---,k—1.

Proof. If w; < Z;?:i 41 Wj, then the subgraph induced by vertices in Uf:iCj can be colored with two
colors with weight at most 2w;. This coloring has weight less than the weight of {C,Cs,...,C}, a
contradiction.

Corollary 1. Let G be a bipartite graph. In any optimal maz-coloring {C1,Cs,...,Cr} of G with w; =
weight(C;) and wy > wy > --- > wy, we have that % > wiio, for i = 1,---,k — 2, and hence,
wq Z 2[(1_1)/2J CW;.

Since the weights of the color classes decrease rapidly, we can expect that the max-color number of a
tree may not be too high. We now state three upper bounds on x,. of trees, the first of which applies to
arbitrary graphs as well.

Lemma 2. Let G be a vertex-weighted graph with maximum verter degree A. Then xme(G) < A+ 1.

Proof. Let k = xm(G) and let C1,Cs, ..., Ck be an optimal max-coloring of G. Let w; = weight(C;) and
without loss of generality assume that wy; > wgy > --- > wy. If kK > A + 1, then for each vertex v € Cj,
there is a color class C;, ¢ < k, such that v has no neighbors in C;. Note that since w; > wy, when v is
moved into Cj, the weight of the coloring does not increase. Furthermore, when C}, becomes empty, the
weight of the coloring decreases, contradicting the optimality of Cy,Cs, ..., Ck.

Lemma 3. Let T be a vertex-weighted tree on n vertices. Then, xme(T) < |logyn| + 1.

Proof. Let k = xmc(G) and let Cy,Cs,...,C) be an optimal max-coloring of G. Let w; = weight(C;)
and without loss of generality assume that w; > wy > --- > wg. For each ¢ > 1, we can assume without
loss of generality that every vertex v € C; has a neighbor in Cj, for every j <.

For each vertex v € C4, let T'(v) denote the rooted tree with one vertex, namely v. For each v € C;,
i > 1, define T'(v) as the tree rooted at v, such that (i) the children of v in T'(v) are exactly the neighbors
of v in T belonging to color classes Cy,Cy,...,C;_1, and (ii) for each child u of v, the subtree of T'(v)
rooted at u is simply T'(u). For each i, 1 <i <k, let S; = min{|T'(v)| | v € C;}. In other words, S; is the
size of a smallest tree T'(v) rooted at a vertex v in C;. Then,

Si=1
i1

S; > ZS]- +1, foreach i > 1
j=1

This implies that S; > 2071, 1 < i < k. Using the fact that S, < n, we get Xme = k < |logy n| + 1.

Lemma 4. Let T be a vertez-weighted tree on n vertices, and let W be the ratio of the weight of heaviest
vertex to the weight of the least heavy vertex. Then, Xme(T) < [logy, W1 + 1.

Proof. Let k = xme(T) and let Cy,Cs,...,Cr be an optimal max-coloring of T. For 1 < i < k, let
w; = weight(C;) and without loss of generality assume that w; > wy > - -+ > wy,. Thus wy is the weight
of the heaviest vertex in the tree. Let £ = min{t € N | for allv € V(T),w(v) > wi/2!}. Therefore,
£ = [log, W1.

Consider the collection of disjoint intervals 7 = {Io,I1,...,I;_1}, where I; = [, 9F), for i =
1,...,4—1and let Iy = [%*,w;]. Because of the choice of £, for each vertex v € V(T'), w(v) belongs to
exactly one interval I;. Let V; = {v € V(T) | w(v) € I;}, j = 0,1,...,£ — 1. We say that a vertex v
contributes to a color class C; if v € C;, and w(v) = max{w(u) | u € C;}. The contribution of an interval
I; is the maximum number of vertices in V; that contribute to distinct color classes.

Corollary 1 tells us that w; > 2 - w;qo for ¢ = 1,---k — 2. This immediately implies that no interval
Ij, j =1,2,...,£ — 1 has a contribution of more than two. If the contribution of I is three or more,
then it must be the case that we can construct a 2-coloring with the same or smaller weight, compared to
{C1,Cs,...,C}k}. This contradicts the fact that ¥ = xme(T) and C1, Cs, . . ., Ck is an optimal max-coloring
of T.

Now suppose that intervals I;,, Iy, ..., I;,, 0 < i1 < ig < --- < 4y < £ — 1, is the sequence of all
intervals in 7, each of whose contribution is two. We now prove the following claim:

Claim: For any pair of consecutive intervals I,, p = 4; and I, ¢ = ij41, where j < ¢, it is the
case that there is an interval in {Ip41, Ipyo,..., J;—1} with contribution zero.

If we can show this claim, then we can charge the “extra” contribution of each I;; to an interval between
I;; and I;;_,, whose contribution is zero. This implies that the contributing vertices in all intervals except
I; can be reassigned to a distinct interval. Since there are £ intervals and since the contribution of I; is
at most two, there is a total contribution of at most £ 4 1, implying that there are at most £ + 1 color
classes.

