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Abstract

Topology control protocols attempt to reduce the energy consumption of nodes in an ad-hoc
wireless network while maintaining sufficient network connectivity. Topology control protocols with
various features have been proposed, but they all lack robustness and are extremely sensitive to faulty
information from neighbors. For example, the XTC protocol (R. Wattenhofer and A. Zellinger, XTC:
A practical topology control algorithm for ad-hoc networks, WMAN 2004) can be forced to construct
a disconnected network even if two nodes in the network receive slightly faulty distance information
from one neighbor each. A key step in most localized topology control protocols is one in which each
node establishes a total ordering on its set of neighbors based on information received from them.
In this paper, we propose a metric for robustness of localized topology control protocols and define
an r-robust topology control protocol as one tha returns a correct output network even when its
neighborhood orderings have been modified by upto r — 1 adjacent swaps by a malicious adversary.
We then modify XTC is a simple manner to derive a family of r-robust protocols for any r > 1.
The price we pay for increased robustness is in terms of decreased network sparsity; however we
can bound this decrease and we show that in transforming XTC from a 1-robust protocol (which it
trivially is) into an r-robust protocol, the maximum vertex degree of the output network increases
by a factor of O(4/r). An extremely pleasant side-effect of our design is that the output network
is both Q(4/r)-edge connected and Q(y/r)-vertex connected provided the input network is. Thus
ensuring robustness of the protocol seems to give fault-tolerance of the output for free. Our r-robust
version of XTC is almost as simple and practical as XTC and like XTC it only involves 2 rounds of
communication between a node and its neighbors.

Keywords: Ad-hoc wireless networks, fault-tolerance, k-connectovity, robustness, topology control pro-
tocols.

1 Introduction

Ad-hoc wireless networks consist of autonomous devices or nodes communicating with each other by
radio. Typically, each of these nodes has access to a tiny power source and this imposes stringent
constraints on the amount of energy that a node can use for communicating with other nodes. Topology
control protocols attempt to reduce the power consumption of nodes in order to increase the life of
the network. Typically, the energy required by a node s to transmit a message to a node ¢ increases
at least quadratically with the distance between s and ¢t. As a consequence, power consumption is
significantly reduced if messages from s to ¢t were routed through a sequence of intermediate nodes, such
that the distance between consecutive nodes in the path is small. Topology control protocols choose
a transmission power level for each node so that a node communicates with just a few nearby nodes.
Reducing transmission power level also reduces collisions and therefore saves energy by reducing the
number of retransmissions. However, the local choice of transmission power level for each node has to
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be such that the induced network topology satisfies certain global properties such as connectivity and
the presence of multiple short paths between pairs of nodes. The two primary goals of topology control:
(i) reducing transmission power level to save energy and (ii) maintaining connectivity and redundancy
of short paths to increase routing efficiency, are clearly in conflict with each other. Any satisfactory
solution to the topology control problem needs to address this key difficulty.

Let G = (V, E) denote the ad-hoc network with vertex set V' denoting the set of nodes and edge set
E denoting the set of communication links. Let ¢ : E — R be a cost function that associates a non-
negative real cost to each edge e € E. For each vertex u € V', let N(u) denote the neighbors of u in G.
During the course of a topology control protocol P, each vertex u € V' chooses a subset Np(u) C N(u)
of vertices to transmit to. Letting Ep denote the set of directed edges {(u,v) | u € V,v € Np(u)}, we
can view the output of P as the directed spanning subgraph Gp = (V, Ep) of G. Typically, it is desired
that Gp satisfy the following properties.

Symmetry If v € N(u) then u € N(v). As pointed out by [6, 8], without symmetry even the simple task
of providing an ACK in response to a message received can become quite cumbersome. Symmetry
implies that Gp can be viewed as an undirected graph. There is of course some cost to requiring
symmetry, but this is not a property that is very difficult to impose. In describing the rest of the
desired properties we assume that Gp is undirected.

Sparseness This property is typically quantified as |[Ep| = O(|V|). Often, a stronger property, that
of bounded degree is desired. This property requires that for all vertices u, |N(u)| < ¢ for some
constant ¢. Burkhart et. al. [2] point out that sparseness is often assumed to guarantee low
interference, and while this may be true in an “average case” sense, it is not true in general.
[2] also presents a reasonable definition of a metric for interference and one may, in addition to
sparseness, require that Gp minimize this interference metric.

