Buffer Minimization using Max-Coloring*

Sriram V. Pemmaraju

Rajiv Raman

Kasturi Varadarajan

October 7, 2003

Abstract

Given a graph G = (V, E) and positive integral ver-
tex weights w : V. — N, the max-coloring problem
seeks to find a proper vertex coloring of G whose color
classes Ci,Cy,...,Cr, minimize Zle mazyec, w(v).
This problem, restricted to interval graphs, arises when-
ever there is a need to design dedicated memory man-
agers that provide better performance than the general
purpose memory management of the operating system.
Specifically, companies have tried to solve this problem
in the design of memory managers for wireless protocol
stacks such as GPRS or 3G.

Though this problem seems similar to the well-
known dynamic storage allocation problem, we point
out fundamental differences. We make a connection
between max-coloring and on-line graph coloring and
use this to devise a simple 2-approximation algorithm
for max-coloring on interval graphs. We also show that
a simple first-fit strategy, that is a natural choice for
this problem, yields a 10-approximation algorithm. We
show this result by proving that the first-fit algorithm
for on-line coloring an interval graph G uses no more
than 10- x(G) colors, significantly improving the bound
of 26 - x(G) by Kierstead and Qin (Discrete Math., 144,
1995). We also show that the max-coloring problem is
NP-hard.

1 Introduction

Programs that run with stringent memory or tim-
ing constraints use a dedicated memory manager that
provides better performance than the general purpose
memory management of the operating system. The
problem we consider here arises in the context of de-
signing memory managers for wireless protocol stacks
like GPRS or 3G. With the rapid growth of wireless
communication devices, many telecommunication com-

~ *Allthree authors are at the Department of Computer Science,
The University of Iowa, Iowa City, IA 52240-1419. E-mail:
[sriram, rraman, kvaradar|@cs.uiowa.edu. The first two authors
have been partially supported by NSF Grant DMS-0213305. The
last author has been partially supported by an NSF CAREER
award CCR-0237431.

panies now license their wireless protocol stacks to ven-
dors of mobile devices. These protocols stacks have
stringent memory requirements as well as soft real-time
constraints and a dedicated memory manager is a nat-
ural design choice. A dedicated memory manager for
these stacks must have deterministic response times and
use as little memory as possible. The most commonly
used memory manager design for this purpose is the seg-
regated buffer pool. This consists of a fixed set of buffers
of various sizes with buffers of the same size linked to-
gether in a linked list. As each memory request arrives,
it is satisfied by a buffer whose size is large enough.
The assignment of buffers to memory requests can
be viewed as an assignment of colors to the requests
— all requests that are assigned a buffer are colored
identically. Thus the problem of determining whether
a given segregated buffer pool suffices for a particular
sequence of allocation requests can be formalized as
follows. Let G = (V,E) be a graph whose vertices
are objects that need memory and whose edges connect
pairs of objects that are alive at the same time. Let
w :V — N be a weight function that assigns a natural
number weight to each vertex in V. For any object v,
w(v) denotes the size of memory it needs. Suppose the
segregated buffer pool contains k buffers with weights
Wi, Ws,--.,W,. The problem is to determine if there
is a k-coloring of G into color classes Cy,Cs,...,Ck
such that for each 4, 1 < i < k, max,cc, w(v) < w;.
We call the optimization version of this problem the
maz-coloring problem. Given a graph G = (V, E) and
a weight function w : V — N the problem is to
find a proper vertex coloring C1,Cs,...,Cy of G that
minimizes Ele maxyec; w(v). Note that the special
case of this problem in which w(v) = 1for allv € V
is simply the problem of coloring a graph with fewest
colors. Solving the max-coloring problem and selecting
k buffers of sizes max,cc, w(v), fori =1,2,...,k, leads
to a segregated buffer pool that uses minimum amount
of total memory. Note that this is an off-line problem.
In the on-line version, buffers have to be allocated to
requests as they arrive and without knowledge of future
requests. The off-line version is also useful because
designers of protocol stacks would like to estimate the



size of the total memory block needed by extracting
large traces of memory requests and running off-line
algorithms on these traces!.

In this paper, we only consider memory alloca-
tion requests from straight-line programs, i.e., programs
without loops or branching statements. Each memory
allocation request is made for a specific duration of time
and thus these requests can be viewed as intervals on a
real line. Requests which are live at the same time have
to be satisfied by different buffers. Thus by restricting
ourselves to straight-line programs we focus on solving
the max-coloring problem for interval graphs.

It is well-known that the chromatic number x(G)
of any interval graph G equals its maximum clique size
w(G@). Interval graphs can be colored optimally by
considering intervals in increasing order of their left end-
points and using the smallest available color for each
interval. It is easy to see that an optimal solution to
the max-coloring problem may use more colors than the
chromatic number. For example, consider a path with
4 vertices such that the vertices at the two ends of the
path are assigned weight W and the two vertices in the
middle are assigned weight w, where w < W/2. This
path has a unique 2-coloring with weight 2W, but the
optimal solution to max-coloring uses 3 colors and has
weight W + 2w.

As far as we know, prior to this paper, the max-
coloring problem has been studied only in [7]. Like us,
the authors of that paper are motivated by the problem
of allocating a small buffer, but their problem arises
in the context of digital signal processing applications.
[7] experimentally evaluates a first-fit strategy for max-
coloring on circular arc graphs; in their experiments the
first-fit strategy produces a solution with weight within
2.1% of the optimal weight. While the focus of this
paper is interval graphs, we point out later that using
our algorithm for interval graphs, a 3-approximation for
circular arc graphs is easily obtained.

