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Abstract

An equitable coloring of a graph is a proper vertex coloring such that the sizes of any two
color classes differ by at most 1. A d-degenerate graph is a graph G in which every induced
subgraph has a vertex with degree at most d. It is well known that trees are 1-degenerate,
outerplanar graphs are 2-degenerate, and planar graphs are 5-degenerate. The results in this
paper concern the problem of equitable coloring of d-degenerate graphs with few colors.

Our first result shows that every d-degenerate graph can be equitably partitioned into three
(d — 1)-degenerate graphs. Repeated application of this result implies that every n-vertex d-
degenerate graph G with A(G) < n/3% can be equitably 3%-colored. Then we show that every
n-vertex d-degenerate graph G with A(G) < n/15 can be equitably k-colored for any k& > 16d.
The proof of this bound is constructive and implies an O(d)-factor approximation algorithm for
equitable coloring with fewest colors any n-vertex d-degenerate graph G with A(G) < n/15.
We then extend this to an O(d)-factor approximation algorithm for equitably coloring any d-
degenerate graph. Among the implications of this result is the first O(1)-factor approximation
algorithm for equitable coloring planar graphs with minimum number of colors. These results
have applications in improved Chernoff-Hoeffding bounds for sums of random variables with
limited dependence and to partitioning problems such as MAX p-SECTION.

1 Introduction

An equitable coloring of a graph is a proper vertex coloring such that the sizes of any two color
classes differ by at most 1. Equitable colorings naturally arise in some scheduling, partitioning, and
load balancing problems [16]. In contrast with ordinary coloring, a graph may have an equitable
k-coloring (i.e., an equitable coloring with k colors) but have no equitable (k + 1)-coloring. The
equitable chromatic number of a graph G, denoted x.,(G), is the smallest k such that G is equitably
k-colorable.

The deep result of Hajnal and Szemerédi [4] from 1970 says that for every graph G and any
k > A(G) + 1, G has an equitable k-coloring. In its “complementary” form this results concerns
the decomposition of a sufficiently dense graph into cliques of equal size and this has been used
in a number of applications of Szemerédi’s Regularity Lemma [8]. The Hajnal-Szemerédi theorem
implies the upper bound x.4(G) < A(G) +1. The bound of the Hajnal-Szemerédi theorem is sharp,
but it can be improved for some important classes of graphs. Consider the class of trees. For the
star graph, Sp, that is an n-vertex tree in which one vertex is adjacent to the rest of the vertices,
Xeq(Sn) =1+ [(n —1)/2]. This turns out to be the worst case for trees because of Meyer’s bound
[13] xeq(T) < 1+ [A(T)/2] for every tree T. Following Meyer’s result, one direction of research in
equitable colorings has been to obtain upper bounds better than 1+ A(G) on xq(G) for G in various
classes of graphs not containing Ka41. Such bounds are known for bipartite graphs (A, proved by

*Department of Mathematics, The University of Illinois, Urbana, IL 61801, and Institute of Mathematics, Novosi-
birsk, Russia, kostochk@math.uiuc.edu; this was partially supported by the NSF grant DMS-0099608 and by the
grants 02-01-00039 and 00-01-00916 of the Russian Foundation for Basic Research.

TDepartment of Mathematics, The University of Illinois, Urbana, IL 61801, nakprasit@math.uiuc.edu

¥Department of Computer Science, The University of Towa, sriram@cs.uiowa.edu; this was partially supported
by the NSF grant DMS-0213305



Lih and Wu [12]), outerplanar graphs (1 + [A/2], proved in [9]), and planar graphs (3 + A/2 for
sufficiently large A, proved in [10]). Lih [11] provides a nice survey of this direction of research.

Another interesting and important direction of research for equitable colorings was initiated by
Bollobés and Guy [3]. They showed that while 1 + [A/2] is a tight upper bound on the equitable
chromatic number of trees, “most” trees can be equitably 3-colored. Specifically, their result implies
that any n-vertex forest F' with A(F) < n/3 can be equitably 3-colored. This result seems to
uncover a fundamental phenomenon in equitable colorings: apart from some “star-like” graphs,
most of graphs admit equitable colorings with few colors. Another example of this phenomenon
appears in [15], where the Bollobds-Guy result was extended to outerplanar graphs. Specifically,
[15] showed that any n-vertex outerplanar graph G with A(G) < n/6 can be equitably 6-colored.