Connectivity Gp is required to be connected, provided G that is connected. Often, stronger versions
of connectivity such as k-edge connectivity or k-vertex connectivity (for k£ > 1) are desired. These
stronger versions of connectivity imply that Gp has multiple paths for routing between pairs of
vertices and is more fault-tolerant to link or vertex failures.

Spanner Property For any pair of vertices u and v, let C(u,v) (respectively, Cp(u,v)) denote the cost
of the cheapest path between u and v in G (respectively, Gp). Then, the spanner property requires
the existence of a constant ¢ such that Cp(u,v) < t- C(u,v) for all pairs of vertices u,v € V. If
such a constant ¢ exists, then Gp is called a t-spanner of G.

Less typically, certain other properties such as planarity of Gp are also desired. If Gp is planar, then
geometric routing algorithms such as GOAFR™ provide efficient routing in the network [3].

Definitions and Notation. In addition to costs, the edges of the input graph G may have associated
non-negative real lengths. The cost of an edge is usually distinct from, but related to its length. Often
it is assumed that the vertices of the input graph G are embedded in some metric space. In this case,
the length of an edge {u, v}, denoted |uv| is equal to the distance between u and v in that space. If the
vertices of G are embedded in a Euclidean space, then G is called a Euclidean graph. A special case of a
Euclidean graph is a unit disk graph. G is a unit disk graph if its vertices are embedded in the Euclidean
plane and for any pair of vertices u and v, {u,v} is an edge of G iff |uv| < 1. As mentioned in [8],
unit disk graphs are usually used to model an ad-hoc network where all the network nodes are placed in
an unobstructed plane and have equal (normalized) transmission power and isotropic antennas, that is,
antennas transmitting with identical power in every direction of the plane. The cost of an edge {u,v},
¢(u,v), is typically used to denote the amount of energy that one endpoint of the edge has to expend in
order to communicate with the other endpoint. For a Euclidean graph, it is reasonable to assume that
c(u,v) = w(u,v)® for some a > 2. If Gp, the output of a topology control protocol satisfies the spanner



property with respect to edge costs, then it is called an energy spanner. It Gp satisfies the spanner
property with respect to edge lengths, then G p is called a distance spanner.

Related Work. Various topology control protocols have been proposed, each guaranteeing some sub-
set of the above mentioned properties. Here we mention the two protocols that seem to provide strongest
guarantees. Wang and Li [7] have proposed a local protocol for construction of symmetric, bounded
degree, planar spanners for networks modeled by unit disk graphs. We will call this the WL protocol.
Wattenhofer and Zollinger [8] have proposed a much simpler protocol called XTC that constructs sym-
metric, bounded degree, planar networks for networks modeled by unit disk graphs. In addition, XTC
returns a symmetric, connected network even for input networks that have arbitrary edge lengths. In
favour of the WL protocol is the fact that this protocol is guaranteed to return a spanner, whereas XTC
provides no such guarantees. [8] does present experiments to suggest that the output of XTC may be a
good spanner in the “average case.” In favour of the XTC protocol is its extreme simplicity and the fact
that the output graph is connected even when the input graph is not a unit disk graph. This implies
that it may be appropriate to use XTC even when the terrain on which the nodes are distributed is not
the 2-dimensional plane and even when there are obstacles in the terrain.

Our Results In this paper, we start by pointing out that existing protocols for the topology control
problem, including the WL protocol and XTC, lack robustness and are extremely sensitive to faulty
information from neighbors. For example, as we show in Section 2, the network constructed by XTC
may end up becoming disconnected even when two nodes receive faulty distance information from one
neighbor each. In a key step in the WL protocol, XTC, and other protocols such as the cone based
protocol described in [4], each node u computes a total ordering <,, on its neighborhood N(u). In the
WL protocol <, is based on degrees of vertices in N(u), in XTC <, is based on the “quality” of the
link between u and each vertex in N(u), and in the cone based protocol <, is based on angles. In each
case, correct information from neighbors is critical to the correctness of the neighborhood ordering and
therefore critical to the correctness of the protocol itself.