We prove the above claim by contradiction, assuming that the contribution of every interval in
{Ip41, Ipy2,...,Iy—1} is one. Let {2p, Zpt1,...,2q} U {yp,yq} be vertices such that (i) for each j =

p,p+1,...,q, z; € V; and z; contributes to some color class and (ii) for each j € {p,q}, y; € V; and z;
and y; contribute to distinct color classes. Since z; € Vj, w(z;) > 541, j = p,p + 1,...,q. Also, since
Yq € Vi, w(yq) > 5441 Therefore,

q q
Zw zj) +wlyg) 2 Z 2;+1 2q+1
j=p i=p

2¢—p+1 _ 1 w1

=g o
_ w1
= op > w(yp)

This contradicts Lemma 1 and proves the claim.

The upper bounds in the three preceding lemmas are all tight, as the following example will show. Let
Ty, Ty, T, . .. be asequence of trees where T is a single vertex, with weight 1, and T3, ¢ > 0, is constructed

from T;_; as follows. Let V(T;_1) = {u1,us,. ,uk} To construct Tj, start with T;_; and add a set of
new vertices {vy, v, ..., v}, each with weight 2°, and edges {u;,v;} for all i = 1,2,..., k. Thus the leaves
of T; are {v1,vs,...,vp} and every other vertex in T; has a neighbor v; for some j. Now consider a tree

T, in this sequence. Clearly, |V (T,,)| = 2™ and the maximum vertex degree of T,,, A(T,) = n — 1. See
Figure 1 for Ty, T1,T>, and T3. Now consider the coloring of T), defined by C; = { leaves of Tp,41-;},
1 < i < n+ 1. Note that weight(C;) = 2"t1~% and therefore the weight of the coloring is 2"*! — 1. It is
not hard to see that any coloring using fewer than n + 1 colors has weight at least 2"*!. Therefore,

2”
Xme =1+ 1 =log, |V (T,)|+1—A+1—log2< >+1

Since the number of colors are at most [logn| + 1, this immediately gives a simple sub-exponential time

1 4 8 8
L 1 1
8
8
2 4
2 2
4
Fig. 1. Sequence of trees which show that the upper bounds of Lemmas 2, 3 and 4 are all tight. The figure above
shows the trees Ty, -+, T5.

algorithm. Try all |logn]| + 1 possible colors for each vertex, and return a feasible coloring of minimum
weight. This algorithm runs in O(n!°8"+1) time.

Now we show that if the tree has a constant number of distinct weights, we can find an optimal
max-coloring in polynomial time. Later this will turn out to be critical for our PTAS. We deal with the
case of constant number of distinct weights via the solution to a problem called FEASIBLE k-COLORING.

FEASIBLE k-COLORING
INPUT: A tree T with weight function w : V' — N, and a sequence (W1, Ws, - - -, W},) of positive integers,
satisfying Wy > Wy > --- > W
OUTPUT: Either a coloring of the tree into color classes Ay, - - -, Ay, such that for all v € 4;, w(v) < W;
or if such a coloring does not exist, a report that no such feasible coloring exists.

Here is a simple dynamic programming algorithm for solving FEASIBLE k-COLORING on trees in
O(nk) time. Let T be rooted at an arbitrary vertex r. Let ch(v) denote the set of children of v, and

let parent(v) denote the parent of v. For a vertex v, let T(v) denote the sub-tree of T' rooted at
v. Let [k] denote the set of colors {1,---,k}. For a vertex v, let F(v) = {j | w(v) > W;} be the
set of forbidden colors, and let S(v) = {i | there exists a feasible coloring of T'(v) with color(v) = i}.
The algorithm to compute a feasible coloring, if one exists is as follows. The correctness of the al-
gorithm and the running time are easy to established and this is summarized in the lemma below.

Algorithm FKC
. Let S(v)=¢, YveT.
. For each vertex v in a post-order traversal of T do
For each color i € [k] — F(v)

If S(u) —{i} # ¢ ,Yu € ch(v)

Set S(v) = S(v) U {i}.

. If S(r) = ¢, return NULL.
. Pick an arbitrary i € S(r) and set color(r) =i.
. For each v in a pre-order traversal of T
Pick an arbitrary j € S(v) — color(parent(v)) and set color(v) =j

O 00N O WN -

Lemma 5. Algorithm FKC solves the FEASIBLE k-COLORING problem in O(nk) time.

The main idea underlying our PTAS is the reduction of the number of distinct weights of the vertices
down to a constant. We then pick candidates for the weights of the color classes and for each such choice,
using the algorithm for FEASIBLE k-COLORING, we test if there is a legal coloring of the tree with the
chosen weights for the color classes.

We are given a tree T, with weight function w : V' — N and an € > 0. Let ¢ > 0 be an integer such
that (2loge + 3)/c < €, and let @ = (w; — 1)/c. Let I, I5,---, I, be a partition of the range [1,w;),
where I; = [1+ (i — 1)a,1+i-a), 1 <i < c. Let T' be a tree that is identical to T', except in its vertex
weights. The tree 7" has vertex weights w' : V' — N defined by the rule: for any v € V, if w(v) € I;
then w'(v) = 1+ (j — 1) - o and if w(v) = wy, then w'(v) = wy. In other words, except for vertices
with maximum weight wy, all other vertices have their weights “rounded” down. As a result 7" has
¢+ 1 distinct vertex weights. Now let OPT" denote the weight of an optimal max-coloring of 7" and let
C'=C1,Cs,...,C), be the color classes corresponding to OPT". Since the weights of vertices have fallen
in going from T to T', clearly OPT' < OPT. If we use the coloring C' for T, we get a coloring whose
weight is at most OPT" 4 ka. Substituting (w; — 1)/c for o and noting that w; < OPT', we obtain that
weight of C' used as a coloring for 7" is at most (1 + £)OPT' We now show that given the distribution
of vertex weights of T', k = O(log c). To see this first observe that the weights of last three color classes
C}, Ci_y, and C},_, cannot all be identical, by Lemma 1. Also, observe that the possible vertex weights
of T" are 1,1+ a, 1+ 2, Therefore, weight(C},_,) > 1 + «. From Corollary 1, we obtain

