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Abstract. Topology control is the problem of selecting neighbors for each node in a wireless
network, so that the resulting network has a number of useful properties. More precisely, a
topology control protocol P takes as input a network G and aims to construct a spanning
subgraph GP , that is sparse, “energy minimizing” and has sufficient connectivity so as to
guarantee multiple short paths between pairs of nodes in G. Currently, topology control pro-
tocols assume that nodes in G reside in some Euclidean (usually, 2-dimensional) space and
rely on geometric information such as node locations and pairwise distances between nodes
to produce GP with appropriate properties. However, these protocols are extremely sensitive
to errors in location information and this feature makes them impractical because errors in
location and distance information are pervasive in practical systems. This paper presents and
analyzes two randomized topology control protocols that are tolerant to errors in pairwise dis-
tance estimates. The first protocol, called RTC (short for randomized topology control) uses
no geometric information, relying only on connectivity information and is therefore completely
immune to errors in location or distance information. The second protocol, called ε-RTC, gen-
eralizes the first protocol. Allowing for errors in distance estimates, but assuming that relative
errors are bounded above by ε, the second protocol produces an output network that is sym-
metric, connected, sparse, and has good spanner properties. As ε → 0, ε-RTC behaves like the
XTC protocol (R. Wattenhofer and A. Zollinger, “XTC: A practical topology control algo-
rithm for ad-hoc networks”, WMAN 2004) and for large values of ε, it behaves like RTC. Our
results hold whenever the input network is a unit disk graph or even a quasi unit disk graph.

1 Introduction

An ad-hoc wireless network consists of a set of nodes, each equipped with a wireless radio.
Each node u can send messages to all nodes within its radio range and all such nodes
are potential neighbors of u. However, for reasons explained below, it is preferable for u
to communicate with an appropriately chosen subset of these reachable nodes. Informally
speaking, the topology control problem is one of selecting neighbors for each node so that
the resulting network has a number of useful properties. More precisely, let V be a set of
nodes that can communicate via wireless radios and for each v ∈ V , let N(v) denote the set
of all nodes that v can reach when transmitting at maximum power. The induced digraph
G = (V, E), where E = {(u, v) | v ∈ N(u)}, represents the network in which every node
has chosen to transmit at maximum power and has designated every node it can reach,
as its neighbor. The topology control problem is the problem of devising a protocol P for
selecting a set of neighbors NP (v) ⊆ N(v) for each node v ∈ V . The induced digraph
GP = (V, EP ), where EP = {(u, v) | v ∈ NP (u)} is typically required the satisfy properties
such as symmetry (if v ∈ NP (u) then u ∈ NP (v)), sparseness (|EP | = O(|V |)) or bounded
degree (|NP (v)| ≤ c for all nodes v and some constant c), connectivity, and the spanner
property.

Current research on topology control. In the last few years, a generation of topology control
protocols have been proposed that achieve many of the properties mentioned above by



assuming that the nodes in V lie in some Euclidean (typically, 2-dimensional) space and
each node knows its spatial location with respect to some global coordinate system [4–7,
10]. In our view, the main problem with these protocols is the reliance on node location
information and the lack of robustness with respect to errors in this information. Node
location information is typically available only if nodes are GPS enabled or if an expensive
protocol called localization [2] is run. GPS enabled nodes are costly and more importantly,
consume scarce energy resources. No matter which approach is used to find node locations,
errors in location information are quite likely. Unfortunately, none of the topology control
protocols mentioned above, make allowances for any errors in location information and are
extremely sensitive to these errors. In other words, critical properties of the output network
such as connectivity or bounded maximum degree are not guaranteed to hold even if there
is a small amount of error in location information.

More recently, Wattenhofer and Zollinger [11] have proposed a topology control protocol
called XTC that does not rely on specific location information for each node, but rather
requires each node to only know the distance to each of its neighbors. Although this is an
improvement over location-based topology control algorithms, XTC still suffers from lack
of robustness to errors in distance information. As we show in Section 2, there are networks
modeled as unit disk graphs (UDGs) such that when XTC is run on these, its output
network is disconnected and contains vertices with unbounded degree, even in the presence of
arbitrarily small errors in pairwise distance estimates. This is a significant problem because
in general it seems hard to accurately estimate pairwise node distances. For example, [11]
mentions the use of the strength of the received signal (RSSI) as a way to estimate distances.
While this technique is relatively cheap and does not need additional hardware, it is known
to have low accuracy. Alternate techniques such as the use of ultrasound hardware have
been proposed [9]. These have better accuracy than RSSI, but are significantly costlier,
both in terms of additional hardware and in terms of energy consumption.