Given that faulty information is almost par for the course in ad-hoc wireless networks, we seek robust
topology control protocols whose output is guaranteed to satisfy the properties mentioned above, even
in the presence of faulty information about neighbors. Faulty information from neighbors could be due
to interference, due to feeble power supply at the sender node, due to the receiver having an incorrect
estimate of the transmission range at the sender, etc. Even if information from neighbors is not faulty,
it could simply be out-of-date because nodes may be mobile. In this paper we present a metric for the
notion of robustness for topology control protocols that compute and use neighborhood orderings. We
define (informally, for now) a k-robust protocol as one that can withstand a total of up to k¥ — 1 adjacent
swaps performed on all the neighborhood ordering. We point out that XTC is not even 2-robust. We
then present a simple modification to XTC that can turn it into a r-robust protocol for any integer
r > 0. The price we pay for the increase in robustness is in terms of a decrease in the sparsity of the
network. However, we bound this decrease. More specifically, in transforming XTC from a 1-robust
protocol (which it is, trivially) to a r-robust protocol, for any integer r > 1, we increase the maximum
vertex degree of the output graph by a factor of O(/r). Even with these modifications, XTC continues
to be extremely simple and practical. An extremely pleasant side-effect of our design is that the output
network is both Q(1/r)-edge connected and Q(,/r)-vertex connected. In other words, ensuring robustness
of the protocol seems to provide fault-tolerance of the output for free.

2 XTC is not Robust

We start this section by reproducing the XTC protocol from [8].



1. Establish order <, over u’s neighbors in G
2. Broadcast <. to each neighbor in Gj receive orders from all neighbors
3. Select topology control neighbors:

4. Ny :={}; Ny:={}

5. while (<, contains unprocessed neighbors){
6. v := least unprocessed neighbor in <,
7. if(3w € N, U ﬁu Pw <y U)

8. f\?u = ]Vu U {v}

9. else

10. N, := N, U {v}

1.}

As mentioned in [8], the protocol consists of three main steps: (i) neighbor ordering (Line 1), (ii)
neighbor order exchange (Line 2), and (iii) edge selection (Lines 3-11). In the edge selection step a
vertex u decides to drop v from its set of neighbors if there is a vertex w that v and v both agree is
mutually better. More precisely, u drops v from its neighborhood if there exists w such that w <, v
and w <, u. In the protocol, the variable N, is the set of neighbors that v has chosen to retain and
the variable N, is the set of neighbors that « has chosen to drop. Let Exrc = {(u,v) | v € N,} and
Gxrc = (V,Extc). Also, let <= {<y,| u € V(G)} denote the collection of neighborhood orderings.
Note that the protocol leaves < unspecified. Thus Gx7¢ is a function, not only of the input network G,
but also of the neighborhood orderings <. This dependency will be important later and to emphasize
this we use the notation G xr¢ (<) to denote the network constructed by the above protocol. In general,
for a topology control protocol P, we use the notation Gp(<) to denote the output of P. It is easily
verified that u € N, iff v € N,, and hence Gx7¢(<) can be thought of as undirected graph.

As mentioned in the introduction, XTC is extremely sensitive to small perturbations in the neigh-
borhood orderings. In [8], it is shown that if G is a Euclidean graph and <= {<,| u € V(G)}, where <,
is defined as

v <y w < (Juv|, min{id,, id, }, max{id,, id,}) < (juw|, min{id,, id,, }, max{id,, id, }),

then Gxrc(<) is symmetric and connected. We will call the above neighborhood ordering, a distance-
based ordering. Note that in the distance-based ordering, ids are only used to break ties. We now present
a simple example of a 4-vertex unit disk graph that illustrates the lack of robustness of XTC. We start
with the neighborhood orderings < as defined above, by Euclidean distance. We then make one swap

each in the neighborhood orderings of two vertices to obtain new neighborhood orderings 2. We point

out that G XTC(-:) is not connected. Consider the unit disk graph shown in Figure 1. For the sake of
being concrete, let the lengths of the edges be |ab| = |dc| = v/3/2, |ad| = |bc| = 1/2, and |ac| = |bd| = 1.
Then

d <, b <, ¢
c <p a <p d
b <. d <. a
a <4 ¢ =<4 b

Now suppose that <o==q, <¢==4, but

c <p d < a
b <. a <. d

Note that -<b and -<C are obtained by swappmg one palr of elements each in =p and <.. If XTC is run
on the unit disk graph shown below with 2= {-<a, -<b, -<C, -<d} then G XTC( ) contains just the two
edges {a,d} and {b,c} and is therefore disconnected. Thus a total of two adjacent swaps were sufficient
to break connectivity. Later in the paper we modify XTC in a simple manner into an r-robust protocol,
one that can tolerate a total of up to r — 1 adjacent swaps on its neighborhood orderings.



Figure 1: A unit disk graph for showing the sensitivity of XTC to small perturbations.