In this paper we show that this phenomenon is widely pervasive. A d-degenerate graph is a
graph G in which every induced subgraph has a vertex with degree at most d. It is well known that
forests are exactly 1-degenerate graphs, outerplanar graphs are 2-degenerate, and planar graphs are
5-degenerate. By the definition, the vertices of every d-degenerate graph can be ordered vy, ..., v,
in such a way that for every ¢ > 2, vertex v; has at most d neighbors v; with j < i. A d-degenerate
graph can be colored (not necessarily, equitably) with d 4+ 1 colors using a greedy algorithm. This
upper bound is tight because K441 is a d-degenerate graph. Defining the chromatic number of a
class of graphs as the maximum chromatic number of a graph in the class, we can then assert that
the chromatic number of the class of d-degenerate graphs is d + 1. Roughly speaking, the main
result in this paper shows that the equitable chromatic number of the class of d-degenerate graphs
with “star-like” graphs deleted, is O(d). Furthermore, using techniques from the proof of this result,
we show how to equitably color any d-degenerate graph (including the “star-like” graphs that were
excluded earlier), with the number of colors used being O(d) times the equitable chromatic number.
For any fixed d (for example, for planar graphs we would set d = 5), this gives a constant-factor
approximation algorithm for equitably coloring any d-degenerate graph using minimum number of
colors. The reader should note that equitable versions of NP-complete minimum coloring problems
are also NP-complete (a simple reduction involving adding isolated vertices suffices). So for example,
determining if a given planar graph with maximum vertex degree 4 has an equitable coloring with
3 or fewer colors is NP-complete.

One motivation for understanding equitable colorings comes from the use of equitable colorings
in the derivation of deviation bounds for sums of dependent random variables that exhibit limited
dependence [14]. The basic idea there was to color equitably the dependency graph of the variables
involved in the sum and use the Chernoff-Hoeffding bound for the variables associated with each
color class. This connection was independently observed by Ruciriski and others [6] and in [7], Janson
and Ruciniski compare bounds obtained by this “break-up” method to those obtained by other more
sophisticated techniques. Subsequently, Janson [5] explores further the use of the Hajnal-Szemerédi
theorem to obtain equitable colorings with applications to U-statistics, random strings, and random
graphs. In all of these applications, the fewer colors we use, the better the deviation bound is. In
fact, Pemmaraju [14] notes that if the dependency graph of a set of random variables can be colored
with a constant number of colors, then the deviation bounds we get for the sum of these random
variables are essentially what we would have obtained had we assumed independence among the
random variables and used Chernoff-Hoeffding bounds. Since the upper bounds on the equitable
chromatic number proved in this paper for d-degenerate graphs are better than those provided
by the Hajnal-Szemerédi theorem, we get correspondingly better deviation bounds. Consider for
example the case of planar graphs. We show that “most” planar graphs can be equitably colored
with a constant number of colors and furthermore we show that if we are allowed to delete a constant
number of vertices from any planar graph, then the remaining graph can be colored with a constant
number of colors. This means that for a set of random variables whose dependency graph is planar,
we obtain deviation bounds on their sum that are almost as good as those obtained had the random
variables been mutually independent.

MAX p-SECTION is the problem that takes as input an edge weighted graph G and a positive
integer p and produces a partition of V(@) into p subsets of equal size such that the total weight
of edges connecting different parts is maximized. Recently Andersson [1] used semidefinite pro-



gramming to obtain a (% + @(p*3))—factor approximation algorithm for MAX p-SECTION. Our

results imply alternate combinatorial algorithms for the MAX-p-SECTION problem for d-degenerate
graphs and might lead to a better approximation factor for planar graphs.

We have also been able to extend some of the results in this paper to list colorings. An list
analogue of equitable colorings was introduced in [2].

Now, we describe the main results more precisely. An equitable k-partition of a graph G is the
collection of subgraphs {G[V1], G[V2], ..., G[Vk]} of G induced by the vertex partition {V;, V5, ..., Vi }
of V(G) where, for any pair V; and V}, the sizes of V; and V; differ by at most 1. Our first result is
the following.

Theorem 1. Letk > 3 and d > 2. Then every d-degenerate graph has an equitable k-partition into
(d — 1)-degenerate graphs.

This is an extension of the Bollobds-Guy result [3] which essentially asserts the same for d =1
and k£ = 3. By fixing £ = 3 in the above theorem and recursively applying it for d > 2 and applying
the Bollobas-Guy Theorem for d = 1, we get the following result.

Corollary 1. Ford,n > 1, every d-degenerate, n-vertex graph G with A(G) < n/3% can be equitably
3 -colored.

This guarantees a 3%-equitable coloring for d-degenerate graphs that are not “star-like”, where
“star-like” refers to any n-vertex graph G with A(G) > n/3%. In our main result, we strengthen
Corollary 1 to the following.

Theorem 2. For d,n > 1, every d-degenerate, n-vertex graph G with A < n/15 is equitably k-
colorable for any k > 16d.

The proof of this result is constructive and provides an O(d)-factor approximation algorithm for
equitable coloring with fewest colors of each d-degenerate n-vertex graph G with A < n/15. Finally,
we extend this to all d-degenerate graphs and show the following.

Theorem 3. There exists a polynomial time algorithm that for every equitably s-colorable d-
degenerate graph G produces an equitable k-coloring of G for each k > 31ds.