Our results. We present two randomized topology control protocols. The first protocol,
called RTC (short for “randomized topology control”) uses no geometric information, relying
only on connectivity information. As a result RTC is completely immune to errors in distance
or location information. Our second protocol, called ε-RTC is parameterized by ε > 0, which
stands for the maximum relative error on pairwise distance estimates. Allowing for errors
in distance estimates, but assuming that relative errors are bounded above by ε, ε-RTC
produces an output graph that is symmetric, connected, sparse, and has spanner properties.
As ε → 0, ε-RTC behaves like XTC and for large values of ε, ε-RTC behaves like RTC. In
general, ε-RTC combines the advantages of XTC and RTC. Unlike XTC, ε-RTC is tolerant
to errors bounded by ε and unlike RTC, ε-RTC uses distance information to the extent they
are reliable and attempts to drop long links in favor of short links, thereby saving on energy
consumption. Both RTC and ε-RTC are randomized variants of XTC and are therefore
extremely light weight, needing only two rounds of communication. We prove properties
of the output network of RTC and ε-RTC assuming that the input network G is a UDG.
However, our results hold even when G is a quasi UDG [1].

2 The XTC protocol

We start this section by reproducing the XTC protocol from [11], followed by a description
of properties of XTC.



1. Establish order ≺u over u’s neighbors in G
2. Broadcast ≺u to each neighbor in G; receive orders from all neighbors
3. Select topology control neighbors:

4. Nu := { }; eNu := { }
5. while (≺u contains unprocessed neighbors){
6. v := least unprocessed neighbor in ≺u

7. if(∃w ∈ Nu ∪ eNu : w ≺v u)

8. eNu := eNu ∪ {v}
9. else

10. Nu := Nu ∪ {v}
11. }

As mentioned in [11], the XTC protocol (shown above) consists of three main steps: (i)
neighbor ordering (Line 1), (ii) neighbor order exchange (Line 2), and (iii) edge selection
(Lines 3-11). In the edge selection step a vertex u decides to drop v from its set of neighbors
if there is a vertex w that u and v both agree is mutually better. More precisely, u drops
v from its neighborhood if there exists w such that w ≺u v and w ≺v u. In the protocol,
the variable Nu is the set of neighbors that u has chosen to retain and the variable Ñu

is the set of neighbors that u has chosen to drop. Let EXTC = {(u, v) | v ∈ Nu} and
GXTC = (V, EXTC). Also, let ≺= {≺u| u ∈ V (G)} denote the collection of neighborhood
orderings. Note that the protocol leaves ≺ unspecified. Thus GXTC is a function, not only
of the input network G, but also of the neighborhood orderings ≺. An appropriate choice
of ≺ is critical to the success of XTC.

It is shown in [11] that GXTC is symmetric provided G is and this is independent of ≺.
It is also shown that if G is a Euclidean graph and ≺u is defined as

v ≺u w ⇔ (|uv|, min{idu, idv}, max{idu, idv}) < (|uw|, min{idu, idw}, max{idu, idw}), (1)

then GXTC is connected. We will call the above neighborhood ordering, a distance-based
ordering. Note that in the distance-based ordering, ids are only used to break ties. Finally,
it is shown that if ≺ is a distance-based ordering and G is a UDG, then the maximum
degree in GXTC is at most 6 and GXTC is planar.

Even though XTC is fast and simple and its output graph has many desired properties, it
is extremely sensitive to small perturbations in the neighborhood orderings. In the following
subsections we show XTC’s lack of robustness to small errors.

2.1 GXT C may be disconnected

We now present a simple example of a 4-vertex unit disk graph that illustrates the lack of
robustness of XTC. As shown in [11], if neighborhood orderings are distance-based (as in
(1)), then GXTC is connected. Note that according to this definition, each node u orders
its neighbors in increasing order of distance, breaking ties using ids. We show that if the
distance estimates are erroneous, even slightly, then the resulting neighborhood orderings
are such that GXTC becomes disconnected.

Consider the unit disk graph shown in Figure 1. Pick an ε, 0 < ε < 1 − 1√
2
. Let the

lengths of the edges be |ab| = |dc| = (1−ε)/2 and |ac| = |bd| = 1/2. Then the neighborhood
orderings ≺ according to (1) are:

d ≺a b ≺a c c ≺b a ≺b d b ≺c d ≺c a a ≺d c ≺d b.