The max-coloring problem is related to the well-
studied dynamic storage allocation problem, also known
as the interval coloring problem. Formally, an instance
of this problem consists of an interval graph G = (V, E)
and a weight function w : V. — N. A feasible solution to
this problem in an assignment of an interval I(v) to each
vertex v such that |I(v)] = w(v) and I{u) N I(v) = @
if u and v are adjacent vertices. The goal is to mini-
mize |Uyev I(v)]. Stockmeyer proved this problem NP-
complete in 1976 (see problem SR2 in Garey and John-
son [4]) and Kierstead presented the first constant-factor
approximation algorithm in 1988 [11]. This was an

TDue to a pending patent application we are not able to

mention names of specific companies that have used the above
approach in the design of their protocol stacks.

80-approximation algorithm that used a first-fit strat-
egy to perform on-line coloring of unweighted interval
graphs. Kierstead [12] subsequently improved this to
a 6-approximation algorithm, which was then improved
by Gergov [5, 6] to a 5-approximation and then a 3-
approximation algorithm. Recently, Buchsbaum et.al.,
[1] presented a a (2+¢€)-approximation for this problem.

The similarity between the interval coloring prob-
lem and the max-coloring problem can be best under-
stood by casting these problems into a geometric setting
as rectangle packing problems. Start with an interval
representation {I, | v € V'} of the given interval graph
G = (V, E)? Interpret each weight w(v) as the height of
interval I,. In other words, the instance of the problem
consists of axis-parallel rectangles {R, | v € V'}, such
that the projection of R, on the z-axis is I, and the
height of R, is w(v). Each rectangle can be slid up or
down but not sideways; all rectangles have to occupy
the positive quadrant; and the regions of the plane they
occupy have to be pairwise disjoint. Given these con-
straints, the interval coloring problem is equivalent to
the problem of packing these rectangles so as to min-
imize the y-coordinate of the highest point contained
in any rectangle. The max-coloring problem seeks a
packing of the rectangles into disjoint horizontal strips
Si = {(z,y) | # > 0,6 < y < i}, demoted by (f,uy).
The constraints are that every rectangle is completely
contained in some strip and for any two rectangles R,
and R, in a strip, their projections on the z-axis I,
and I, are disjoint. Given these constraints, the max-
coloring problem seeks a packing of the rectangles into
strips so that the total height > (u; — ¢;) of the strips is
minimized. Figure 1 shows two rectangle packings of a
set of rectangles; the packing on the left is optimal for
the interval coloring problem [1] and the packing on the
right is optimal for the max-coloring problem.

Stated as rectangle packing problems, interval col-
oring and max-coloring seem similar. However, as we
show below, the weights of optimal solutions for the
two problems on the same input can be quite differ-
ent. Let OPT; denote the weight of an optimal in-
terval coloring and let OPT); denote the weight of an
optimal max-coloring for a given instance. Since any
feasible solution of the max-coloring problem is also a
feasible solution to the interval coloring problem, it fol-
lows that OPTT < OPT);. For any clique () in the given
graph, every vertex in the clique needs to have a distinct
color and therefore -, ., w(v) is a lower bound on both

ZWithout loss of generality, we assume that the input to our

algorithms is a set of weighted intervals. This is because there are
many linear-time algorithms for recognizing interval graphs and
most of these return an interval representation of the given graph,
if it is an interval graph. See [3] for a recent algorithm.



|

|
T T T
4 5 0 1 2 3 4

Figure 1: On the left is a rectangle packing correspond-
ing to an optimal interval coloring, with weight 5. On
the right is a rectangle packing corresponding to an op-
timal max-coloring. In the packing on the right the rect-
angles are packed into 4 strips: S; = (0,3), Sa = (3,4),
S3 = (4,5), and Sy = (5,6), for a total weight of 6.

OPTr and OPTy. Let LOAD denote the maximum
over all cliques @ in G of }° o w(v). Equivalently, in
the context of rectangle packings, LOAD is the max-
imum sum of heights of rectangles that intersect any
vertical line. Clearly, LOAD < OPT; < OPT)s and
Gergov [6] shows that OPT; < 3+ LOAD. Buchsbaum
et.al. [1] further investigate the relationship between
LOAD and OPTy and show that OPT = LOAD +
O((Wmax/LOAD)Y7) . LOAD, where wpay is the max-
imum weight of any vertex in the graph.

It is easy to construct an instance for which LOAD
and OPT7y are poor lower bounds on OPT),. Consider
the weighted intervals shown in Figure 2. These form
n disjoint cliques, Q1,Q2,--.,Qn, where clique Q;
contains i intervals each with weight [W/{], where
W > n is an integer. Letting w(Q;) denote >, o, w(v)
we see that w(Q;) = i- [W/i] < W + (i —1). From
this it follows that LOAD < W + (n — 1). Also note
that for this instance LOAD OPT;. Tt can be
verified that the optimal solution for max-coloring is
an n-coloring Cy, Cs, ..., C,, where C; contains exactly
one interval each from Q,, Q,_1,---,Q;. Letting w(C;)
denote max,cc, w(v) we see that w(C;) [W/i].
This implies that OPTy = Y o [W/i] > W - Hy,
where H, is the nth harmonic number. The upper
bound on LOAD along with the above lower bound on
OPT)y together imply that for this family of instances
OPTy = Q(LOAD -logn). Despite the fact that the
obvious lower bound can be rather loose, we are able to
develop several O(1)-approximation algorithms for the
max-coloring problem.