w1
1+a <w(Cr-2) < S—3)/2] "

Solving this for k yields k < 2log,(c) + 3. Therefore, by our choice of ¢, we have

kE 2logy(c) +3
g Q=2 WAL L g
¢ ¢

<

Thus (1 4+ €)OPT' is an upper bound on the weight of ¢’ used as a coloring for T'. Since OPT' < OPT,
we see that the weight of OPT" used as a coloring for T' is at most (1 + €)OPT.

To construct OPT" in polynomial time, for each k = 1,...,2logc + 3, we generate all O(c*) possible
sequences of weights and call algorithm FEASIBLE k-COLORING for each subsequence and pick the coloring
with the minimum weight. This gives OPT". Each solution to FEASIBLE k-COLORING takes O(nk) time,
and we have O(c*) sequences, for k = 1,...,2logc + 3. Using the fact that (2log, c + 3)/c < ¢, a little
bit of algebra yields a running time that is linear in n and exponential in 1/e.

3 Max-Coloring Bipartite Graphs.

This section presents an %—approximation algorithm for the max-coloring problem on bipartite graphs,
followed by a hardness of approximation result that shows that for any € > 0, there is no (% —€)-
approximation algorithm unless P = N P. Thus our approximation algorithm produces an optimal ap-
proximation ratio.

One feature of our approximation algorithm is that it uses at most 4 colors, even though though an
optimal max-coloring of a bipartite graph may need an unbounded number of colors. Our PTAS for the
max-coloring problem on trees relied on the fact that the FEASIBLE k-COLORING problem on trees can be
solved in polynomial time for any k. However, FEASIBLE k-COLORING is NP-complete for bipartite graphs
for k > 3 [10]. This has forced us to use a different approach for bipartite graphs. Another difference is
that in contrast to the O(logn) upper bound on the number of colors used by an optimal max-coloring
for an n-vertex tree, there are simple examples of n-vertex bipartite graphs G with x,;,.(G) > n/2. One
such an example is shown in Figure 2.

Our (% — €)-hardness result for max-coloring bipartite graphs is via a gap introducing reduction from
the PRE-COLORING EXTENSION problem [10].

Fig. 2. An instance of max-coloring of a bipartite graph on 2n vertices that requires n colors in an optimal
max-coloring. The weights of the vertices are powers of 2 and are shown next to the vertices. A k-coloring for any
k < n has weight at least 2", while a coloring with n colors has weight 2™ — 1.

3.1 An %-approximation algorithm

First note that since bipartite graphs are 2-colorable, Lemma 1 holds and hence if an optimal max-coloring
of a bipartite graph uses a large number of colors, the contribution of all but the first few color classes
must be quite small. We can use this to our advantage and develop an algorithm that tries to find a good
approximation to the weights of the first few color classes. We run three algorithms, Ay, A3, and A4, that
use 2, 3 and 4 colors respectively. The color classes produced by algorithm A;, 2 < i < 4, are denoted
{Ai A} ---}, and the weights of the corresponding color classes are denoted {a!,a$,---}. We start with
a description of algorithm As.

Algorithm A, (G, w)

1. For each connected component G; of G do

2. Color G; with colors 1 and 2, such that a vertex
with maximum weight is colored 1.

The fact that As is a 2-approximation immediately follows from the fact that weight(As) < 2wy, and
w; < OPT. We encode this result in the following lemma.

Lemma 6. weight(Az) < 2wy

In an optimum coloring, the weight of the first color class, wy is fixed. By using more colors, O PT may gain
an advantage because it can then push heavy vertices into lower color classes. We now introduce algorithm
A3z which constructs a 3-coloring of G such that the weight of the second color class is minimized.

Algorithm A3(G, w)
1. Let S be a mazimal independent set of G picked
by examining vertices in non-increasing weight order.
2. Use Algorithm A, to color G\ S.
3. Rename colors 1 and 2, as colors 2 and 3 respectively.
4. Color S with color 1.

Lemma 7. weight(A3z) < wy + 2ws. If ws < %wl, then weight(As) < %wl + wsy.

Proof. In algorithm A3, a3 = w;. Since S is a maximal independent set selected in non-increasing weight
order, the weight of the second color class of OPT, wy cannot be smaller than the weight of any vertex in
G\ S. Hence, w2 > a3. Since a} < a3, it follows that weight(A43) = a}+a3 +a3 < wi +wa+ws = w1 +2ws.
If wy, < %wl, then by plugging this inequality into the above upper bound for weight(As), we get the
second inequality.