Now suppose that node b incorrectly estimates distance |ba| as (1 + ε)/2 and node c incor-

rectly estimates distance |cd| as (1 + ε)/2. The resulting neighborhood orderings
∼

≺= {
∼

≺a

,
∼

≺b,
∼

≺c,
∼

≺d} are shown below.

d
∼

≺a b
∼

≺a c c
∼

≺b d
∼

≺b a b
∼

≺c a
∼

≺c d a
∼

≺d c
∼

≺d b.

If XTC is run with input
∼

≺ then GXTC contains just the two edges {a, d} and {b, c} and
is therefore disconnected. Thus two incorrect estimates by an arbitrarily small amount ε is
sufficient to break connectivity.

a b

d c

Fig. 1. A unit disk graph for showing the sensitivity of XTC to small perturbations. The lengths of the
edges are |ab| = |dc| = (1 − ε)/2 and |ac| = |bd| = 1/2.

2.2 GXT C may have high degree

To start with, suppose that we have three nodes u, v1, and v2 (refer to Figure 2). Fix an
ε, 0 < ε < 1/2 and let |uv1| = d and |v1v2| = d

1+ε . If the length of the third edge |uv2| is
εd

1+ε , then the three points u, v2, and v1 would be collinear. To make 4uv1v2 a non-trivial

triangle, pick |uv2| = 2εd
1+ε . If XTC were run, just on 4uv1v2, then vertex u would drop

v1 from its set of neighbors in favor of vertex v2. Likewise vertex v1 would drop u from
its set of neighbors in favor of vertex v2. This would eliminate the edge {u, v1}

1 from the
output graph. Now suppose that there are errors in distance estimates such that lengths
|uv1| and |uv2| are unchanged, but the length |v1v2| is overestimated by a factor of (1 + ε),
thus making |v1v2| = |uv1|. Now, because ties are broken by node ids, we can assume that
idu < idv2

, thus forcing XTC to drop edge {v1, v2}, but retain {u, v1}. This phenomenon
can be forced to repeat arbitrarily. Specifically, u could have a third neighbor v3 that plays
the role relative to v2 that v2 played relative to v1. Let the actual distances to the new
vertex v3 satisfy

|v2v3| =
2εd

(1 + ε)2
, |uv3| =

( 2ε

1 + ε

)2

d, |v1v3| >
d

(1 + ε)
,

and perturb |v1v3| and |v2v3| by a factor of (1 + ε) such that it would appear that |v2v3| =
|uv2| and |v1v3| > d. In addition, if we assume that idu < idv3

, then {v1, v3} and {v2, v3}
would be dropped and {u, v2} would be retained. By continuing this construction, we can
force u to have arbitrarily high degree. Note that in this example, some distances are
unchanged while some are increased by a factor of (1 + ε).

1 XTC outputs a symmetric network independent of the neighborhood orderings ≺. This allows us to think
of the edges of GXTC as undirected edges.
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Fig. 2. A unit disk graph to illustrate how XTC may produce an output graph with unbounded node degree.

2.3 Experimental evidence

We have experimentally studied XTC’s sensitivity to errors in distance information. To do
this, we fixed a value for ε > 0 and generated a sequence of UDGs (a brief description of our
experimental setup appears in the Appendix in Section A). For each instance G of a UDG
and for each edge {u, v} in G, we picked two distance estimates for |uv|, one to be assigned
to u and the other to v. Both distance estimates are picked uniformly at random from the
interval [|uv| · (1−ε), |uv| · (1+ε)]. Our experiments show that even for randomly generated
instances of UDGs, XTC produces disconnected output networks a substantial fraction of
the time. For example, for UDGs generated with node density of 3 nodes per unit square,
for ε = 0.4, XTC produces a disconnected network 60% of the time. Even for UDGs of
higher density, say 12 nodes per unit square, XTC produces a disconnected network 40% of
the time at ε = 0.4. See [8] for more details.

The plots below shows the increase in the maximum degree of GXTC , as ε → 1. The
plot on the left is for input UDGs with a density of 15 nodes per unit square and the plot
on the right is for input UDGs with a density of 30 nodes per unit square. In each case, at
a certain value of ε, the maximum degree of GXTC exceeds beyond 5, which is the upper
bound on ∆(GXTC) assuming completely accurate distances. Notice that in the case of the
higher density graphs, ∆(GXTC) exceeds 5 at around ε = 0.25.