3 Characterizing Good Neighborhood Orderings

XTC’s correctness and performance critically depends on <. Specifically, if < is appropriately defined
then the following two properties hold:

(i) For every triangle abc, <4, <p, and <. help vertices a, b, and ¢ negotiate the dropping of one of
the edges {a, b}, {b,c}, and {c, a}.

(i) For every cut (S, S) of G, < prevents the dropping of some edge that crosses the cut (S, S).

Property (i) implies that G xrc (<) is triangle-free, while (i) implies that Gxrc(<) is connected. Various
properties of Gxrc (<) proved separately in [8] immediately follow. Here we prove a general character-
ization of neighborhood orderings < that guarantee properties (i) and (ii). It will be clear that the
“distance-ordering” used in [8] satisfies this characterization. But more importantly, there are many
other natural neighborhood orderings that also satisfy our characterization. For example, neighborhood
orderings by increasing ids or by increasing angle also satisfy our characterization and therefore guarantee
properties (i) and (ii).

The collection of neighborhood orderings < induces a binary relation ~» on the set of edges of G. For
any two edges e, e’ € E(G), e ~ €' if e and €' share a common endpoint and if e = {u,v} and e’ = {u, w},
then v <, w. Using this binary relation ~» we can define a new graph L(G, <) whose vertex set is the
set of edges of G and whose set of (directed) edges is {(e,€') | e,e’ € E(G),e ~ €'}. We call < acyclic
if L(G, <) is an acyclic graph. Note that is L(G, <) is acyclic, then so is any subgraph of L(G, <). Also
note that any acyclic graph is guaranteed to contain at least one vertex with in-degree (respectively,
out-degree) 0 and we call such a vertex, a minimal (respectively, mazimal) vertex.

Theorem 1 Let G be an arbitrary connected graph and < be a collection of neighborhood orderings of
G. Gxrc(=R) is triangle-free and connected if < is acyclic.

Proof: To show that Gxrc(<) is triangle-free, we consider an arbitrary triangle abc in G. Since L(G, <)
is acyclic there is a triangle edge, say {a, b}, such that {b,c} ~ {a,b} and {c,a} ~> {a,b}. This implies
that ¢ <p a and ¢ <, b. As a result XTC will drop edge {a, b} and therefore the triangle abc is not part
of GxTc(<). Since the choice of abe was arbitrary, Gxrc(<) is triangle-free.

To show that Gx1c(<) is connected, we consider a cut (S,S) of G. Let Lg(G) be the subgraph of
L(G, <) induced by the edges of G crossing the cut. Since L(G, <) is acyclic, so is Lg(G). Let e be a
minimal vertex of Lg(G). We now show that e is retained in Gxrc(<). Let e = {u,v} and suppose
that e is not retained in Gxr1c(<). Then there is a vertex w € V(G) that is a common neighbor of u
and v such that w <, v and w <, u. Since {u,v} crosses the cut (S, S), at least one of e, = {u,w} or
ey = {v,w} also crosses the cut. Without loss of generality suppose that e, crosses (S,S). Then, by the
definition of ~, e, ~ e and therefore e is not minimal in L(G, <). This contradicts our choice of e as a
minimal vertex.

Thus we have shown that for every cut (S, S) of G, there an edge in Gx7c (<) crossing the cut. This
shows that Gxrc(=<) is connected. O
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Figure 2: On the left is the unit disk graph from Figure 1. In the middle is L(G, <), where < is the
distance-based ordering. It is easily verified that this is acyclic. Vertices ad and bc are minimal vertices

in L(G,<). On the right is L(G, —:), where X is obtained from < by swapping a and d in <, and <..
Note the cycle (ab, ac, ed, bd, ab) in L(G, :)

It is easy to see that the distance-based ordering is acyclic. Let G be a Euclidean graph and let
e = {u, v} be the edge in G such that the triple (juv|, min{id,, id, }, max{id,, id, }) is first in the increasing
lexicographic ordering of all such triples. From the definition of the distance-based ordering, it follows
that e is minimal in L(G, <). If we assume that L(G — e, <) is acyclic, then by induction it follows that
so is L(G, <). Similar arguments show that the following alternate orderings are also acyclic.

Figure 3: The graph on the left is a unit disk graph obtained by dropping 40 points uniformly at random
on a 3 x 3 grid. It contains 197 edges. The second graph from the left is the output of XTC using a
distance-based ordering and it contains 47 edges. The third graph from the left is the output of XTC
using an id-based ordering and it contains 55 edges. The rightmost graph is the output of k-XTC using
a distance-based ordering, for k¥ = 2. It contains 88 edges.