As a warm-up to our main result, we now show that running A, and As together and selecting a coloring
with smaller weight gives a 4/3-approximation.

Theorem 1. Let A be the algorithm that runs As and Az and returns, from among the two colorings
produced, a coloring with smaller weight. Algorithm A is a 4/3-approzimation algorithm for maz-coloring
bipartite graphs.

Proof. There are two cases depending on the relative values of weight(Az) and wy 4 2ws. If weight(Az) <
wy + 2ws, then combining this with the bound from Lemma 6 we get that weight(As) < min{2wy,w: +
2w, }. Since OPT > w; + w2, we get

weight(As)
—= <
opp S min

{ 2un w1+2w2}
wy Fwy wy +wy S

The function on the right attains a maximum of % when the two functions inside the min operator are
equal. This happens at w; = 2ws.

If weight(As) > wy + 2wz, then using Lemma 7, we derive the inequality weight(As3) < wy + 2ws <
weight(A2) < 2w;. Thus we < wq /2. Hence from Lemma 7 we get weight(As) < min{w; +2wa, %wl +ws}.
Using the lower bound of w; + ws on OPT, we get

weight(As) < ,n{wl + 2ws 3w1/2+w2}
OPT ~— wy +wy wi+wy S

Again, the function on the right, attains a maximum at % and this happens when w; = 2ws.

We can improve this ratio, by using a fourth color. The greedy strategy employed by algorithm Aj
in selecting the first color class causes a3 to be no larger than ws. However, it might cause a3 to be
significantly larger than ws. We rectify this situation by introducing algorithm A, that uses four colors
to color G.

Algorithm A4 (G, w)
1. For all w* such that there is a u € V', with w(u) = w* do
2. Partition the vertices of G into two parts
P ={veV|wlk)>w*} and
P,={veV|wk) <w*}
3. Use algorithm A, to color Ps.
4. Rename colors 1 and 2 as 3 and 4 respectively.
5. Use algorithm As to color P;.
6. Return the coloring with minimum weight, over all choices of w*.

Lemma 8. weight(As) < wy + ws + 2ws

Proof. Since the weight of every vertex in G is used for the threshold w*, in some iteration of A4, w* = ws.
At this point, A4 partitions the vertex set such that P, = {v | w(v) > w3} and P> = {v | w(v) < ws}.
In this iteration, A4 colors P; with weight at most w; + ws, and colors P> with weight at most 2ws.
Since A4 returns the coloring with minimum weight, over all choices of w*, it follows that weight(A4) <
wy + wa + 2ws.

The final algorithm, which we call Bipartite Max-Color runs A,, Az, A4, and returns the minimum
weight coloring.

Bipartite Max-Color(G, w)
1. Run algorithms As, Az, A4.
2. Return the coloring of minimum weight.

Theorem 2. Algorithm Bipartite Max-Color is a %—approximation for the max-coloring problem on
bipartite graphs.

| v2
Wy an 0]
As A,
]_/
av) V)
min(Az Ay) min(A2 LAL)
9/49
|
A, D)
w,
W,

1

Fig. 3. Figure showing the different cases for the proof based on values of w» and ws as fractions of w;. The z-axis
shows possible values of the ratio w2/w1 and the y-axis shows possible values of the ratio w3/wi. Note that the
former ratio is in the range (0, 1] and the latter is in the range (0,1/2]. Each box in the diagram is labeled with a
case in the proof that it corresponds to and also with the subset of algorithms that lead to the 8/7 factor in that
case.

Proof. The proof is split into several cases depending on the weights of first 3 color classes of OPT'. The
different cases in the proof are shown in the Figure 3

Case 1: w3 > %wl, and wy > %wl. Thus, OPT = Zle w; > w1 +w2 +wsz > (1+%+%) > %wl. Using

this lower bound with the upper bound on A4 from Lemma 6, we get weight(As) < 2-w; < 2-1-OPT =
gopPT
2 .

Case 2 : ws

|=

> 7 and wy < %wl In this case, we have the following lower bound on OPT: OPT >
>

—~

wy + we + ws 1+ %)wl + wa = 2wy + w,. Using the upper bound on A3 from Lemma 7, we get

weight(As) < W + 2wo
OPT - %wl =+ wo

(1)

Since the function on the right-hand side is monotonically increasing with ws, it attains a maximum at
we = %wl. Substituting this value for wy in Equation (1), we get that weight(A43) < % -OPT.

Case 3: w3z < 49—911)1. In this case, algorithm Ay itself gives us the desired bounds. Let a < 9/49,
be such that w3 = a - w;. From the definition of OPT, we get the following lower bound on OPT"
OPT = Zle w; > wy +ws +ws > wy +2-wz = (14 2a)w;. We now try to determine the worst case

bounds for w3 in terms of OPT'. First, since w; < OPT, we get that wy < a - OPT. Also, because we

assume that ws < f—gwl in this case, from the above lower bound on OPT, we get wz < % . %.
Combining the two upper bounds on w3 we get
9
< mi { 7} .OPT 2
w3 < min a49(1+2a) (2)

Now, using Lemma 8 for an upper bound on weight(A44) and Equation (2) for an upper bound on ws,
we get the following:

9

weight(As) <wy +ws +2-ws < OPT +w;z < (1 +m1n{a, 49(1 + 2a)

})-opr
The right hand side of the above inequality is maximized when the two functions inside the min operator
are equal. This happens at o = + and yields weight(A4) < 8OPT.