Fig. 3. These are plots showing the increase in the maximum degree of GXTC as the error bound ε increases.

3 Randomized Topology Control

Here we describe two randomized topology control protocols, RTC and ε-RTC. Both are
variants of XTC in that they first construct specific neighborhood orderings and then run
XTC with these orderings as input. RTC ignores geometric information completely, relying



on randomization alone to obtain good expected performance. ε-RTC does use the distance
estimates, even though they may be erroneous. However, in an attempt to foil the adver-
sary, ε-RTC first does a random perturbation of the distance estimates. The amount of
perturbation is a function of ε.

3.1 The RTC protocol

RTC consists of two phases. In phase 1, a randomized edge labeling is constructed and
this is used by each node u to define a neighborhood ordering ≺u on N(u). In Phase 2,
XTC is executed with these neighborhood orderings as input. Phase 1 of RTC, which we
call NeighborhoodOrdering, is shown below. It simply consists of picking for each edge, a
real number, uniformly at random from the range [0, 1]. The choices for different edges are
independent. Each node u maintains an array du[v], v ∈ N(u), of local variables and for
each edge {u, v} ∈ E(G), one of the two endpoints u or v whichever has higher id, picks a
real number d ∈ [0, 1] to serve as the edge label for {u, v} and this is assigned to both du[v]
and to dv[u]. Finally, each node u constructs ≺u by ordering its neighbors in increasing
order of the values du[v], v ∈ N(u). We call the output of RTC, GRTC .

Algorithm NeighborhoodOrdering(u)

1. Node u sends to each neighbor v ∈ N(u), the value idu. It receives from each neighbor v ∈ N(u), the
value idv.

2. For each neighbor v with idv < idu, node u picks d ∈ [0, 1] uniformly at random and assigns du[v] := d
and sends du[v] to v.

3. For each neighbor v with idv > idu, node u receives dv[u] from v and assigns du[v] := dv[u].
4. Node u computes an ordering ≺u of its neighborhood N(u) such that for any pair of vertices v1, v2 ∈

N(u):
v1 ≺u v2 ⇔ (du[v1], idv1

) < (du[v2], idv2
).

3.2 The ε-RTC protocol

Let α(u, v) denote the distance between u and v, as estimated by u. It is possible that
α(u, v) 6= α(v, u). We assume that the errors in distance estimates are bounded. That is,
there is an ε > 0, such that

(1 − ε) · |uv| ≤ α(u, v) ≤ (1 + ε) · |uv|.

When the distance estimates satisfy this property, we say that they are ε-error bounded.

Like RTC, the ε-RTC protocol also consists of two phases, the first involves construct-
ing neighborhood orderings and the second involves calling XTC. The first phase, called
ε-NeighborhoodOrdering, is shown below. We assume that all nodes know the value of ε
and each node u can compute distance estimates α(u, v) to all neighbors v ∈ N(u). Unlike in
RTC, ε-NeighborhoodOrdering does make explicit use of the estimated pairwise distances
α(·, ·). For each edge {u, v}, first the average of α(u, v) and α(v, u) is computed. Then, an
interval around this average is constructed and a value is picked, uniformly at random from
this interval. This value is assigned to both du[v] and dv[u] as the final label of the edge
{u, v}. We call the output of ε-RTC, Gε-RTC .



Algorithm ε-NeighborhoodOrdering(u)

1. Node u sends to each neighbor v ∈ N(u), the value idu. It receives from each neighbor v ∈ N(u), the
value idv.

2. Node u estimates the distance α(u, v) to each neighbor v ∈ N(u). Then node u sends to each neighbor
v ∈ N(u) the estimate α(u, v) and receives from each neighbor v ∈ N(u) the estimate α(v, u).

3. For each neighbor v with idv < idu, node u computes a := (α(u, v) + α(v, u))/2 and then picks d ∈
[a(1−δL), a(1+δR)] uniformly at random and assigns du[v] := d and sends du[v] to v. Here, δL = 2ε/(1+ε)
and δR = 2ε/(1 − ε).

4. For each neighbor v with idv > idu, node u receives dv[u] from v and assigns du[v] := dv[u].
5. Node u computes an ordering ≺u of its neighborhood N(u) such that for any pair of vertices v1, v2 ∈

N(u):
v1 ≺u v2 ⇔ (du[v1], idv1

) < (du[v2], idv2
).