1. The id-based ordering <. Let v and w be two neighbors of u. Then v < w iff id, < id,. As
before, <= {<i] 4 € V(G)}.

2. The angle-based ordering <®. For any pair of vertices u and v in G, let a(u,v) denote the angle
made by the line segment uv with the horizontal ray with origin » towards +o0. For two neighbors
v and w of u, v <¢ w iff

(a(u,v), min{id,, id, }, max{id,,id,}) < (a(u,w), min{id,, id, }, max{id,, id, }).

Of course, the id-based ordering is only well-defined when all vertices have (not necessarily distinct) ids
and the angle-based ordering is only well defined when the vertices of G' are embedded in Euclidean space
and the vertices have ids because of the need to break ties when angle comparison does not distinguish
neighbors.



The implication of the above characterization theorem is that XTC could have as well been run with
the id-based ordering or the angle-based ordering instead of the distance-based ordering and the output
graph would still have the properties: (i) symmetry, (ii) connectivity, and (iii) being triangle-free.

It should be noted that ignoring distances completely and using the id-based ordering or angle-based
ordering is not, in general, a good idea. Though symmetry and connectivity are preserved, the output
graph may have other undesirable features. Some of these are apparent in the graph in Figure 3 (third
from left) that is constructed by XTC using the id-based ordering. For example, the degrees of certain
vertices are quite high and moreover these high degree vertices have several pendant edges incident on
them. These nodes are therefore prone to high congestion and the network is vulnerable to the failure of
such nodes. While we are not suggesting the use of id-based ordering as an alternative to distance-based
ordering, the result in Theorem 1 does suggest the possibility of using id-based ordering when distances
to neighbors are similar (not necessarily the same). This may be another way to increase robustness of
the protocol.

4 k-XTC: A Robust Version of XTC

In this section we propose a small modification to XTC that will result in a protocol that can tolerate
arbitrary errors in a fixed number of pieces of information that are used by vertices to establish neigh-
borhood orderings. The protocol, which we will call k-XTC is obtained from XTC by changing Line 7
to the following.

if (W C NyU Ny: [W| =k and Vo € W : w <, u).

This modification simply means that the decision for u to drop v from its neighborhood needs the support
of not one, but k other vertices that both v and v agree are mutually better. Let Grx7Tc (<) denote the
output of k-XTC. Note that XTC is simply a special case of k&-XTC with k = 1. A simple but important
observation about the output of k-XTC is the following.

Proposition 2 For any j, 1 < j <k, Gjxrc(=) is a subgraph of Grxrc(=).

The rightmost graph in Figure 3 shows the output of k-XTC for k = 2. This graph has the same rough
“shape” as the output of XTC (the graph that is second from left) but is denser and non-planar. As we
will show later, this graph is k-edge connected as well as k-vertex connected. Therefore, every vertex in
this graph has degree at least k.

We now quantify the notion of robustness as follows.

Definition: Let m and 7' be two permutations of a finite, non-empty set S. We denote the fewest
number of adjacent swaps needed to transform 7 to 7' by dist(m, n").

Definition: Let <= {<,| u € V(G)} and <= {XZ,| u € V(G)} be two collections of neighborhood
orderings. Then we use dist(<, —?) to denote _, dist(<y, :u)
Definition: A topology-control protocol P is said to be r-robust for < if G p(-N<) is connected for any

collection of neighborhood orderings —N<, where dist(<, -N<) <r.

In other words, if P is r-robust for <, then P returns a connected subgraph when executed with <,
but furthermore it returns a connected subgraph even when executed with a collection of neighborhood
orderings that is obtained from < using at most r — 1 adjacent swaps. Thus P can tolerate a total of
r — 1 or fewer adjacent swaps made to its neighborhood orderings in the sense that it still returns a
connected subgraph as output. Measuring the “distance” between orderings by the number of adjacent
swaps provides a clean abstraction for quantifying a variety of errors that might cause vertices to believe
a “false” ordering on neighbors. For example, if a vertex u underestimates the distance to a neighbor v
then v might appear earlier than it should in <,. If the (incorrectly) estimated distance to v is much
smaller than the actual distance, then v’s place in <,, may be many adjacent swaps away from its correct
place in <,,. We now prove the main result of this paper. Note that the result is proved for any collection



of acyclic neighborhood orderings and not just for the distance-based ordering. Showing that k-XTC is
k-robust is not hard, but showing a quadratic robustness needs the more intricate argument presented
below.