The rest of the paper is organized into three sec-
tions. In Section 2 we make a connection between max-
coloring and on-line coloring and using this we present
a 3-approximation and then a 2-approximation algo-
rithm for max-coloring on interval graphs. In Section
3 we present an analysis of the first-fit algorithm for the
on-line coloring problem on interval graphs and show

E

° (n-1) ® (n-2) .
. .
W/n Wi(n-1) — W/(n-2)
Win Wi(n-1) W/(n-2)
Win Wi/(n-1) Win-2) e e
Q, Q Q. Q,

n-1

Figure 2: An example of a weighted interval graph for
which OPTy = Q(LOAD -logn).

an upper bound of 10 - x(G) on the number of colors
used for any interval graph G. This analysis shows
that the first-fit strategy produces a 10-approximation
for max-coloring, but more importantly it provides the
best known upper bounds on the number of colors used
by first-fit. The analysis of first-fit has a long his-
tory: following a sequence of papers showing super-
linear bounds, Kierstead [11] showed that first-fit uses
at most 40 - x(GQ) colors. Kierstead and Qin [13] re-
fined the analysis of [11] to get an improved bound of
26- x(G), and expressed the belief that further improve-
ments should be possible. The best-known lower bound
on the number of colors used by first-fit to do on-line
coloring of an interval graph is 4.4x(G) [2]. Our new
analysis of the first-fit strategy, inspired by some ideas in
Gergov [6], is quite different from the analysis in [11, 13]
and in our view, much simpler. In Section 4 we show
the NP-hardness of max-coloring on interval graphs.

2 Approximation algorithms for max-coloring

In an instance of the on-line graph coloring problem,
vertices of a graph are presented one at a time and
when a vertex is presented, all edges connecting that
vertex to previously presented vertices are also revealed.
Each vertex must be assigned a color immediately after
it has been presented (and before the next vertex is
presented) and a color assigned to a vertex cannot
be changed later. An algorithm for the on-line graph
coloring problem assigns colors to vertices in the manner
described above, so as to construct a proper vertex
coloring of the graph. We say that an algorithm A for
the on-line graph coloring problem k-colors a graph G,
if no matter which order the vertices of G are presented
in, A uses at most k colors to color G.

Let A be an algorithm for the on-line graph coloring
problem. We use A as a “black-box” to devise a simple
algorithm for the max-coloring problem. The algorithm,
called MCA (short for max-coloring algorithm) is given
below.

MCA(G, w)

1. Sort the vertices of G in non-increasing order of weights.
(Let (v1,v2,...,vs) be this ordering of the vertices of G.)
2. Present the vertices in the order v1,v2,...,v, to A.




3. Return the coloring produced by A.

We will now make a connection between the number of
colors used by A and the weight of the coloring produced
by MCA. This connection, along with known results on
on-line coloring of interval graphs will lead to constant
factor approximation algorithms for max-coloring for
interval graphs.

THEOREM 2.1. Let C be a hereditary class® of graphs
and let A be an algorithm for on-line graph coloring
problem such that for some integer constant ¢ > 0 and
for any graph G € C, A k-colors G for some k < ¢-x(G).
Then, for any G € C and for any weight function
w : V(G) — N, MCA produces a coloring for G whose
weight is at most ¢ - OPTy (G).

Proof: Let Cy,C,,...,Cy be a coloring of G that
is optimal for the max-coloring problem. Let w; =
max,cc; w(v) and without loss of generality assume
that wq > we > -+ > wy. Now note that & > x(G)
and OPTy(G) = Y8 w;. Let Ay, Ay, ..., A; be the
coloring of G produced by MCA. Let a; = max,c4, w(v)
and without loss of generality assume that a; > a; >
- > a¢. From our hypothesis it follows that ¢ <
¢- x(G) < ¢ k. For notational convenience, define sets
At+1 = At+2 = ... = Ac-x(G) = @ and let a; = 0 for
i, t < i< c-x(G). We will now claim that for each
i,1 <i <k, and each j, ¢(i — 1) < j < c¢- i, we have
w; > aj. Showing this would imply the result we seek
because the coloring produced by MCA has weight

ex(G) x(G) ci x(G)
Z a; = Z a; < Z cw; < c-:OPTy(G).
=1 i=1 j=c(i—1)+1 i=1

Since w; is the maximum weight of any vertex in G,
the claim is trivially true for ¢ = 1. For any i > 2, let
V; C V bedefined as V; = {v | w(v) > w;}. The coloring
C1,Cs,...,Cy of G, restricted to V; is an £-coloring, for
some £ < i — 1, of the induced subgraph G[V;]. Because
of the order in which vertices are presented to A, all
vertices in V; are presented to A before any vertex with
weight w;. Therefore, by our hypothesis, algorithm A
colors G[V;] with no more than ¢-£ < ¢- (i — 1) colors.
Therefore, the weight of the heaviest vertex in color
classes A; for j, c(i — 1) < j < ¢-i—1 is at most
wi. O

In 1981, Kierstead and Trotter [14] presented a
simple algorithm for on-line coloring of interval graphs
such that for any interval graph G with x(G) = k, the
algorithm (3k — 2)-colors the graph. From this result

3A class C of graphs is hereditary if G € C implies that every
induced subgraph of G is also in C.

and the above connection, a 3-approximation algorithm
for max-coloring interval graphs follows.

THEOREM 2.2. There is a 3-approximation algorithm
for solving the max-coloring problem on interval graphs.

The connection proved in Theorem 2.1 leads to
approximation algorithms for max-coloring for other
classes of graphs as well. For example, using the
results of Irani [10] on the on-line coloring of d-inductive
graphs we get O(logn)-approximation algorithms for
max-coloring on chordal graphs. Similarly, using the
algorithm of Lovész, Saks, and Trotter [15] for the on-
line coloring problem on arbitrary graphs, we get an
O(n/ log™ n)-approximation algorithm for max-coloring
on arbitrary graphs.