4 Analysis of RTC and ε-RTC

In this section we show that the output networks produced by RTC and ε-RTC are sparse.
Specifically, we show that for any node u, its expected degree in GRTC is bounded above by
O(log degG(u)) and its expected degree in Gε-RTC is bounded above by O(1). We use the
notation degG(u) to denote degree of node u in the graph G. Before we prove our sparsity
results, we quickly show that both GRTC and Gε-RTC are symmetric and connected.

It is observed in [11] that if G is symmetric, then so is GXTC no matter what ≺ is.
As a corollary we obtain that both GRTC and Gε-RTC are symmetric since the algorithms
RTC and ε-RTC are just implementations of XTC with specific choices of ≺. Connectivity
of GRTC and Gε-RTC follows from the following result due to [3, 11]. Before we state the
result we need a definition.

Definition. Let S be an arbitrary set on which a total order <S is defined. The collection
of neighborhood orderings ≺= {≺u| u ∈ V (G)} is said to be consistent if there is a labeling
of the edges ` : E → S such that for any two neighbors v1, v2 ∈ N(u),

v1 ≺u v2 ⇔ (`{u, v1}, idv1
) < (`{u, v2}, idv2

).

In the above, < denotes the lexicographic ordering on S × ID, where ID is the space of all
node ids. It is worth emphasizing that E is the set of undirected edges and therefore every
edge {u, v} gets a single label, that is, `{u, v} = `{v, u}.

Theorem 1. [3, 11] Let ≺ be a collection of consistent neighborhood orderings of G. If XTC
is executed with input ≺ and G is connected then GXTC is connected.

The above theorem essentially says that as long as some edge labels are agreed upon and
used to construct the neighborhood orderings, connectivity is guaranteed. These edge labels
need have nothing to do with actual pairwise distances. From the fact that RTC and ε-RTC
both execute XTC with a consistent collections of neighborhood orderings, we obtain that
both GRTC and Gε-RTC are connected.

Theorem 2. GRTC and Gε-RTC are both symmetric and connected.

4.1 Bound on vertex degrees

Here is a simple and useful fact about the probability that the neighbors of a node u are
ordered in ≺u in a certain way. This follows from the fact that in RTC, for any node u, each
ordering of its neighbors is equally likely to be ≺u.



Lemma 1. Let v1, v2, . . . , vt be neighbors of u. Then, Prob[
∧t

i=2
v1 ≺u vi] = 1

t .

Theorem 3. Let G be a UDG and let H = GRTC . For any vertex u of G

E[degH(u)] = O(log degG(u)).

Proof. Since G is a UDG, the neighborhood N(u) of u can be partitioned into at most 5
cliques. For some integer t, 1 ≤ t ≤ 5, let {N i(u) | i = 1, 2, . . . , t} be a partition of N(u)
into t cliques. Let degi

G(u) = |N i(u)|, for each i = 1, 2, . . . , t and let degi
H(u) be the number

of nodes in N i(u) that continue to be neighbors of u in H. Then degH(u) =
∑t

i=1
degi

H(u)
and by linearity of expectation E[degH(u)] =

∑t
i=1

E[degi
H(u)]. We will now show that

E[degi
H(u)] = Θ(log degi

G(u)) = O(log degG(u)).

Since t ≤ 5, we have that E[degH(u)] = O(log degG(u)).
Fix i, 1 ≤ i ≤ t, and let d = degi

G(u) and N i(u) = {v1, v2, . . . , vd} such that v1 ≺u

v2 ≺u · · · ≺u vd. For each j = 1, 2, . . . , d, let Xj denote the indicator random variable that
equals 1 if {u, vj} ∈ E(H) and 0 otherwise. Then, by linearity of expectation, E[degi

H(u)] =∑d
j=1

E[Xj ] =
∑d

j=1
Prob[Xj = 1]. Given that v` ≺u vj for each ` = 1, 2, . . . , j − 1, for the

edge {u, vj} to be present in H, it must be the case that u ≺vj
v`, for each ` = 1, 2, . . . , j−1.

Therefore,
Prob[Xj = 1] ≤ Prob[∧j−1

`=1
u ≺vj

v`].

By Lemma 1, Prob[∧j−1

`=1
u ≺vj

v`] = 1/j. Therefore,

E[degi
H(u)] =

d∑

j=1

Prob[Xj = 1] ≤
d∑

j=1

1

j
= Θ(log d) = Θ(log degi

G(u)).

This completes the proof.