Theorem 3 k-XTC is k(kQ—H)—robust for any collection < of acyclic neighborhood orderings.

Proof: Let G be the input graph to k-XTC. Let < be an arbitrary collection of acyclic neighborhood
orderings and let < be an arbitrary collection of neighborhood orderings. From Theorem 1 and Propo-
sition 2, we know that Gixrc (<) is connected. We will show that if Gy XTC( ) is disconnected then
dist(<,<) > k(k + 1)/2. This will 1mply that k-XTC is M—robust

We start by supposmg that Gy, XTc( ) is disconnected and assuming for notational convenience, that
H= Gy XTC(—<). Since H is disconnected there is a cut C' = (S,S) such that there is no edge of H
crossing (S,S5). On the other hand there is at least one edge in G crossing C. Let E(C) be subset of
edges in G crossing C. Since L(G, <) is acyclic, the subgraph of L(G, <) induced by edges in E(C) is
also acyclic. In the rest of the proof we use L(C) to denote the subgraph of L(G, <) induced by E(C).

Our proof is constructive and what we now describe is the first iteration of the construction procedure.
Let e = {u, v} be a minimal edge in L(C). Without loss of generality, suppose that u € S and v € S. The
edge e does not appear in H and this can only happen because there is a set W of k vertices such that

for all w € W, w is a common neighbor of u and v, w <u v, and w -<v u. Let (W,,W,) be a partition
of W such that W,, C S and W,, C S. Let k, = |W,| and k, = |W,|. Note that k, + k, = k. Also note
that for each w € W,,, edge {u,w} crosses C' and similarly for each w € W, edge {v, w} crosses C. Also

Figure 4: The edges {u,w;} and {v, w2} cross the cut (S, S). Furthermore, v <, wy and w; :u v. Also,

U <y wo and wo < u.

note that since {u,v} is a minimal edge in L(C), v <, w for all w € W, and u <, w for all w € W,,.
Thus, we have:

(i) for allwer,w:uvandv-@wand
(i) for all w € Wy, w :v v and u <, w

See Figure 4 for an example. Item (i) implies that dzst(-<u, Z4) > k, and item (i) implies that dist(<,
,-<v) > ky. These inequalities together imply that dist(<, <) > k.

Remark: Actually, something stronger can be claimed. Even if we wanted to transform <, into an
ordering <!, such that w <), v for all w € W, but <, and <!, match in the pairwise ordering of all
others pairs of elements it would take at least k, adjacent swaps. In other words, <!, is along the way
between <, and <u and just getting to <!, from <, takes at least k, adjacent swaps. Getting to <u
from <!, may take additional adjacent swaps and we account for these separately in future iterations of

the construction procedure. Similar remarks can be made about the “distance” between <, and —N<v.



The choice of edge e = {u,v} described above, ends the first iteration of our construction procedure.
Let By = {e} and let V; = {u,v}. The set V; represents the endpoints of the edge in B;. To state our
induction hypothesis we need additional notation. For any set X of vertices, let distx(<y,<y) be the
minimum number of adjacent Swaps we need to make on <, so that every element v € X NN (u) is in the

same relative position in <u as in <. More precisely, distx(<q, <u) = min s dist(<y, <), where the
min operation is over all <!, such that for any v € X N N(u) and for any w € N( ), UV <y w v <L w.
Here is a small example to illustrate this definition.

Example. Define the permutations 7 = (54321) and ' = (12345). It is easy to see that dist(w,7') = 10.
Now let X = {1,4}. What is distx (m,n')? It is again easy to verify that distx (w,n") = dist(m,7n") =9,
where 7" = (13245). This is because distx (m, ') is the number of adjacent swaps needed to transorm 7
into a permutation in which 1 appears before all other elements and 4 appears after all other elements
except 5. Thus the positions of elements 1, 4, and 5 are fixed.

For any collection < of neighborhood orderings, let distx (<, <) = Y uex dist x (<u, =u). We also need
the following two elementary facts about transforming one permutation into another via adjacent swaps.

Fact 1. For any X CY C N(u),

distx (<u, <u) < disty (<u, <u).

Fact 2. Let X CY C N(u) and z € Y — X. Suppose there is a set W C N(u) such that for all w € W,
T <, w and w -N<u z then

distx (<u, <u) + [W| < disty (<u, <u)-
Our induction hypothesis is the following.