2 Equitable partitions of d-degenerate graphs

Every d-degenerate graph G admits a d-degenerate vertex ordering, that is, an ordering vy, vs, ..., vn
of the vertices of G such that each vertex v; has at most d neighbors in {vi,va,...,v;-1}. A
d-degenerate ordering of G can be constructed by picking a vertex v with smallest degree and
appending it to a degenerate ordering of G —v. It is easy to see that any d-degenerate graph G can
be partitioned into two (d — 1)-degenerate graphs: construct a degenerate ordering and color the
vertices in this order, red or blue, using the rule that a vertex v is colored red if it has less than d red
neighbors; otherwise color v blue. While this procedure leads to a partition into (d — 1)-degenerate
graphs, this partition needs not be equitable. In fact, the only partition of a star graph (which is
1-degenerate) into two independent sets (which are 0-degenerate) is the one in which one part has
one vertex and the other has the rest. In this section we show that if d > 2 and we allow for a
third part, we can provide equitability. This extends the Bollobas-Guy result [3] to arbitrary d > 2
and also gives a tool to get equitable colorings that use few colors. Specifically, we will prove the
following fact.

Theorem 1. Let k > 3 and d > 2. Then every d-degenerate graph can be equitably partitioned into
k (d — 1)-degenerate graphs.

Proof. We prove the result by contradiction, assuming that the above claim is false. Let G be
a smallest (with respect to the number of vertices) counterexample to the theorem. Let n =
|[V(G)|. Then n > dk, because otherwise, any equitable vertex partition is good enough. A simple
observation that forms the basis of the proof is the following.



Claim 1. Let vy, vs,..., vy be a d-degenerate vertex ordering of a d-degenerate graph H. If H — vy,
has a k-partition (W1, ..., W) where every W; induces a (d — 1)-degenerate subgraph, then among
Wi+ vm, ..., W + vy, at most one is not (d — 1)-degenerate. Furthermore, if W; + v, is not
(d — 1)-degenerate, then vy, has d neighbors and W; contains all d neighbors of vy, .

Proof. By the definition of a d-degenerate vertex ordering, the degree of v,, is at most d. If W; has
fewer than d neighbors of v,,, then we can append v,, to a (d — 1)-degenerate ordering of W;. O

Claim 2. The minimum degree of G is d and n is divisible by k.

Proof. Suppose that n = k-s+r, where 1 < r < k. We can choose a degenerate ordering of G such
that the last vertex in the ordering, v,, is a vertex of minimum degree. By the minimality of G,
there exists an equitable k-partition (W1,...,Wy) of V(G) — v, into sets inducing (d —1)-degenerate
graphs. Note that exactly r — 1 of these sets have size s + 1 and remaining k —r + 1 sets are of size
s. Since k —r +1 > 1, there is at least one W; of size s. If deg(v,) < d— 1, then adding v, to any
set W; of size s creates the desired equitable k-partition of G. This contradicts the choice of G and
so we have that degg(v,) > d.

If k£ does not divide n, then we have r < k. This implies that there are k —r + 1 > 2 sets of size
s and by Claim 1, we can add v,, to at least one of these sets of size s. Again, this contradicts the

choice of G as a minimal counterexample and implies that k divides n. O

Given a vertex ordering R = {v1,...,v,} of a graph H and an edge e = v;v; € E(H), we denote
Ir(e) =i and rgr(e) = jifi < j. Among all d-degenerate orderings of V(@) choose a special ordering
U = (u1,...,u,) where the maximum index ly(e) of an edge e € E(G) is maximized. Let ig be
the maximum of I;7(e) over all the edges in the special ordering U. For convenience, we use U; to
denote the set {u;, uiy1,...,uy} for each i, 1 <i < m.

Claim 3. The vertez u;, is adjacent to u; for every io < i <mn, and the set U;y11 is independent.

Proof. The second part of the claim is directly implied by the definition of ig. Suppose that some
uj, for some j > iy is not adjacent to u;,. Then all the neighbors of u; are in V(G) —U;,. So moving
u; from its current position to just before u;, creates another d-degenerate ordering of V(G). In
this ordering the maximum index of the left end of an edge is ig + 1, a contradiction to the choice
of the special ordering U. (]

Now we are ready to prove the theorem.

CASE 1. iy >n—k+1. Let @ = G — U, _p41- By the minimality of G, V(G’) has an equitable
partition (Wy,...,Wy) into sets inducing (d — 1)-degenerate graphs. Now we attempt to consec-
utively add up—g+1, Un—k+2,-- -, Uy (in this order) so that (a) we add one vertex to every set and
(b) every new set still induces a (d — 1)-degenerate graph. For vertices w, g1, Un—kt2,---,Un_1
we can do this by Claim 1. Suppose that after adding vertices %, g+1,Un—k4+2,- -, Un_1, W; is the
only set to which no vertex has been added. The trick with u,, is that one of its neighbors is u;,
which has already been added to a set different from W;. Thus u,, has at most (d — 1) neighbors in
W; and therefore after adding u,, to W;, it still induces a (d — 1)-degenerate graph.