Now we prove the sparseness of Gε-RTC . Specifically, we show that the expected degree
of each vertex u in Gε-RTC is bounded above by a constant. Before we embark on this proof,
we state a simple inequality that expresses a connection between the actual distance |uv|
between a pair of neighbors u and v and the eventual edge label du[v] assigned by ε-RTC.

Lemma 2.

|uv| ·
(1 − ε)2

(1 + ε)
≤ du[v] ≤ |uv| ·

(1 + ε)2

(1 − ε)
.

Theorem 4. Let G be a UDG and suppose that the pairwise distance estimates α : V ×V →
<+ are ε-error bounded. Let H = Gε-RTC. Then there is a constant C such that for any
vertex u ∈ V , E[degH(u)] ≤ C.

Proof. Set η = (1 + ε)3/(1 − ε)3. For this proof to go through, we require that η < 2. This
happens whenever

ε <
(21/3 − 1)

(21/3 + 1)
= 0.115013....

For notational ease we denote the constant 0.115013... above by Ω. In other words, our
proof goes through when ε is around 1/9 or smaller. A more complicated analysis can be
used for larger values of ε between Ω and 1; we skip that for conciseness.



Set θ = π/2− sin−1(η/2) and t = d 2π
θ e. Partition the unit disk centered at u into cones,

C1, C2, . . . , Ct such that each cone Ci, 1 ≤ i < t, makes an angle θ at u, Ct makes an angle
of at most θ at u. It is worth noting that as ε → 0, we see that η → 1 and therefore θ → π/3.
Also, when ε → Ω from below, we see that η → 2 from below and θ → 0. In short, as ε
increases, our cone partition becomes more fine.

Let {N i(u) | i = 1, 2, . . . , t} be a partition of N(u) into t subsets such that all nodes
in N i(u) lie in cone Ci. Note that each N i(u) induces a clique in G because θ ≤ π/3 for
all values of ε < Ω. Let degi

G(u) = |N i(u)|, for each i = 1, 2, . . . , t and let degi
H(u) be

the number of nodes in N i(u) that continue to be neighbors of u in H. Then degH(u) =∑t
i=1

degi
H(u) and by linearity of expectation E[degH(u)] =

∑t
i=1

E[degi
H(u)]. We will now

show that E[degi
H(u)] ≤ c, where c is a constant in the sense that it is independent of

the size of the network, but does depend on ε. From this, it immediately follows that
E[degH(u)] ≤ t · c. Note that t is also independent of the size of network and depends only
on ε. Hence, we have that E[degH(u)] ≤ C, for some constant C.

Fix i, 1 ≤ i ≤ t, and let d = degi
G(u) and N i(u) = {v1, v2, . . . , vd} such that v1 ≺u

v2 ≺u · · · ≺u vd. For each j = 1, 2, . . . , d, let Xj denote the indicator random variable that
equals 1 if {u, vj} ∈ E(H) and 0 otherwise. Then, by linearity of expectation, E[degi

H(u)] =∑d
j=1

E[Xj ] =
∑d

j=1
Prob[Xj = 1]. We now calculate Prob[Xj = 1].

Given that v` ≺u vj for each ` = 1, 2, . . . , j − 1, for the edge {u, vj} to be present in H,
it must be the case that u ≺vj

v`, for each ` = 1, 2, . . . , j − 1. Therefore,

Prob[Xj = 1] ≤ Prob[∧j−1

`=1
u ≺vj

v`],

= Prob[∧j−1

`=1
dvj

[u] < dvj
[v`]],

=

j−1∏

`=1

Prob[dvj
[u] < dvj

[v`]]. (2)

The last equality follows from the mutual independence of the events {dvj
[u] < dvj

[v`] | ` =
1, 2, . . . , j − 1}. These events are mutually independent because in ε-RTC each edge label
du[v] is obtained by a random perturbation and these are done independently. We will now
compute an upper bound on Prob[dvj

[u] < dvj
[v`]], where 1 ≤ ` ≤ j − 1. Fix ` and for

notational ease let v ≡ v`. We now claim a geometric property that follows from the fact
that dvj

[v] < dvj
[u] and from our choice of θ. The proof appears in the appendix (Section

B) due to lack of space.

Claim: Given that θ = π/2−sin−1(η/2) and that dvj
[v] < dvj

[u], it follows that |vjv| ≤ |vju|.