Induction hypothesis: For any ¢ > 1, after ¢ iterations of this procedure, we have a set B; of i edges
from E(C) such that there are no edges from E(C) — B; into B;, though there may be edges from B; into
E(C)— B;. Let V; be the set of endpoints of edges in B;. Then disty, (<, <) > k+(k—1)+---+(k—i+1).

We have shown that at the end of the first iteration of the construction procedure, |B;| = 1, there

are no edges from E(C) — By into By, and disty, (<, -N<) > k. This is the base case of our proof.

We now make the following claim about the (i 4+ 1)st iteration of our construction procedure. We will
prove this claim later; for now we will assume that it holds and complete the proof of the induction step.
Claim: In the (i 4+ 1)st iteration it is possible to pick an edge ¢’ € E(C) — B; such that (i) €’ has at
least one endpoint not in V;, and (ii) in-degree of €’ in L(C) is at most 4.

Assuming this claim, we proceed in a manner that is similar to the argument for the first iteration.
Let ¢ = {u',v'}, u' € S, v' € S, and without loss of generality, v' ¢ V;. The fact that €' is not in o
implies that there is a set W of k vertices such that for all w € W, w is a common neighbor of v and v,

w <y v' and w <, u'. Using the fact (derived from the above claim) that the in-degree of €’ in L(C)
is at most 4, we conclude, using an argument similar to the one for the first iteration, that there exist
subsets W,y CW NS and W,, CW NS, such that |Wy |+ |W,| = (k — ) and

(i) for all w € Wy, w —N<u: v' and v' < w and

(ii) for all w € Wy, w <y u' and u' <y w'.
Let ky = |Wy| and ky = |[Wy|, Biy1 = B; U {€'}, a.nd Vix1 be the endpoints of vertices in B;, ;.
Item (i) along with Fact 2 implies that disty, (<, Zw) > disty, (<, <w) + k. Item (i) implies
that disty, = (< ,<U 1) > ky . These inequalities together along with Fact 1 imply that disty,,, (<, :) >
disty, (<, =) + (k — ). This completes the induction step. If we repeat the induction step until i = k,
then we have a set V}, of vertices such that disty, (<, -N<) > k(k+1)/1. Since V}, C V, by Fact 1 we have
that dist(<,<) = disty (<, <) > disty, (<, <) > k(k + 1)/1.



We now prove the above claim that guarantees the existence of e’.

Proof of Claim: Let T; be the set of edges not in B;, that have both endpoints in V;. Consider the
subgraph of L(C) obtained by deleting B; UT;. Call this L;. Since L(C) is acyclic, L; is also acyclic and
let €’ be a minimal vertex in L;. If €’ is not incident on any vertex in V;, then e’ is also minimal in L(C)
and we are done. So we assume that €' is incident on at least on vertex in V;. Since, e’ was picked from
L(C)— B; —T;, €' cannot be incident on two vertices in V;, because otherwise e’ will be in T;. Therefore,
we are left with the case in which €’ is incident on one vertex in V;. Now let ¢ = {b, g} and suppose
that b € V; and g ¢ V;. Figure 5 illustrates the situation for ¢ = 3. Suppose that there are z edges in B;

Figure 5: This figure illustrates the proof of the Claim in the proof of Theorem 3. Here Bs =
{{a,c},{a,d}, {b,e}}, T5s = {{b,d}, {b,c},{a,e}}, and e = {b,g}. The set V3 = {a,b,c,d, e}.

incident on b and y edges in T; incident on b. In Figure 5, x = 1 and y = 2. The in-degree of ¢’ in L(C)
is therefore bounded above by z + y and since z < |B;| = i, we get the upper bound ¢ + y. Now note
that for every edge {b,b'} in T}, there is an edge in B; incident on b’ that does not share any endpoints
with edge {a,b}. In other words, for every edge e of T; such that e” ~» e there is a unique edge f in
B; such that f + €. This gives the upper bound of ¢ on the in-degree of €'. O

The above result was stated in terms of tolerance to spurious swaps performed by a possibly malicious
adversary. This result can also be recast (though, less cleanly) in terms of “reading errors.” The
k(k+1)/2—1 swaps can be tolerated by the system, could be the result of a vertex u reading information
from k — 1 neighbors erroneously such that their relative distances are completely reversed as compared
to their original distances. Alternately, k& different vertices could each read information about a single
neighbor incorrectly such that the new (erroneous) neighborhood ordering at each of these k vertices is
(k —1)/2 swaps away from the correct neighborhood ordering.