Now we are left with the case when ws is in the band (9/49,1/4). In this range, the color classes
wy, - -, Wy can make a significant contribution to OPT, making our approximation harder. However, we

show that in this case a combination of the three algorithms will give us the desired bounds.

Case 4 : wy < %wl and w3 € <%,i
solutions produced by Az and A4, and let weight(A) denote the weight of the solution produced by
algorithm A. Since the upper bounds of algorithms A3 and A, simultaneously apply to A, using Lemma,

7, and 8 and the lower bound on OPT, we get

). Let A denote the algorithm that returns the minimum of the

weight(A) < mi { wy + 2wy wy +ws + 2w3}
OPT - w1+w2+w3’w1+w2+w3
The right-hand side is maximized when the two functions inside the min operator are equal. This happens
at we = 2ws. Using this to substitute for ws, we get
weight(A) < W + 2w»
OPT —wq +3w2/2'

The right-hand side of this function monotonically increases with wy and attains a maximum at w; =
wy /2. Substituting this into the right-hand side above, we get that weight(A) < SOPT.

9 1
490 14
coloring of minimum weight from among the two obtained by running A, and A4. Let weight(B) denote

Case 5 : wy > %wl and ws € () Similar to the previous case, let B be the algorithm that returns a

the weight of the solution returned by B. Then, using the upper bounds on A; and A4 from Lemmas 6,
and 8 respectively, and the known lower bounds on OPT', we get

weight(B) . 2w, wy + wy + 2ws
— < mln{ , }
OPT wy +we +w3 wy +wy +ws

Again, the right-hand side is maximized when the two functions inside the min operator are equal. This
happens when w; = ws + 2w3. We use this equation to substitute out ws from the above inequality and
obtain
weight(B) < 2w
OPT _3U}1/2+UJ2/2

The above right-hand side decreases monotonically with increasing ws and therefore it attains a maximum
when wy is smallest, that is, ws = w /2. Substituting this for ws, we get that weight(B) < %OPT.

3.2 An ; — €)-hardness reduction

We now show that the 8/7-approximation produced by the above algorithm is optimal. We do this by
showing a matching hardness result via a reduction from the PRE-COLORING EXTENSION problem on
bipartite graphs. The PRE-COLORING EXTENSION problem for general graphs is defined below.

PRE-COLORING EXTENSION

Input: A graph G = (V, E), with chromatic number x(G) = r, a subset P C V, and a proper assignment,
c¢: P —{1,---,r} of colors to vertices in P.

Question: Is there an extension of the proper vertex coloring of P to a proper vertex coloring of G, using
colors from {1,---,r}?

In [10], Kratochvil proved that PRE-COLORING EXTENSION is NP-complete for planar bipartite graphs
even when the color bound r = 3. We now show a simple gap introducing reduction from PRE-COLORING
EXTENSION on bipartite graphs with » = 3 to max-coloring on bipartite graphs.

Theorem 3. For any € > 0, there is no (8/7 — €)-approzimation algorithm for maz-coloring on bipartite
graphs, unless P=NP.

Proof. The reduction is from PRE-COLORING EXTENSION on bipartite graphs. Let the given instance of
PRE-COLORING EXTENSION consist of a bipartite graph G = (V1, V5, E), a subset P C V1 UVs, and a proper
assignment ¢ : P — {1,2,3} of colors to vertices in P. We transform G into a vertex-weighted bipartite
graph G' = (V/, V4, E') as follows. Add four new vertices, z1, %2, y1, and y to G. Let X = {z;1, 22},
Y ={y1,y2}, Vi = V1 UX, and Vi =V, UY. To each vertex v € P, assign a weight w(v) using the rule:
w(v) = 2871 if ¢(v) = i, for each i € {1,2,3}. If v € (V4 UVa2) — P, set w(v) = 1. The new vertices are
assigned weights as follows: w(z1) = w(y1) = 4 and w(z2) = w(y2) = 2. The edge set of G’ contains some
additional edges between the new vertices and the old.

E'=EU{{zi,y}ly € PNV, and w(y) < w(z;)} U
{{yi, 2}z € PNV and w(z) < w(y:)} U {{z1,92}} U {{z2, 11}}.

This completes the description of G'. Figure 4 illustrates this construction.

Now suppose that the coloring of P can be extended to a proper 3-coloring ¢ : V; UV, — {1,2,3}
of G. Start with the coloring ¢ and extend this to a proper vertex coloring of G' by assigning colors to
the new vertices as follows: ¢(z1) = ¢(y1) = 1 and ¢(z2) = z(y2) = 2. To see that this coloring of G' is
proper, observe that all neighbors of z; have weights 1 or 2 and are in P U {y2}. By our construction of
G' from G, all such neighbors, with the exception of y5, were colored in the given pre-coloring of P with
some color distinct from 1. Furthermore, c(y2) = 2 # ¢(x1). A similar argument shows that the colors
assigned to y1, y2, and zo are all proper.