CASE 2. i <n—k. Let G = G — U;,. By the minimality of G, V(G") has an equitable partition
(Wy,...,Wy) into sets inducing (d — 1)-degenerate graphs. For 1 > ig call a set Wy, 1 < £ < k
i-incompatible, if all d — 1 neighbors of w; different from w;, are in W,. By Claim 1, for every
1 > 19, there could be at most one i-incompatible set. However, a set W, may be i-incompatible
for several i. By Claim 1, w;, can be added to any one of at least £k — 1 sets among the W;’s.
Let S = {W; | 1 <i < k and u;, can be added to W;}. There exists some set Wy € S such that
Wy is i-incompatible with at most (n — ig)/|S| values of i > ig. Since k > 3, |S| > 2 and so
(n—1i0)/|S| < (n—10)/2. Now add u;, to Wy. Any w;, i > ig, for which Wy is i-incompatible, can
be added to any set other than Wy . So distribute such u;’s among sets other than Wy so that the
sizes of new sets don’t exceed s = n/k. The remaining u;’s can be added to any set. Thus, we add
these in an arbitrary way so that the size of every W; becomes s = n/k. O



Algorithm. The algorithm implied by the above proof is sketched here; the correctness of the
algorithm follows from the proof. An equitable k-partition of a given n-vertex graph G is constructed
recursively. If G contains a vertex of degree less than d or if n is not divisible by k, we construct
a d-degenerate ordering of GG, and assuming that v is the last vertex in this ordering, construct
an equitable k-partition of G — v and then add v to one of the k sets. Otherwise, we construct
a special d-degenerate ordering U of G, referred to in the proof, as follows. Let Ly be the set of
vertices in G with degree at most d. If Ly contains a pair of adjacent vertices, say u and v, then U
is obtained by constructing an arbitrary d-degenerate ordering of G —u — v and appending v and v
to this. Otherwise, let L; be the set of vertices in G — Ly with degree at most d. By the definition,
every vertex in L; has a neighbor in Ly. Find a vertex v € L; with fewest neighbors in Ly. Let
S denote the set of neighbors of v in Ly. U is obtained by constructing an arbitrary d-degenerate
ordering of G — v — S and appending v followed by vertices in S to this. Once U is constructed, we
determine whether Case 1 (respectively, Case 2) of the proof applies and accordingly construct an
equitable k-partition of G' = G — Uy —41 (respectively, G = G — Uj,) and add vertices in Up—g41
(respectively, U;, ) to the sets in the partition. It is easy to see that O(n?) time suffices for algorithm,
though it seems likely that with more care this can be implemented in subquadratic time.

Theorem 1 and the equitable k-partitioning algorithm described above can be used to get an
equitable coloring of a given d-degenerate graph G. Let S = {G}. In each stage, replace each of
the graphs in S by the 3 subgraphs obtained by equitably 3-partitioning it. It is easy to verify
that after ¢ stages, S contains 3¢ (d — t)-degenerate subgraphs, each containing either |n/3!| or
[n/3'] vertices. So this is an equitable 3!-partition of G into (d — t)-degenerate graphs. Repeat
this for t = d — 1 stages to get 39! 1-degenerate graphs (forests) and then use the Bollob4s-Guy
Theorem [3] to 3-color equitably each of these forests, to get an equitable 3%-coloring of G. Since the
Bollobés-Guy Theorem can only be applied to an n-vertex forest F' with A(F) < n/3, we require
that the maximum degree of any of the subgraphs obtained after d — 1 stages be at most n/3¢.
Stipulating that A(G) < n/3? ensures this condition and we obtain the following.

Corollary 1. Ford,n > 1, every d-degenerate, n-vertex graph G with A(G) < n/3% can be equitably
3 -colored.

3 Coloring d-degenerate graphs with O(d) colors

The significance of Corollary 1 is that it extends to various classes of graphs (including planar
graphs) what is known for trees and outerplanar graphs: a constant number of colors suffice to color
equitably each graph in the class, apart from some “star-like” graphs. In this section, we sharpen
Corollary 1 by reducing the number of colors used from 3% to O(d) and by claiming far fewer graphs
being “star-like”.

Given a graph G, we say that an ordering vy, v2,. .., v, of the vertices of G is greedy if for every
1, v; has the highest degree in G —v; — - -+ — v;_1.

Theorem 2. Every d-degenerate graph with mazimum degree at most A is equitably k-colorable
when k > 16d and n > 15A.

Proof. Let G be a d-degenerate graph with vertex set V of size n and edge set E(G). Let k(t—1) <
n < kt and k > 16d.

CASE 1. t < 15. This is the simple case and its proof can be found in the appendix.

CASE 2. t > 16. This is the more interesting and significantly more difficult case. Let t =
B14™ + B24™71 + ...+ Bm41 where j3; is an integer, 0 < 8; < 3. For i = 1,2,...,m + 1, define
l; = 141 4 3,472 + ... + B;. For notational convenience let Iy = 0. We have that I; = 4l;_; + 3;
for each i =1,2,...,m + 1 and also that ¢t = [,,41.