Rather than use the Kierstead-Trotter algorithm
as a black box, if we make a simple modification to
one of the steps in the Kierstead-Trotter algorithm, we
can reduce the approximation factor from 3 to 2. The
Kierstead-Trotter algorithm maintains sets Si, S, ...
such that when a vertex u is presented, it finds the
smallest ¢ such that S; U S U ... U (S; U {u}) does
not contain an (i + 1)-clique. The vertex w is then
inserted into S;. Kierstead and Trotter show that each
induced subgraph G[S;] is the union of disjoint paths for
i > 2 and S is an independent set. Therefore G[S;] can
be 3-colored using the “first-fit” on-line algorithm that
assigns to each presented vertex the smallest available
color. The new algorithm for max-coloring is given
below.

BETTER-MCA(G, w)

1. Sort the vertices of G in non-increasing order of weights.
(Let (v1,v2,...,v,) be this ordering of the vertices of G.)
2. for j + 1 ton do

3. Insert v; into set S;, where ¢ is the smallest value such
that S1US2U. ..U(S;U{u}) does not contain an (i+1)-clique
endfor

4. Use color 1 to color vertices in Sy

5. for i < 2 to k do

6. Use colors 27 — 2 and 2¢ — 1 to 2-color the vertices in S;
endfor

7. Return the coloring

Steps (2) and (3) come from the Kierstead-Trotter
algorithm. The modification we make to the Kierstead-
Trotter algorithm is that instead of coloring S; on-line
with 3 colors, we just color S; off-line using the fewest
possible colors.

THEOREM 2.3. BETTER-MCA is a 2-approzimation algo-
rithm for the max-coloring problem on interval graphs.

Proof: Let Ci,Cs,...,Cr be a coloring of G that
is optimal for the max-coloring problem. Let w; =



max,co, w(v) and without loss of generality assume
that wy > we > -+ > wg. Now note that & > x(G)
and OPTw(G) = Y0, w;.

Suppose that at the end of Step (3) in BETTER-MCA,
we have sets S1,S52,...,5;. An element v is inserted
into S; only because S; U Sy U... U (S;—1 U {u}) has a
t-clique. Therefore, x(G) > t and it follows that ¢ < k.
Let s; = maxyeg, w(v). We now claim that for each i,
1< <t s <w;.

It is clear that s; = wy. To obtain a contradiction,
suppose that for some i, s; > w; and let 1 be the smallest
such value. This implies any interval x with weight s;
or larger is in an earlier color class, C, for some j < 4 in
the optimal coloring. Therefore, intervals with weight
s; or larger induce a clique of size at most i — 1 and
therefore in Step (3) no interval with weight s; will get
inserted into S; - a contradiction.

In Steps (4) and (5) we convert the vertex partition
S1,59,...,5; into a coloring whose weight is at most
s1+2- 2222 s;. The following inequalities

¢ ¢
s1+2-) si<wi+2-Y w; <2-OPTu(G)
i=2 i=2
give the result we seek. O

From Theorem 2.3, we can easily obtain a 3-
approximation for the max-coloring problem on circular
arc graphs. Consider a circular arc representation of
the graph and pick some arbitarary point p on the
circle. All the circular arcs that contain p are assigned
a distinct color. The remaining circular arcs induce an
interval graph, which we color using the algorithm of
Theorem 2.3 using a palette of colors distinct from the
colors used for arcs containing p. It is easy to see that
this is a 3-approximation.

3 Analysis of First-Fit

The first-fit algorithm for on-line coloring assigns the
smallest available color to each presented vertex. This
is a natural strategy for on-line coloring and has been
analyzed extensively [10, 11, 13] for different graph
classes. In MCA, if we use first-fit instead of the
Kierstead-Trotter algorithm for on-line coloring what
performance guarantee can we provide? From Theorem
2.1 and from the result of Kierstead and Qin [13] who
show that the first-fit algorithm uses no more than
26x(G) colors on an interval graph G, we get a 26-
approximation algorithm for max-coloring on interval
graphs. However, in practice first-fit shows excellent
performance [7] and along with best-fit is a popular
choice as a memory allocation strategy. Furthermore,
the lower bound on the number of colors used by first-
fit to do on-line coloring of an interval graph is 4.4x(G)

[2]. This along with the belief expressed in [13] that
the upper bound of 26 - x(G) could be improved, is the
motivation for new analysis of the first-fit strategy. Our
analysis, inspired by some ideas in Gergov [6], is quite
different from the analysis in [11, 13] and in our view,
much simpler. We show the following result, which leads
to a 10-approximation algorithm for max-coloring on
interval graphs.

THEOREM 3.1. For any interval graph G, the first-fit
strategy for on-line coloring of G uses at most 10 - x(G)
colors.

Let S be a set of intervals on the real line that
correspond to the interval graph G. We assume without
loss of generality that each interval in S is of the form
[i,7], where 0 < i < j < N are integers, and N
is a sufficiently large positive integer. We denote by
& the set of elementary intervals {[i — 1,4]|]1 < ¢ <
N}. We will refer to the ordering of the intervals in
& according to increasing order of the left endpoints
as their natural ordering. Thus each input interval
is a union of consecutive elementary intervals; two
input intervals intersect if they both contain a common
elementary interval.

Suppose that the first-fit algorithm uses colors
1,...,m to color the intervals in & when they are pre-
sented in some arbitarary order. We will now argue that
there is an elementary interval that is contained in at
least m/10 input intervals. Note that this corresponds
to a clique of size at least m/10 in the corresponding
interval graph, which means m/10 is a lower bound on
the size of any proper coloring of the interval graph. A
useful way to visualize the coloring generated by first-fit
is to imagine an interval [/, r] that is assigned to color
class k as a rectangle {(z,y)|l <z <rk-1<y <k}
of height one.