Now we show that the coloring ¢ has weight at most 7. Since the maximum weight of any vertex in
G’ is 4, the weight of color class 1 is at most 4. Also, no vertex with weight 4 is in color class 2. This is

A v,
o o
o

[e] [e]
2 1
) L]

P

3 3
1 2
L] o

Fig. 4. On the left is an instance G of PRE-COLORING EXTENSION for bipartite graphs, with » = 3. Vertices in
the set P are “pre-colored” with colors from {1,2,3}. On the right is the bipartite instance G’ of max-coloring,
constructed from G. The new vertices in X UY, the assignment of weights to vertices, and the edges from the
new vertices to the old vertices, are all shown.

because our construction was such that any vertex in P assigned weight 4 has a pre-coloring of 1. The
only other vertices with weight 4 are x; and y;. These have been explicitly colored 1. Therefore, the
maximum weight of a vertex in color class 2 is 2. A similar argument shows that no vertex with weight 2
or more is in color class 3, thereby showing that the weight of color class 3 is at most 1. This shows that
the coloring ¢ has weight at most 7.

Now suppose that G does not have a pre-coloring extension. We show by contradiction that in this
case G' does not have a proper vertex coloring of weight less than 8. So suppose that there is a proper
vertex coloring ¢’ : V/ U VY — {1,2,...} of weight less than 8. Without loss of generality, assume that in
this coloring, the color classes are labeled in non-increasing order of their weight. Therefore, all vertices
of weight 4 are in color class 1. This includes vertices z; and y; and this forces all vertices of weight 2 to
be excluded from color class 1. Since color class 1 has weight 4, to prevent the total weight of the coloring
from reaching 8, all vertices of weight 2 have to be included in color class 2. This includes vertices s
and 2, and so this color class is also non-empty. Therefore the total weight of color classes 1 and 2 is 6.
Since ¢ is a coloring of G’ of weight less than 8, it must be the case that color class k, for each k > 4,
is empty. This means that ¢’ is a 3-coloring of G'. Furthermore, it is a 3-coloring of G that respects the
pre-coloring of P. This contradicts the assumption that G has no pre-coloring extension and therefore we
have that any proper vertex coloring of G’ has weight at least 8.

If for some € > 0, there were an (g — €)-approximation algorithm for max-coloring bipartite graphs,
then using the above polynomial time transformation from G to G', we could distinguish between positive
and negative instances of PRE-COLORING EXTENSION. This is not possible unless P = N P.

Note that PRE-COLORING EXTENSION was proved NP-complete for bipartite, planar graphs for r = 3.
We can modify the above reduction to maintain planarity of the input bipartite graph, by introducing
a pair of vertices, one of weight 4 and one of weight 2, to connect to each vertex in P. This shows that
max-coloring is impossible to approximate to a factor better than 8/7, even on planar bipartite graphs.

4 Max-Coloring on Arbitrary Graphs

Let G be a hereditary class of graphs for which the minimum vertex coloring problem has a c-approximation.
In other words, there is a polynomial time algorithm A that takes a graph G € G as input and returns a

proper vertex coloring of G using at most ¢- x(G) colors. In this section, we present an 4c-approximation
algorithm, that we call GeomFit, for the max-coloring problem on the class of graphs G. GeomFit will
repeatedly use A as a black box to obtain “good” vertex colorings of portions of the input graph.

A graph G is perfect if for every induced subgraph A of G, x(A) = w(A). The class of perfect
graphs is a well-known example of a class of graphs that can be optimally colored in polynomial time
via the ellipsoid algorithm of Grotschel, Lovdsz and Schirjver [7]. Therefore, for the class of perfect
graphs, GeomFit provides a 4-approximation algorithm for max-coloring. This is the first known constant-
factor approximation algorithm for perfect graphs. The class of perfect graphs includes many well-known
subclasses such as bipartite graphs, interval graphs, chordal graphs, and permutation graphs. For bipartite
graphs we have presented a better approximation algorithm earlier in the paper, for interval graphs [11]
provide a 2-approximation, but for chordal graphs and permutations graphs GeomFit is the first constant-
factor approximation algorithm for max-coloring. In [11], the authors showed that max-coloring on interval
graphs is NP-complete and from this, it follows that max-coloring on perfect graphs is NP-complete as
well. In addition, there are well-known classes of graphs that are not perfect, but have constant-factor
approximation algorithms for solving the minimum vertex coloring problem. These classes include circle
graphs, circular arc graphs, and unit disk graphs. Thus GeomFit provides an O(1)-approximation for all of
these classes of graphs. Our algorithm uses ideas from [9], in which the authors presented a constant-factor
approximation algorithm for the sum-coloring problem on interval graphs.

For ease of exposition, below we first describe GeomFit assuming that ¢ = 1. In other words, we assume
that a minimum vertex coloring of the input graph can be computed in polynomial time. To obtain a
4c-approximation for arbitrary ¢ > 1, GeomFit needs to be modified very slightly and the analysis that
shows the 4¢ approximation factor is quite similar to the analysis in the ¢ = 1 case. The modified GeomFit
and the modified analysis are presented subsequently.