We now partition V(@) into sets C1,Cs, ..., Cpy1 and color the vertices in C; in the ith phase
of the algorithm. We use the values of 1,15, ... ,[,, to control the sizes of these sets. For notational
convenience set Ay = By = Cy = 0. For each i = 1,2,..., m, we construct sets A; and B; and set
C; = A;UB,. We use C] to denote the vertices in the sets constructed thus far. In other words, for



eachi=0,1,...,m+ 1, we let C! denote U;-:OCJ'. For each ¢ = 1,2,...,m, A; is constructed by
selecting vertices in G — C}_, as follows. Arrange the vertices of of G — C_; in greedy ordering and
let A; be the first (I; — l;_1)k vertices in this ordering. B; is selected from vertices in G — C}_; — A;
as follows. Initially set B; = () and while there is a vertex w € G — C}_; — A; — B; that has
at least 13d neighbors in A; U B; U C}_,, add w to B;. Repeat this process until every vertex
w € G — C}_; — A; — B; has fewer than 13d neighbors in C]_; U A; U B;. This completes the
construction of A; and B; and we simply set C; = A; U B;. After constructing C1,Cs,...,Cy,, we
set Crpy1 = V(GQ) = C,..

Now let b; = |B;| foreachi =0,1,2,...,m and let e(H) denote the number of edges in a graph H.
It follows from our construction that for each i =0,1,...,m, e(G[C;]) > 13d Z;:o b;. On the other
hand G[C;] is a d-degenerate graph and has l;k+3_’_ b; vertices, and so e(G[Ci]) < (lik+32;_¢ bj)d-
It follows that Z;:o b; < 4% or in other words, for each i =1,...,m,

13
ICi| < Elik. (1)
Since C},; = V(G) we also know that |C}, | <tk = ln11k.

We will color 'y with k colors in such a way that each color class has at most [%lﬂ vertices.
We color vertices in C'y one by one in a degenerate order. Hence when we color vertex u € C1, there
are at least (k — d) color classes that do not contain neighbors of u. Since

1Lk 134k 16(k—d) 7
< ! _
B S 1 i <ghth-d

|Cl| <

there exists a color class M of size less than %ll that does not contain neighbors of u. We color u
with color M.

We now show how to color the rest of the sets C2,Cs,...,Cpnt1. For 2 <i <m+1, in the ith
phase we start with G such that all vertices in C;_; have been colored. In this phase we will color
the vertices in C; in a degenerate order in such a way that: (i) Every color class is of size at most
L;, where L; = [%li] for 2 <i <m, and Ly, 41 = t; (ii) The vertices in C]_; will not be recolored.

Claim 4. For everyi > 2, L;_1/L; <2/5.
Proof. Recall that [; > 4l; | for every ¢ > 2. If i =m + 1, then L; = [; =t > 16. Therefore,

Lo _ [Tn/6] _ Tn/645/6 _ 7 5/6 11 _ o,
Lot t t 6-4" 16 32

If 2 <i<m,then L; = [Z]. If [;_; > 2, then ; > 8 and

Liyw _Ti1/6+5/6 1 5/6 _ 19

Li — ;)6  — 4 7-8/6 56
Finally, if [;_; = 1, then L;_y = 2 and L; > 5. This proves the claim. o
Suppose we want to color a vertex v. Let My, ..., My be the current color classes. Let Yy denote the

set of color classes of cardinality less than L;. If some M; € Yy contains no neighbors of v, then we
color v with M; and work with the next vertex. Otherwise, let Yy-candidate be a vertexw € V—Cj_,
such that there exists a color class M(w) € Y, with w ¢ M(w) and Ng(w) N M(w) = 0. Let Y3
be the set of color classes containing a Yp-candidate. If a member M; of Y; does not contain a
neighbor of v, then we color v with M; and recolor some Yy-candidate w € M; with M (w). For
h > 1, let a Yj-candidate be a vertex w € C; — Uprev,u...uy, M such that there exists M (w) € Y
with Ng(w) N M(w) = . Let Y41 be the set of color classes containing a Yj-candidate. If a
member M; of Y41 does not contain a neighbor of v, then we color v with M; and similarly to the



above recolor a sequence of candidates. Finally, let Y = U32,Y; and y = [Y|. Then by the above Y’
possesses the following properties:

(a) every member of Y contains a neighbor of v,

(b) every vertex u € C; — Uprey M has a neighbor in every M € Y (otherwise the color class of u
would be in Y').

We will prove that there is at least one color class M in Y that does not contain neighbors of v.
Suppose this is not the case.

Observe that each vertex v € C; has at most 13d neighbors in C;_; (by the construction of
B;_1), and at the moment of coloring has at most d neighbors among colored earlier vertices of C;
(since vertices are considered in a degenerate order). So when we color a vertex u € C;, there are
at most (13 + 1)d color classes that have neighbors of u. By property (a) of Y, y < 14d.