Column Construction The key property of the first-
fit coloring that will be needed in the proof is that if
an interval I € S is assigned to color class k, then for
each 1 < i < k — 1 there is an interval I' assigned to
color class 7 such that I intersects I'. The proof is based
on a construction of a set of “columns” corresponding
to the first-fit coloring. A column corresponds to a
unique elementary interval e, and with some abuse
of notation is referred to as column e. There may
be elementary intervals that have no corresponding
columns. A column has a positive integral height
associated with it. If a column has height ¢, we say that
it is active at heights 1,...,¢ and inactive at heights
t+1,...,m. (The height of any column will be at most
m.) A column of height ¢ is labeled, at each height 4
between 1 and ¢, with one symbol which is either “R”,



“$”, or “F”. A column e of height ¢ is labeled “R” at
some height 1 < ¢ < ¢ if and only if some interval
I € S that is assigned to the ¢’th color class contains the
elementary interval e. However, it could be the case that
an elementary interval e is contained in an interval that
is assigned to the ¢’th color class and there is either no
column corresponding to e or the column e is inactive at
height i. It is useful to visualize a column e of height ¢ as
a rectangle {(z,y)|l(e) <z < r(e),0 <y <t} of width
1, where I(e) and r(e) are the left and right endpoints
of elementary interval e; the box {(z,y)|l(e) < z <
r(e),i —1 < y < i} contains the label of the column at
height 7, for 1 < ¢ < t. It is worth pointing out that the
goal of the column construction procedure is to find a
column with at least m/10 “R” labels in it.

The column construction procedure works by start-
ing with a set of columns that are active at height 1 and,
for 2 < i < m, choosing a subset of the active columns
at height ¢ — 1 to be the active columns at height ¢. For
any set of columns, there is a natural ordering that is
induced by the natural ordering of the corresponding
elementary intervals. Let C; denote the set of columns
active at height ¢. For any e € C};, the left (resp. right)
neighbor of e in C; is the column in C; immediately
preceding (resp. succeeding) e in the natural ordering;
if no such column exists, the left (resp. right) neighbor
is undefined.

We are now ready to describe the column construc-
tion procedure. If an elementary interval e is contained
in an interval assigned to the first color class, then e
is added to C} and is assigned the label “R” at height
1. These are the only columns in Cy. For 2 < i < m,
the following rules specify which columns from C;_; are
picked in Cj;.

1. For each e € C;_1, if e is contained in some interval
assigned to color class i, then e is added to C; with
a label “R” at height 3.

2. For each remaining e € C;_1, if e is the left neighbor
or right neighbour in C;_; of some column e’ added
to C; by Rule 1, then e is added to C; with a label
“$” at height 7. See Figure 3. Note that for such
a column e, either its left or right neighbour in Cj
must have an “R” label (even though more columns
may be added to C; by the next rule).

3. For each remaining e € C;_1, let €' be the left-
neighbor of e in C;_;. If ¢’ is undefined, we proceed
to inspect the right neighbor of e in C;_1. Suppose
that e’ is the left neighbor of ein Cj,...,C;_1, and
is not the left neighbor of e in Ci,...,C;_1; note
that such a j does exist (and could be 1). If the
number of “R” labels of e at heights j,...,7 — 1 is

greater than (i — j)/4, then e is added to C; with
a label “F” at height . If not, let e” be the right
neighbor of ¢ in C;_;. If €” is undefined, e is not
added to C;. Otherwise, suppose that e is the
right neighbor of e in Cy,...,C;_1, and is not the
left neighbor of e in Cy,...,Ck_1. If the number
of “R” labels of e at heights k,...,7 — 1 is greater
than (i — k)/4, then e is added to C; with a label
“F” at height i. If not, e is not added to C;. See
Figure 3.

» 0O N ®©

A OO N ® ©

a b c d e f

(i) (i)

Figure 3: (i) A snapshot in the construction of Cg after
Rule 1 has been applied. Columns b and e will get
added to Cg with $ labels at height 8 due to Rule 2.
(ii) Snapshot after Rule 2 has been applied. Column p
is the left neighbour of r in Cg,C7 and t is the right
neighbour of r in Cs,Cs,C7. r is added to Cs (with a
label F at height 8) iff the number of its R labels at
heights 6,7 is greater than 2 -1/4 or the number of its
R labels at heights 5,6, 7 is greater than 3-1/4.

The construction procedure maintains the following
important invariant. Abusing notation, we say that
interval I intersects a column e if it contains elementary
interval e.

LEMMA 3.1. Let 1 <i < j <m, for any interval I € S
that is assigned to color class j, there is a column e € C;
such that I intersects e.

Proof: By induction on i. The lemma holds for i =1
because of the key property of the first-fit coloring. For
the inductive step, assume ¢ > 2 and the lemma holds
for s — 1. Let I be an interval that is assigned to color
class j > i. If j = 4, the induction step follows easily
from the induction hypothesis and Rule 1. Suppose
j > i. By the key property, there is an I' € S that
is assigned to the 4’th color class such that I’ intersects
I. By the induction hypothesis, I' (resp. I) intersects
a non-empty set C' (resp. C') of consecutive columns
(natural ordering) in C;_1. If CNC" # 0, we are done
since all columns in C' are added to C; by Rule 1. If
some column e € C;_; lies between the columns in C'
and the columns in C, then I and I' cannot intersect
because the elementary interval e lies between I and I'.
So it must be that some f € C is either the left neighbor



or right neighbor in C;_1 of some column in C'. The
column f is added to C; by Rule 2 if it is not already
added by Rule 1, completing the proof. O

The invariant implies that Ci,...,C,, are non-
empty. For a column e with height at least j and 1 <7 <
J, let pe(i,7), 0e(i, ), and ¢.(i,j) denote, respectively,
the number of R, §, and F labels of e between heights 4
and j (inclusive). Let p.(j) = pe(1,7), 0e(J) = 0e(1,5),
and ¢.(j) = ¢e(1, ). Define pe(0) = 6¢(0) = ¢e(0) = 0.