GeomFit(G, w)

1.Leti=0,0;=0

2. While G # ¢ do
3. Set C; = 2i
4. Let G; = mkce(G, ¢;)
5. Color G; optimally using colors I; + 1,---,1; + ¢;
6.Set ljy1 =1l +c, i =1+ 1.
7.Set G =G\ G;.

8. End While

A round of the algorithm corresponds to an iteration of the while loop. Suppose that each round
is labeled with the value of ¢ at the beginning of that round. For some integer ¢ > 0, suppose that
the algorithm executes rounds 0,1,---,¢t — 1, after which the graph is entirely colored. In each round i,
0 <i < t, the algorithm calls the subroutine mkc(G, ¢;), that returns a maximal ¢;-colorable subgraph of
@G, obtained by examining vertices in non-increasing order of weight. Here G is the subgraph of the input
graph induced by the not yet colored vertices and ¢; = 2°. When called, the subroutine mkc(G, ¢;) starts
with an empty set S and processes each vertex v of G, in non-increasing order of weight. The subroutine
tests if G[S U {v}] is ¢;-colorable or not and if it is, it adds v to S, and proceeds to the next vertex in
G. To perform this test, mkc(G, ¢;) calls the algorithm A that returns a minimum vertex coloring of G.
Assuming that A runs in polynomial time, each call to the subroutine mkc(G, ¢;) also runs in polynomial
time. Step (5) of the above algorithm is also executed in polynomial time by calling the algorithm A.
Since the number of rounds ¢ = O(log(n)), the entire algorithm runs in polynomial time. We start our
analysis of with a simple observation.

Lemma 9. If GeomFit uses t rounds to color G, then x(G) > ct—a.

Proof. In round t — 2, the algorithm picks a maximal ¢;_5 colorable subgraph of G. If G were c¢;—_o-
colorable, then all of it would have been picked up in round ¢ — 2 or earlier. Since we used one more round
to color G, it must mean that x(G) > ¢t—o.

Without loss of generality, suppose that OPT' uses numbers 1,2, ... for colors such that color classes are
numbered in non-increasing order of weight. Now observe that color classes created in round 7 by GeomFit
are all heavier than color classes created in round 7 4+ 1. Without loss of generality, assume that the color
classes created in each round of GeomFit are numbered in non-increasing order of weight. Let coloropr(v)
denote the color assigned to vertex v in OPT, Now using the color classes of OPT we define a pairwise
disjoint collection of vertex subsets of G, {Vp,---,V;—1}, where V; = {v € G|c;—1 < coloropr(v) < ¢},
i =20,---,t — 1. For the definition to make sense, we assume that c_; = 0. Since V;_; contains vertices
colored ¢;—2 + 1,¢c,-2+2,...,¢.—1 by OPT, from Lemma 9, it follows that V;_1 # ¢. Now we state and
prove a critical observation that follows from the greedy choice of a subgraph in each round of GeomFit.
Let W; denote the weight of color class ¢;—; + 1 in OPT. Note that color class ¢;—1 + 1 is a subset of
Vi and by our labeling convention, it is a heaviest color class in V. Similarly, let R; denote the weight
of color class I; + 1 created by GeomFit. Note that this is a heaviest color class created in round i be
GeomFit. Also note that [; = Z;;}J ¢j = ¢; — 1 and therefore color class [; + 1 is simply color class ¢;.

Lemma 10. R; <W;, fori=0,1,---,t — 1.

Proof. Since Ry and Wy are equal to the maximum weight vertex in G, the lemma holds for ¢ = 0. By
the greedy choice employed in selecting Go, we ensure that for any other independent set S of G, the
maximum weight of a vertex in G'\ S is at least as large as the maximum weight vertex in G \ Go. This
ensures that R; < Wj. By the same reasoning, since in round ¢ — 1, we greedily select a maximal c¢;—1
colorable subgraph of OPT, and V; UV, U ---V;_; is ¢;—1 colorable, it follows that R; < W;.

Theorem 4. Let G be a hereditary class of graphs on which the minimum vertex coloring problem can
be solved in polynomial time. Algorithm GeomFit is a 4-approximation algorithm for the max-coloring
problem on G.

Proof. The weight of the max-coloring produced by GeomFit is bounded above by

t—1 t—1
weight(GeomFit) < Z ¢i-R;i < Z c; - W;
1=0 i=0

The first inequality follows from the fact that in each round i, GeomFit uses at most ¢; colors and a
heaviest color class in round i has weight R;. The second inequality follows from Lemma 10.

We obtain a lower bound on OPT as follows. The set V contains one color class and this has weight
Wo. Now consider a set V;, 1 < i < t— 2. It contains one color class of weight W; and the remaining color
classes have weight at least W;;1. Recall that V; has color classes labeled ¢;—1 +1,¢;-1 + 2,...,¢; and
therefore weight(V;) > W; + (¢i—1 — 1)Wiy1.

t—1 t—2
OPT > weight(V;) > Wo + Y (Wi + (ci 1 —)Wig1) + Wi
i=0 i=1
t—3
=W+ W1 + ZciWH‘Z'
i=0
Therefore,
t—3 t—1
4-OPT > 4Wo + 4Wy + > 4eiWigs = 4Wo +4Wy + Y ;Wi
i=0 =2
This lower bound on 4 - OPT is larger than the upper bound on weight(GeomFit) above. Therefore,
weight(GeomFit) < 4-OPT.