Claim 5. y < 8d/7.

Proof. Let S = UpyreyM and T = C; — S. By property (b) of YV, at least y|T| edges connect T'
with S. Since G is d-degenerate, we conclude that y|T'| < d(|S| + |T|), i-e., that (y — d)|T| < d|S].
Clearly, |S| < yL;. By the definition of Yy, |T'| > (k —y)(L; — L;—1).

By Claim 4, % >1- % = %, for every i > 2. Therefore,

3
(y—d)(k—y)z <dy.
Since k > 16d, the last inequality yields that (y — d)(16d — y)2 < dy. This implies the following
inequality for v = y/d :
46
7? - 57 +16>0.

Therefore, either v > (23 + v/385)/3 ~ 14.207... or v < (23 —/385)/3 ~ 1.1261... < 8/7. The
former is impossible, since y < 14d, thus the latter holds. This proves the claim. O

SUBCASE 2.1: 2 < i < m. The total number of colored vertices is at least L;(k — y) which by
Claim 5 is greater than
7l; 8d 71; 13k 131k
_° k——)>—"—= .
6 7)) 6 14 12
This contradicts (1) for j =i — 1.
SUBCASE 2.2: i =m + 1. Let D; be the highest degree in G[V — Cj].
Claim 6. 1A + (12 — l1)D1 + (l3 - l2)D2 + ...+ (lm+1 - lm)Dm < 2.75A + 4.25dt.

Proof. The proof of this claim is somewhat technical and appears in the appendix. O

Let M; € Y. By construction, every M; contains at most L; vertices in C}. So the number of
neighbors of M; is at most

LiA+(Ly—L1)Dy + ...+ (Lypy1 — L) Dy, =

] (][5 e (5]

71 7l T
= [?ﬂ (A—D;)+ [?ﬂ (Dy — D) + ...+ [TW (Ap—1 — D) +tDy,
71 5 71. 5
< %(A—D1)+6(A—D1)+FZ(D1 —D2)+6(D1 —Dy) +...
Tl 5
+ ?(Dm—l - Dm) + E(Dm—l - Dm) + tDm

7l 5 7
< (?1 + 6) A+ 6 ((Ia =)Dy + (I3 —=1l2)Da+ ...+ (lm+1 — l;n) D) -



On the other hand, by property (b) of Y, the number of neighbors of M is at least (k—y)(t—L,).

Note that
7l Um 4 5 5 21
t—Lpy=t— | -2 >t|1- "8 ) =¢[1—-— -} =224
[(J—t( t t( 4.6 6-16> 32!

Hence by Claim 6 we have (k —y)(t — L,,) > (k — 84/7)3;t. Comparing this with the upper bound
above and applying Claim 6 we get

8\ 21, 5 7
— — | =t < A4 - (2.75A + 4.25dt).
(k 7)321:_6 +6( 75A + 4.25dt)

Since A <n/15 < kt/15, this reduces to

8d\ 21 5 7 (2.75
e ety JUERLY il :
(k 7)32_6_15k+6(15 k+425d),

20 1 7275\, (218 7-425)
32 18 6 15) —\327 6 '
k _ 685 1440 8220

i Gttt
d= 12 557 557
a contradiction to k > 16d. This proves the theorem. O

which gives

It follows that
15,

Algorithm. The above proof implies a simple algorithm for equitably k-coloring any n-vertex
d-degenerate graph with A(G) < n/15. We first partition of V(G) into sets C;, 1 <i < m+1
as described in the first part of the proof. Then for each i = 1,2,...,m + 1, we attempt to color
vertices of C; in d-degenerate order. It is possible that in the process some vertices may have to be
recolored, but these recolorings are restricted to the set being currently colored, namely C;. The
algorithm is clearly polynomial time and it can be implemented in O(n?®) time; we do not give
details here.

4 Constant-factor approximation algorithm

The algorithm above can be (trivially) thought of as providing an O(d)-factor approximation algo-
rithm for equitably coloring, with fewest colors, an n-vertex, a d-degenerate graph with A(G) <
n/15. In this section, we extend this to an O(d)-factor algorithm for equitably coloring any d-
degenerate graph. This implies that first known O(1)-factor algorithm for planar graphs. The main
result in this section is the following.

Theorem 4. Every n-verter d-degenerate graph G with maximum degree at most A is equitably

k-colorable for any k, k > max {62d, 31dn_LA+1}.

Proof. Let G be an n-vertex d-degenerate graph. Let Go =G, h =30d—1 and for j =1,...,h, let
w; be a vertex of the maximum degree in Gj_; and G = Gj_1 — w;.

Claim 7. For every v € V(G}), degg, (v) < n/30.