LEMMA 3.2. For any column e € Cj, pe(i) > +(pe(i) +
e (1))

Proof: The proof is by induction on i. The base
cases 1 = 0,1 are easily verified. Suppose ¢ > 2 and
the lemma is true for all 0 < ¢’ < 4. If e is not labeled
with F at height ¢, then the induction step goes through
easily. So let us assume that e is labeled F at height .
So e was added to C; by Rule 3 and so there exists a
1 < j <i—1such that pe(j,i — 1) > (i — j)/4. This
implies that pe(j,7) > (i — j + 1)/4. From this and the
induction hypothesis, it follows that

pe(i) = pe(dyi) +pe(d —1)
> 20—+ D)+l — D)+ - 1)

(pe(jai) + ¢e(j; Z)) + (pe(j B 1) + ¢e(j - 1))
4 4

(pe (@) + e (i)

v

|

O
We are now ready to obtain our main result.

THEOREM 3.2. Let m denote the number of colors used
by first-fit to color the set of intervals S. There is a
clique of size at least m/10 in the corresponding interval
graph.

Proof: We will show that there is a column e € C,,
such that p.(m) > m/10. Let e be the column in C,,
that is last in the natural ordering. Thus e has no right
neighbor in C,,,. Suppose first that e has a left neighbor
in C,. Suppose fi,...,f, are columns such that for
1 <i < a, f;is the left neighbor of e in Cy,_, 41,...,C%;,
where tg = 0 < t; < --- < t, = m. Similarly, suppose
e1,---,ep are columns such that for 1 < i < b, ¢;
is the right neighbor of e in Cy,_,41,...,Ch,;, where
O=ng<ni < - <np<m.

If pg,(ta—1 + 1,¢4) > m/10, we are done since
fa € Cpy and pyg, (m) > py, (ta—1 + 1,t,) > m/10. So let
us assume that z = py, (t,—1 +1,t,) < m/10. We claim
that

a—1 b
be(m) <z + Zpﬁ (ti1 +1,8) + Zpei (ni—1 +1,n,).
1 1

f e

Figure 4: The columns at the end of the construction
procedure. The number of $ labels in column e is
bounded by the number of R labels in all the shaded
rectangles. Rule 3 implies that in each shaded rectangle
except the one contained in column f, the number of
R labels is at most one-fourth of the height of the
rectangle.

The claim follows from the observation that for e to
be labeled with a § at height i, either its left or right
neighbor in C; must be labeled R at height i (Rule 2).
See Figure 4 for an illustration. Now for any 1 < i <
a — 1, the column f; is active at height ¢; but not at
height ¢; + 1, because f; is the left neighbor of e in C,
but not in Cy, 1. Since e is the right neighbor of f; in
Cti_141,--.,C, andnotin Cy, ..., Cy,_,, and f; became
inactive in Cy, 11, we have by Rule 3 that

1
pri(ti + 1,8) < 2 (i — ti1)-
By an identical argument, we have that for any 1 < i <
b,

Pe;(Miz1 +1,n;) < —(n; —ni1).

N

We thus obtain that

a—1 b
1 1
5e(m) S $+Zz(ti—ti_1)+21(ni—nz’_l)

1 1
1

< m+1(ta—1+tb)
1

m+1(m—x+m)
= 3z/4+m/2
< 23m/40.

We use above the fact that t,_; < m — x. Thus
pe(m) + ¢e(m) > 17m/40. Using Lemma 3.2, we obtain
that pe(m) > 17m /160 > m/10.

The case where e has no left-neighbor in C), is in
fact easier. By a similar argument, we get p.(m) > m/8
in this case. O

Remark: By optimizing x, we get an improved
bound of 2m /19 in Theorem 3.2. Some further small
improvements seem possible, but it appears that new



ideas will be needed to make our basic approach yield
anything better than m/8.

4 Hardness Results

In this section we discuss the hardness of max-coloring
on interval graphs. Our main result is an NP-hardness
proof for max-coloring that uses a reduction from the
problem, E4-SET SPLITTING [8, 9], defined below.
The very high level idea of the reduction follows that
of [16].

E4-SET SPLITTING

INPUT: A universe U and a family F of subsets of U,
each of size 4.

QUESTION: Is there a partition of U into U; and U,
such that this partition splits each set S € F (that is,
UsNS#Gand Uy NS #0)?

THEOREM 4.1. The maz-coloring problem for interval
graphs is NP-complete.

Proof: Let U = {z1,%2,...,2,} and let F =
{S51,852,...,Sm}. As part of our construction, we con-
struct a number of gadgets, each of which is a set of
weighted intervals. Corresponding to each element z;,
we have a gadget G;, called an element gadget. In
addition we have two gadgets, Py and P;, which we
call partition gadgets. For each subset S; that z; be-
longs to, G; contains a small number (5, to be ex-
act) of weighted intervals. We denote this subset of
G; by Gij. Suppose that element z; belongs to sub-
sets Sj,,Sj,,---,5,- In addition to the disjoint sub-
sets, Gij,,Gijs, - - -, Gijy » the gadget G; contains sets of
connector intervals Ci,Ci1, - . ., Cir, such that the con-
nector intervals in Cj, are “in-between” those in Gyj,
and Gj,,,. In summary, we have

G; = (nglGijp) U (UI;:OC,'I,).