Let b = |vjv|. Then, both α(vj , v) and α(v, vj) are bounded above by b · (1 + ε) and
therefore their mean, which we will denote by α{vj , v}, is also bounded above by b · (1 + ε).
Since b = |vjv| ≤ |vju|, we obtain in a similar manner that α{vj , u}, the mean of α(vj , u)
and α(u, vj) is bounded below by b · (1 − ε).

Now recall that dvj
[u] is chosen uniformly at random from the interval [Lu, Ru], where

Lu = α{vj , u} · (1 − δL) and Ru = α{vj , u} · (1 + δR). Note that Ru satisfies

Ru = α{vj , u} · (1 + δR) ≥ b · (1 − ε) · (1 + δR) = b · (1 + ε).

Thus, as shown in Figure 4, the right endpoint Ru lies to the right of α{vj , v}. Similarly,
recall that dvj

[v] is chosen uniformly at random from the interval [Lv, Rv], where Lv =



Lu Lv Ru Rv

α jα j{v  , u} {v  , v }

Fig. 4. This is the configuration of the point α{vj , u}, the interval [Lu, Ru] around it, the point α{vj , v},
and the interval [Lv, Rv] around it. Note that Lv is to the left of α{vj , u} and Ru is to the right of α{vj , v}.

α{vj , v} · (1 − δL) and Rv = α{vj , v} · (1 + δR). Now note that Lv satisfies:

Lv = α{vj , v} · (1 − δL) ≤ b · (1 + ε) · (1 − δL) ≤ b · (1 − ε).

Thus, as shown in Figure 4, the left endpoint Lv lies to the left of α{vj , u}.

We now show that the interval [Lv, Ru] is fairly large, compared to both [Lu, Ru] and
[Lv, Rv]. Recalling that Ru ≥ b · (1 + ε) and Lv ≤ b · (1− ε), we see that Ru −Lv ≥ b · (2ε).
Furthermore, we have that

Rv −Lv = α{vj , v} · (1 + δR)− α{vj , v} · (1− δL) ≤ b · (1 + ε) · (δR + δL) = b · (2ε) ·
2

(1 − ε)
.

Therefore,

Ru − Lv

Rv − Lv
≥

1 − ε

2
and

Ru − Lv

Ru − Lu
≥

1 − ε

2
.

The latter follows from the fact that Ru−Lu ≤ Rv −Lv. From these bounds, it follows that

Prob
[
dvj

[u] ∈ [Lv, Ru] and dvj
[v`] ∈ [Lv, Ru]

]
≥

1 − ε

4
.

Given that both dvj
[u] and dvj

[v] are in [Lv, Ru], either the event dvj
[u] < dvj

[v] or the
event dvj

[u] > dvj
[v] occurs. Because of symmetry, the likelihood of these two possibilities

is the same and therefore,

Prob
[
dvj

[u] > dvj
[v]
]
≥

1 − ε

8
,

implying that

Prob
[
dvj

[u] < dvj
[v]
]
≤

7 + ε

8
.

Plugging this upper bound in (2), we get that Prob[Xj = 1] ≤ (7+ε
8

)j−1. Therefore,

E[degi
H(u)] ≤

d∑

j=1

(7 + ε

8

)j−1

≤
8

1 − ε
.



4.2 Experimental evidence for sparseness

In this subsection we report on experiment results related to the maximum degree of GRTC

and Gε-RTC . Figure 5 shows the ratio ∆(GRTC)/ log ∆(G) as the size of G increases. In the
plot on the left, the increase in the size of G is due to an increase in the area in which the
nodes of G are distributed. In this case, the density of G remains fixed. In the plot on the
right, the size of G is increased by increasing the density of the graph, while keeping the
area of the graph fixed.

Theorem 3 claims that for any vertex u, the expected value of degGRTC
(u) is bounded

above by O(log degG(u)). This does not imply that E[∆(GRTC)] = O(log∆(G)). To see this
consider a graph G in which there are many nodes whose degrees are equal to ∆(G). While
it is true that for each of these high degree nodes u, we would expect the degree of u in GRTC

to be equal to O(log degG(u)), it is also true that with significant probability at least one of
these nodes will have a degree in the output graph that is much larger than log degG(u). As
a result, ∆(GRTC) may drift above O(log ∆(G)) and this drift is more pronounced as the
number of high degree nodes increases. This phenomenon is illustrated by the two plots. In
the plot on the left the ratio ∆(GRTC)/ log ∆(G) tends to a constant because even though
the size of G is increasing, the density is not. The plot on the right shows a steady increase
because as the density of G increases, there are more and more high degree vertices.