Proof. If degg, (v) > n/30 for some v € V(Gp), then it is also the case that degg,_, (w;) > n/30
for every j = 1,...,30d — 1, and hence |E(G)| > 30d(n/30) = dn. This is a contradiction since any
n-vertex d-degenerate graph has fewer than dn edges. O

Claim 8. There are pairwise disjoint independent sets My, Ms, ..., My such that for every j, 1 <
J<h, (i) wy € Uiy Ms, (i) [n/k] < |Mj| < [n/k], and (i) nj/k < 375_; |Ms| <1+ nj/k.



Proof. Let X1 = V(G) — w1 — Ng(wy). Clearly, |X1| > n— A — 1. Since G is d-degenerate, X;

: : / : X n—A-1 q:
contains an independent set Mj of size at least J i Since

n _n—A+1 n-—A
— < < s
k— 31d d+1

|M{| > % — 5. Hence, we can choose a subset M|’ of M] of size [#] — 1 and let M; = M}’ 4 w;.
By construction, M; satisfies properties (i)—(iii) for j = 1.

Suppose we have constructed My, My, ..., M;_4 satisfying (i)—(iii) for some j < h. Let z; = w;
if w; ¢ J'Z] My, and let z; be any vertex outside J'_; M, otherwise. Let X; = V(G) -/ M, —
zj — Ng(z;). Since G is d-degenerate, X; contains an independent set M of size at least %.
Suppose that |M}| < =1+ n/k. In view of (iii), this means that

n—1-(G—-1n/k—1-A n
——1.
d+1 %

For n > k and d > 1, the last inequality yields n — A +1 < % +1 < 3dn_ Byt this contradicts
the choice of k. Thus, we can choose a subset of M ]' that together with z; forms an independent
set M}’ of size [n/k]. If

j—1 .
" Jn
|Mj|+3:ZI|Ms| < ?_}'17

then we let M; = M}, otherwise we get M; by deleting a vertex v # z; from M. Note that in the
latter case, |n/k| # [n/k], and thus (i)—(iii) hold in both cases. This proves the claim. O

Let G' be the graph obtained by deleting vertices in My UMsU. .. M} from G and let V' =V (G").
Claim 9. |V'| > 16n/31.

Proof. By (iii) of Claim 8, |[V'| > n — (30d — 1)n/k — 1 > n — 30dn/k. Since k > 62d, we get
V| > 32n/62. O

By Claims 7 and 9,
V'] _ 32n 30
> — - —>15.
AGY= 62 n
Since k—h > 62d—30d = 32d, by Theorem 1, G' is equitably (k— h)-colorable. Hence G is equitably
k-colorable. This proves the theorem. O

Corollary 2. Every d-degenerate graph with n vertices and mazimum degree at most 1+ n/2 is
equitably k-colorable when k > 62d.

Theorem 3. There exists a polynomial time algorithm that, given a d-degenerate graph G with
Xeq(G) < s, can equitably k-color G with for any k, k > 31ds.

Proof. Assume that a graph G on n vertices with maximum degree A admits an equitable coloring
¢ with s colors. Let v € V(@) have degree A. The color class of v contains at most n — A vertices.
Thus no other color class can contain more than n — A + 1 vertices. Hence,

n

S>7n_A+1.

(2)

Also, if G has at least one edge, s > 2. If A < 14 n/2, then by Corollary 4 G can be equitably
k-colored for any k > 62d. Since 62d > 31ds, G can be equitably k-colored for any k£ > 31ds. If



A >1+n/2, then 3ld;—x77 > 62d and therefore by Theorem 4, G be equitably k-colored for any
k > 31d;—z-7. It follows from inequality 2 that G can be equitably k-colored for any k > 31ds.
The fact that such an equitable k-coloring can be constructed in polynomial time is implied
by the proof of Theorem 4. The algorithm is sketched here. First identify the high degree vertices
wy,Wa,. .., wy in G and construct the color classes My, My, ..., M}. Constructing these color classes
uses as a subroutine an algorithm that constructs an independent set of size at least m/(d + 1) in
a given m-vertex, d-degenerate graph. It is easy to see that the following greedy algorithm suffices
for this task: pick a minimum degree vertex, delete the vertex and its neighbors, and repeat until
no vertices are left. Once the color classes My, Ms, ..., M}, are constructed and the colored vertices
are deleted, we are left with a graph whose maximum vertex degree is less than n/30. We color
the vertices in this graph using the algorithm from the previous section. This phase dominates the
running time of the algorithm and hence we have an O(n?®) algorithm. O

References

[1] G. Andersson. An approximation algorithm for max p-section. In Proceedings of the 16th Annual
Symposium on Theoretical Aspects of Computer Science, Volume 1563 of Lecture Notes in Computer
Science, pages 237-247, 1999.

[2] M.J. Pelsmajer A.V. Kostochka and D.B. West. A list analogue of equitable coloring. Submitted, 2002.

[3] B. Bollobds and R.K. Guy. Equitable and proportional coloring of trees. Journal of Combinatorial
Theory, Series B, 34:177-186, 1983.