Variable gadget G;. We now describe the vari-
able gadget G; in detail. Suppose that element z; be-
longs to subsets Sj,,Sj,,--.,5;j,, where 1 < j; < ja <

- < Jy £m. Let L, = 10 jp, let € > 0 be a
constant whose value will be determined later, and let
O; = (i—1)e. For each p, 1 < p < k, the subset of inter-
vals Gy, consists of the following 5 weighted intervals:

= ((Lp+ 0Ly +1+ 0y, 2 = 1)n),

Lp+0i,Ly+2+ 0:), (2 — 1)n+1),

Ly+1+0;, L, +2+05), (20— 1)n),

p+1+0i,L,,+3—0i),2m),

B O Q &
Il

(
(
(@
((Lp +2+0i, Ly +4—0;),2n + 1).

Each weighted interval is described as a pair ((¢,7),w),
where ¢ and r denote the left and right endpoints
respectively of the interval and w denotes its weight.
O; is an amount by which each of the intervals is
perturbed. We pick € small enough that perturbing the
endpoints of the intervals by O;, does not change the
pairwise intersections of the intervals A, B, C, D, and
E. For example, suppose element x; occurs in subset
S5. Two colorings of the intervals in G5 are shown
in Figure 5. Each interval is represented as a rectangle
whose height is the weight of the corresponding interval.
Since O; is small enough, it is assumed to be zero in
Figure 5. These two colorings will play an important
role in the proof that our reduction works and will be
called coloring ZERO and coloring ONE respectively. More
precisely, any coloring of Gi;;, in which the color classes
are {D},{B, E},{A,C} is called ZERO and any coloring
in which the color classes are {C,E},{A,D},{B} is
called ONE.

5n+1 Sn+2 T8
In+1 Alc an+1
E D
2n ’78 2n+1 ’K
D E
(e
ZERO ONE

Figure 5: On the left is a 3-coloring of G12 with weight
5n+1 and on the right is a 3-coloring with weight 5n+2.
These colorings are called ZERD and ONE respectively.

For each p, 1 < p < k — 1, the set of connector
intervals C;, contains the following 3 weighted intervals:

Fo= ((Ly+2+0i Ly1 +04), (2 = )n),
G = ((Lp+4—oi,Lp+1+0z-)),2m),
H = ((L,,+4-0,-,L,,+1+1+0,~),N).

The “left-most” set of connectors Cjg is the following:

F = ((O,Ll +0y)), (2i — 1)n),
G = ((O,L1 + 0,-)72m),
H = ((0,L1+1+0i),N).

The “right-most” set of connectors Cj, is the following:

F = ((Lk+2+0,-,10(m+1))),(2i—1)n),

((L,c +4—0;,10(m + 1)), 2m),

((Lk +4—0;,10(m + 1)),N).



The value N will be determined later; for now we only
note that N is larger than the weights of all other
intervals.

For example, suppose that element x; appears in
subsets Sy and Sy. Figure 6 shows two colorings of the
intervals in the gadget G, both of weight N + 3n + 1.
In the coloring shown at the top, both Gi» and Gi4
are colored ZERO, while in the coloring at the bottom
both G2 and G5 are colored ONE. It turns out that
any optimal coloring of an element gadget G; has weight
N + (4i — 1)n+ 1 and furthermore this is achieved only
when all of the subsets G;j;, are colored ONE or all of
the subsets G, are colored ZERO. In this manner, in an
optimal coloring the element z; declares its membership
in one of the two subsets Uy or U; of the universe U.
This phenomena is formalized in the definitions and the
claim below.

FE IC] F ICT
G 5 G Bl © G
H D D

s1 s2 ZEROg3 sa
E B E B E
¢ |g O] g O] e
H E H E H

C Cl
ONE
S1 s2 S3 s4

Figure 6: Here are two 3-colorings of G; with weight
N + 3n + 1. In the coloring on the top, both G2 and
G114 are colored ZERO, whereas in the coloring in the
bottom, both are colored ONE.

Let z; be an element that belongs to subsets
Sj1»Sjss---,Sj,- A coloring of the intervals in G} is said
to be consistent, if either all subsets Gij,,Gij,, - - -, Gijy
are colored ZERO or all subsets Gjyj,,Gij,, - - ., Gij, are
colored ONE. A coloring is said to color a gadget
G; ZERD (respectively, ONE) if in this coloring all of
Gijy, Gijys - - -, Gij, are colored ZERD (respectively, ONE).

LEMMA 4.1. For any G;, 1 < i < n, the weight of an
optimal coloring of G; is N+ (4i—1)n+1. Furthermore,
any coloring that achieves this weight is consistent.

More importantly, we show that in any optimal
coloring of U?_; G; the colors used for the subset G; is
distinct from the colors used for any G, j # ¢. This of
course implies that to color Ui, G; optimally, we need
to color each of the G;’s optimally. This is formalized
in the claim below.

LEMMA 4.2. In any optimal coloring of U}_, G;, for any
i,J,u, andv, ifue G; andv € Gj, i # j, thenu and v

are in different color classes. The weight of an optimal
coloring of U?_,G; is nN + 2n3 +n? + n.

The partition gadgets. We will now define the
two partition gadgets Py and P;. Both Py and P; are
sets of pairwise disjoint intervals. The set P is:

{((10i+1+0n,10i+3—On),(2n+1)n) |1 Sigm}
U {((10i+3, 10(i+1)),2n2) l1<i< n}

U {((0, 10i+1),2n2)}

The set P; is
{((10i+2+0n,10i+4—0n),(2n+1)n) I gigm}
U { <(10i +4,10(i + 1)),2n2) [1<i< n}
U{((0,10i+2),2n2)}.