Fig. 5. Although maximum degree of GRTC is not bounded, it is comparable to log(∆).

Below (Figure 6) we show a 3-dimensional plot of the behavior of ∆(Gε-RTC) with
respect to varying values of ε and the density of the input UDG. For ε = 0 the plot shows
that ∆(Gε-RTC) is bounded above by a constant. This is to be expected because ε-RTC
is the same as XTC for ε = 0. For large values of ε (say, 0.8 or more) the behavior of
∆(Gε-RTC) is similar to the behavior of ∆(GRTC). This is also to be expected. What is
more interesting is the behavior of ∆(GRTC) for small, positive values of ε. Our plot shows
that for small, positive ε, the value of ∆(Gε-RTC) remains, more or less, a constant even
though the density of G increases. Theorem 4 claims that for any node u, the degree of
u in Gε-RTC is bounded above by a constant C (whose value depends on ε). While this
implies that the average degree of Gε-RTC is bounded above by C/2, it does not imply
that ∆(Gε-RTC) is bounded above by a constant. Hence, it is a pleasant surprise to see
∆(Gε-RTC) so well behaved for small values of ε.
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Fig. 6. The behavior of ∆(Gε-RTC), as ε increases and as the density of G increases.

4.3 Spanner properties

Due to lack of space we do not present a detailed analysis of the spanner properties of GRTC

and Gε-RTC here. We simply state our results without proof and postpone the proofs and
a discussion of the implications of these results to the full version of the paper. Note that
our results hold for arbitrary graphs and not just UDGs.

Definition: Let H be a spanning subgraph of the graph G. H is said to be a t-hop spanner
of G if for any u and v in G, cH(u, v)/cG(u, v) ≤ t, where cG(u, v) (respectively, cH(u, v))
is the number of hops in a shortest u, v-path in G (respectively, H).

Theorem 5. Let G be an arbitrary graph. GRTC is a t-spanner of G for t = O(1) and
Gε-RTC is a t-spanner of G for t = log(1/δ), where δ is the smallest distance |uv| between
any pair of nodes in G.
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APPENDIX

A Experimental Setup

We have implemented XTC, RTC, and ε-RTC on a Pentium 4 PC running Mathematica
5.0, release 1, with the Combinatorica add-on package.

All algorithms were run on UDGs and quasi UDGs that were generated by distributing
nodes in the plane in a variety of ways. One series of input graphs was constructed by
distributing nodes uniformly at random, at a density of 10 nodes per unit square, and
increasing the area of the square linearly from 1 to 77 square units. Another series of input
graphs was constructed by fixing the dimensions of the graph at 5 × 5 and increasing the
density of nodes, placed uniformly at random, linearly form 3 to 30 nodes per unit square.
A final series of input graphs was constructed by distributing nodes uniformly at random
on a 5 × 5 square, at a density of 3 nodes per unit square, and then adding small regions
(1

2
× 1

2
) with node density of 30 nodes per unit square.

The paper reports on a very small subset of our experimental results. The complete
results can be viewed at web.sau.edu/lilliskevinm/uofi/rtc/.

B Proof of geometric claim

Claim: Given that θ = π/2−sin−1(η/2) and that dvj
[v] < dvj

[u], it follows that |vjv| ≤ |vju|.

u

v

vj

x

γ

α

β

γ
1

2

Fig. 7. This shows the triangle uvjv.

Proof. Refer to Figure 7. To show that |vjv| ≤ |vju|, we will show that β ≤ α. This is
equivalent to showing that γ1 ≥ γ2. To obtain a contradiction suppose that γ1 < γ2. This
implies that |ux| < |xv|.

Since v ≺u vj , we have that du[v] < du[vj ]. Combining this with Lemma 2 we obtain

|uv| ·
(1 − ε)2

(1 + ε)
≤ du[v] < du[vj ] ≤ |uvj | ·

(1 + ε)2

(1 − ε)
.

This yields

|uv| <
(1 + ε)3

(1 − ε)3
· |uvj | = η · |uvj |.



Combining the inequalities |ux| < |xv|, |uv| < η·|uvj | with the fact that |ux|+|xv| = |uv|,
we get that |ux| < η/2 · |uvj |. Now notice that sin γ1 = |ux|/|uvj | < η/2, implying that γ1 <
sin−1(η/2). Using the fact that β ≤ θ and that θ was chosen to satisfy θ = π/2−sin−1(η/2),
we get that β < π/2 − γ1. In other words, β + γ1 < π/2, which is a contradiction.