[4] A.Hajnal and E. Szeméredi. Proof of a conjecture of Erdos. In P. Erdos, A. Rényi, and V.T. Sés, editors,
Combinatorial Theory and Its Applications, Vol II, Volume 4 of Colloguia Mathematica Societatis Jdnos
Bolyai, pages 601-623. North-Holland, 1970.

[5] S. Janson. Large deviations for sums of partly dependent random variables. Isaac Newton Institute
preprint N102024-CMP, 2002.

[6] S. Janson, T. Luczak, and A. Rucitiski. Random Graphs. Wiley-Interscience, 2000.
[7] S. Janson and A. Ruciriski. The infamous upper tail. Random Structures and Algorithms, 20(3), 2002.

[8] J. Komlos and M. Simonovits. Szemerédi’s regularity lemma and its applications in graph theory.
DIMACS Technical Report 96-10, 1996.

[9] A.V. Kostochka. Equitable colorings of outerplanar graphs. To appear in Discrete Math, 2001.

[10] A.V. Kostochka and K. Nakprasit. Equitable colorings of d-degenerate graphs. To appear in Combi-
natorics, Probability, and Computing, 2002.

[11] K. Lih. The equitable coloring of graphs. In D.-Z. Du and P.M. Pardalos, editors, The Handbook of
Combinatorial Optimization, Vol. 8, pages 543-566. Kluwer, Boston, 1998.
[12] K. Lih and P. Wu. On equitable coloring of bipartite graphs. Discrete Mathematics, 151:155-160, 1996.
[13] W. Meyer. Equitable coloring. American Mathematical Monthly, 80:143-149, 1973.
[14] S.V.Pemmaraju. Equitable colorings extend chernoff-hoeffding bounds. In Proceedings of the 5th Inter-
national Workshop on Randomization and Approzimation Techniques in Computer Science (APPROX-
RANDOM 2001), pages 285-296, 2001.

[15] S.V.Pemmaraju. Coloring outerplanar graphs equitably. In review at Journal of Combinatorial Theory,
Series B, 2002.

[16] A. Tucker. Perfect graphs and an application to optimizing municipal services. SIAM Review, 15:585—
590, 1973.

10



Appendix.

Proof of CASE 1 of Theorem 1

CASE 1. t < 15. We will color the vertices one by one in a d-degenerate order vi,...,v, (with some
recolorings). Suppose we cannot color vertex v;. Let Z be the set of color classes containing neighbors of
v;. Since G is d-degenerate, |Z| < d. If a color class M ¢ Z has fewer than ¢ vertices, then we can color v;
with M. Since n < kt, there is a color class My € Z with at most ¢ — 1 vertices. If a vertex w in a color
class M ¢ Z has no neighbors in My, then we can recolor w with My and color v; with M. Thus, every of
(k —|Z|)t colored vertices outside of Z has a neighbor in My. Therefore,

(t — 1A > (k — d)t.

Since n > 15A, we have

15
—>— >
(t=Dip > 7okt > o0

and hence t — 1 > 152/16 > 14, a contradiction to the ch01ce of ¢.

Technical claim in the proof of Theorem 1

Claim 10.
LA+ (la—1)D1+ (s —12)D2+ ... 4+ (lm+1 — lm)Dm < 2.75A + 4.25dt.

Proof. Observe that
|E(G)| 2 Z degV—C;_l—{v{ ..... v;_l}(v;)"'

1<i<m
1<i<1;k

By the definition of A;, for v} € A;, degG[V_cll,_l_{vi-’___’v;;_l}](v}) > Diy1, and |Ai| = (I; — lLim1)k.
Thus,

|[E(G)| > k(luD1 + (I —l1)Da + (I3 —12) D3 + ... + (I;y — l;n—1) D).
Since |E(G)| < dn < dtk, we have

iD1 4+ (la —l)D2+ (I3 —12)D3 + ... + (lm — lm—1)Dm < dt. (3)
Note that
Liy1—1; Al + Bipr — s 3(4li—1 + Bi) +3 3—0i 1
il Ai—1+f—lix = 31 + i T R A

For 7+ > 3, we obtain l7;+1 ;< (4 + %)(ll — lifl). Also (lz — l1) —4.25l; = ﬂz —1.2505. Therefore,
4.25 (llDl + (l2 — l1)D2 + (lg — l2)D3 +...+ (lm — lm_l)Dm) >

> (l2 — l1)D1 —+ (l3 — l2)D2 + ...+ (lm+1 — lm)Dm —+ (1.25l1 — ,32)D1
Comparing with (3), we get

(Ia —l)D1 + (I3 — 12)Da + ... + (I;+1 — b)) Dy < 4.25dt + B2D1 — 1.2501 D;.

Hence

5
WA+ (Ia —1)D1 4+ (Is —l2) D2+ ... + (lm+1 — ) Dm < 1A + 4.25dt + B2 D1 — leDl

< 4.25dt + B2 D1 — il1D1 < 4.25dt + (3 — i)D1 < 4.25dt + 2.75A.

This proves the claim. O
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