It is worth pointing out a slight strengthening of the above analysis. In the above proof, the upper bound
on weight(GeomFit) and the lower bound on 4 - OPT, can be combined to yield

4-OPT > 3Wy + 2W; + weight(GeomFit).

Let k denote the chromatic number of the input graph G. Then k- Wy > OPT and therefore we have
weight(GeomFit) < (4 — 2)OPT.

We now assume that G is a hereditary class of graphs that has a c-approximation algorithm A for
the minimum vertex color problem. We modify GeomFit so that in round ¢, in Step (4), the algorithm
computes a maximal |c - ¢;]-colorable subgraph. Correspondingly, in Step (5), G; is colored using colors
L+LL+2,...,l;+ |c .

The analysis proceeds in a manner similar to the analysis for the ¢ = 1 case. Suppose that GeomFit
finishes coloring G in ¢ rounds, 0,1,...,¢ — 1. In round (¢ — 2), GeomFit finds a maximal |c - ¢;—2]-
colorable subgraph and there is at least one uncolored vertex left over for round ¢ — 1. This implies that
algorithm A needs at least |¢-c¢;—2] + 1 colors for the input graph G. Since A is a c-approximation for
the minimum vertex coloring problem, x(G) > c¢;—2. So OPT has to use more than ¢;—» colors for G.
Partition the vertex set V' of G according to the coloring used by OPT, exactly as before. For i = 0,1,...,
Vi = {v | ¢ci—1 < coloropr(v) < ¢;}. Then since x(G) > ci—2, Vi—1 # 0. As before, let W; be the weight
of color class ¢;—1 + 1 in OPT'. Recall our assumption that OPT numbers color classes 1,2,... in non-
increasing order of weight. Similarly, let R; denote the weight of a heaviest color class created in round i,
by GeomFit. Using the same reasoning as in Lemma 10, we obtain that R; < W; for all i =0,1,...,t—1.
As before, a lower bound on OPT is

t—3
OPT > Wo+ Wi+ > ci- Wiy
=0

As upper bound on weight(GeomFit) is

t—1
weight(GeomFit) < Y |[2%c|R;.

%

I
<

It follows that weight(GeomFit) < 4¢ - OPT and we obtain the following theorem.

Theorem 5. Let G be a hereditary class of graphs on which the minimum vertex coloring problem has
a c-approximation algorithm. Algorithm GeomFit is a 4c-approximation algorithm for the max-coloring
problem on G.

5 Open Questions

While max-coloring on bipartite graphs has been satisfactorily dealt with by the results in this paper,
the situation for arbitrary graphs is not as clear. We believe that our 4c-approximation algorithm can be
improved to yield a better approximation factor. Furthermore, the strongest hardness of approximation
result we have is the (g — €)-hardness of approximation of max-coloring on bipartite graphs. It is quite
possible that for classes of graphs such as perfect graphs, this result can be strengthened. Finally, we
believe that max-coloring on trees can be solved in polynomial time, but the best algorithms we currently
have are (i) an exact algorithm that runs in O(n!°8") time and (ii) a (1 + €)-approximation algorithm.

References

1. A. Bar-Noy, M. Halldorsson, G. Kortsarz, R. Salman, and H. Shachnai. Minimum sum multi-coloring of
graphs. Journal of Algorithms, 37:422-450, 2000.

10.

11.

. A.L. Buchsbaum, H. Karloff, C. Kenyon, N. Reingold, and M. Thorup. OPT versus LOAD in dynamic storage

allocation. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing (STOC), 2003.

R. Gandhi, M. M. Halldorsson, G. Kortsarz, and H. Shachnai. Improved bounds for sum multicoloring and
scheduling dependent jobs with minsum criteria. In Proc. of the Second Workshop on Approzimation and
Online Algorithms (WAOA 2004), pages 68-82, 2004.

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the theory of NP-completeness.
W.H. Freeman and Company, San Fransisco, 1979.

M.C. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press, NY, 1980.

R. Govindarajan and S. Rengarajan. Buffer allocation in regular dataflow networks: An approach based
on coloring circular-arc graphs. In Proceedings of the 2nd International Conference on High Performance
Computing, 1996.

M. Grotschel, L. Lovasz, and A. Schrijver. Geometric algorithms and Combinatorial Optimization. Springer
Verlag, 1993.

M. Halldorsson, G. Kortsarz, A. Prokurowski, R. Salman, H. Shachnai, and J.A.Telle. Sum multi-coloring
trees. In Proceedings of 5th Annual International Computing and Combinatorics Conference (COCOON),
pages 171-180, 1999.

Magnis M. Halldérsson, Guy Kortsarz, and Hadas Shachnai. Sum coloring interval and k-claw free graphs
with application to scheduling dependent jobs. Algorithmica, 37(3):187-209, 2003.

J. Kratochvil. Precoloring extensions with a fixed color bound. Acta Mathematica Universitatsis Comenianae,
62:139-153, 1993.

S.V. Pemmaraju, R. Raman, and K. Varadarajan. Buffer minimization using max-coloring. In Proceedings of
The ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 562-571, 2004.