It is easy to check that an optimal coloring of PyUP;
assigns one color to all intervals in Py and a second color
to all intervals in P; for a total weight of 2n(2n + 1).
The motivation for defining Py and P; as above is this.
Consider an optimal coloring of U}-; G; and an optimal
coloring of Py U P, using two colors Cy and C, that are
not used in the coloring of U, G;. Suppose that Cj and
C1 are used to color Py and P, respectively. By Lemma
4.1, in any optimal coloring of U?_; G;, each G} is colored
ZERD or ONE. Now suppose that for each j, 1 < j < m,
there is a z; such that gadget G, ; is colored ZERQ. This
allows us to exchange the colors assigned to the interval
D € G,; and the interval (10j4+ 140,105 +3-0,) €
Py, for each j. This exchange leaves the weight of the
coloring of U ; G; unchanged, but it reduces the weight
of color class Cy from (2n + 1)n to 2n?. Similarly, if
for each j, 1 < j < m, there is a o; such that gadget
Go,; is colored ONE, then it is possible to exchange
the colors of the intervals E € G,;; and the interval
(10 + 2 + 0,,10i + 4 — O,,) € P;. Again, this leaves
the weight of the coloring of UL,G; unchanged, and
decreases the weight of Py from (2n + 1)n to 2n? + 1.
Therefore, if there is an optimal coloring of U, G; in
which for each j, 1 < j < m, there are values z; and o;
such that G,; is colored ZERO and G,,; is colored ONE,
then there is a coloring of U, G; U Py U P, of weight
nN+2n2+n?24+n+2n2+(2n%2+1) = nN+2n3+5n2+1.
This leads to the following lemma.

LeMMA 4.3. If there is a partition of U into subsets
Uy and U, that split S; for each j, 1 < j < m,
then there is a coloring of Ul—1G; U Py U Py of weight
nN +2n% 4+ 5n% + 1.

It turns out that the converse of this claim is also
true.



LEMMA 4.4. Suppose there is a coloring of Ul_;G; U
PyUP; of weight nN +2n3+5n2+1. Then this coloring
is optimal and there exists an optimal coloring of U1 G;
in which for each j, 1 < j < m, there are values z; and
oj such that G.,; is colored ZERO and G,;; is colored
ONE.

These claims together yield the fact that the max-
coloring problem for interval graphs is NP-hard. O

Our motivation for reducing from E4-SET SPLIT-
TING, beyond the fact that it was convinient to use a
“SAT-like” problem, but without negative literals, is the
following. Hastad [9] considers MAX E4-SET SPLIT-
TING, the version of E4-SET SPLITTING that seeks
to maximize the number of sets split, and shows that
for any € > 0, there is no (8/7 — €)-approximation for
the problem, unless P = NP. Furthermore, if we re-
strict MAX E4-SET SPLITTING to instances in which
each element x € U appears in at most B sets in F,
for some constant B, even then there is no (8/7 — ¢)-
approximation for the problem, unless P = NP (per-
sonal communication, Hastad). We believe that we can
modify our reduction to obtain a reduction from this re-
stricted version of MAX E4-SET SPLITTING to max-
coloring on interval graphs, that would show that ex-
istence of constant § > 1 such that if there is a J-
approximation algorithm for max-coloring on interval
graphs, then P = NP. The details of this reduction
have not been worked out yet.

References

[1] A.L. Buchsbaum, H. Karloff, C. Kenyon, N. Reingold,
and M. Thorup. OPT versus LOAD in dynamic storage
allocation. In Proceedings of the 35th Annual ACM
Symposium on Theory of Computing (STOC), pages
556-564, 2003.

[2] M. Chrobak and M. Slusarek. On some packing prob-
lems related to dynamic storage allocation. Informa-
tique théorique et Applications/Theoretical Informatics
and Applications, 22(4):487-499, 1988.

[3] D.G. Corneil, S. Olariu, and L. Stewart. The ultimate
interval graph recognition algorithm? (extended ab-
stract). In Proceedings of the 9th ACM-SIAM Sympo-
stum on Discrete Algorithms, pages 175-180, 1998.

[4] M.R. Garey and D.S. Johnson. Computers and In-
tractability: A Guide to the theory of NP-completeness.
W.H. Freeman and Company, San Francisco, 1979.

[5] J. Gergov. Approximation algorithms for dynamic
storage allocation. In Proceedings of the 4th European
Symposium on Algorithms: Lecture Notes in Computer
Science 1136, pages 52—61, 1996.

[6] J. Gergov. Algorithms for compile-time memory opti-
mization. In Proceedings of the 10th ACM-SIAM Sym-
posium on Discrete Algorithms, pages S907-S908, 1999.

[7]

(8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

R. Govindarajan and S. Rengarajan. Buffer allocation
in regular dataflow networks: An approach based on
coloring circular-arc graphs. In Proceedings of the
2nd International Conference on High Performance
Computing, 1996.

V. Guruswami. Inapproximability results for set split-
ting and satisfiability problems with no mixed clauses.
In APPROX, pages 155-166, 2000.

J. Hastad. Some optimal inapproximability results.
Journal of the ACM, 48:798-859, 2001.

S. Irani. Coloring inductive graphs on-line. Algorith-
mica, 11(1):53-72, 1994.

H.A. Kierstead. The linearity of first-fit coloring of
interval graphs. SIAM J. Discrete Math, 1:526-530,
1988.

H.A. Kierstead. A polynomial time approximation
algorithm for dynamic storage allocation. Discrete
Mathematics, 88:231-237, 1991.

H.A. Kierstead and J. Qin. Coloring interval graphs
with first-fit. Discrete Mathematics, 144:47-57, 1995.
H.A. Kierstead and W.T. Trotter. An extremal prob-
lem in recursive combinatorics. Congressus Numeran-
tium, 33:143-153, 1981.

L. Lovdsz, M. Saks, and W.T. Trotter. An on-line
graph coloring algorithm with sublinear performance
ratio. Discrete Math., 75:319-325, 1989.

T. Szkaliczki. Routing with minimum wire length in the
dogleg-free manhattan model is np-complete. SIAM
Journal of Computing, 29(1), 1999.