An extremely pleasant side-effect of our design of k-XTC is the fault-tolerance of Gy x7¢c. We prove in
the following two theorems that if G is k-edge connected (respectively, k-vertex connected) then G xrc
is also k-edge connected (respectively, k-vertex connected). Localized protocols for constructing such
fault-tolerant spanning subgraphs appear in [1, 5], but k-XTC is far simpler than these. Furthermore,
k-XTC provides robustness, bounded degree in case the input is a unit disk graph, and also preserves
k-connectivity for arbitrarily input graphs with arbitrary edge lengths. Also note that the following two
theorems are proved for any acyclic collection of neighborhood orderings, not just for distance-based
orderings.

Theorem 4 For any collection of acyclic neighborhood orderings <, Grxrc(<) is k-edge connected
provided G is k-edge connected.

Proof: Suppose G is k-edge connected, but Gy x7c is not. For any cut C = (S, S) of V, let E(C) denote
the edges in G crossing the cut and similarly, let Epx7rc(C) denote the edges of Grxrc crossing the
cut C. Since G is k-edge connected, but GyxTc is not, there there is a cut C' = (S,5) of V such that
|E(C)| > k and |Exxtc(C)| < k. Let L be the subgraph of L(G, <) induced by E(C) — ErxTc(C).
Note that L is non-empty and since L(G, <) is acyclic, so is L. Let e = {u,v} be a minimal vertex in
L. Since {u,v} € E — EpxTc, there exists a vertex set W, |W| = k, such that for all w € W, w is a
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common neighbor of u and v and
w <, v and w <, w. (1)

Let Wi =W NS and Wy = WnNS. Then,

x = {{u,z} |z € Wa} U {{y,v} |y € Wi}

is a subset of E(G) of edges that cross the cut (S, 5). Note that |x| = k and therefore not all edges in x
can belong to Exx1c(C). Let {a,b} € x — Exxrc(C). Thus {a,b} € E(C) — Exx1c(C) and is therefore
a vertex in L. Note that {a, b} is either incident on v or incident on v. Without loss of generality, assume
that @ = u. Then, from (1) it follows that b <, v. This means that {a,b} ~» {u, v}, contradicting that
fact that e = {u, v} is minimal in L. O

Theorem 5 For any collection of acyclic neighborhood orderings <, GrxTc (<) is k-vertexr connected
provided G is k-vertex connected.

Proof: Suppose that G is k-vertex connected and G x7¢ is not. Since Gy x7¢ is not k-vertex connected,
there exists V' C V such that |V'| = k—1 and G,y = Grxrc — V' is disconnected. Since G is k-vertex
connected, G' = G — V" is connected. Since G}y is disconnected, there exists cut C' = (S, 5) of V-V’
such that no edges in G} x 1o cross cut C. However, since G' is connected, there exists a non-empty set
of edges E¢ in G' that cross cut C. Let L be the subgraph of L(G, <) induced by E¢. Let e = {u,v}
be a minimal vertex in Ec. Without loss of generality suppose that u € S and v € S. Since there are
no edges in G x ¢ that cross the cut C, e is not in Gypx7c. Hence, there exists W C V, |W| = k, such
that for all w € W, w is a common neighbor of both » and v, and w <, v and w <, w. Since |W| =k
and |V’'| = k — 1, there exists a vertex w € W — V'. Therefore, w is a vertex in G’ and in Gl xr¢-
Without loss of generality assume that w € S. Therefore, edge {u,w} crosses the cut C' and belongs
to E¢. Furthermore, since w <, v, {u,w} ~ {u,v} contradicting the fact that {u,v} is minimal in L.
O

We use A(G) to denote the maximum degree of a vertex in G. We now show that the argument for
the upper bound 6 [8] on A(Gxr¢) if G is a unit disk graph carries over cleanly to the k-XTC, giving
an upper bound of 6k on A(GrxTc). Note that the argument if specific to distance-based orderings,
not just any acyclic ordering. In fact, as mentioned before for the case of the id-based ordering, not all
acyclic orderings will satisfy this upper bound result.

Theorem 6 If G is unit disk graph and < is the collection of distance-based neighborhood orderings,
then A(Grxrc (<)) < 6k.

Proof: To prove this theorem, we show that k£ + 1 adjacent edges in G x7¢ cannot enclose an angle less
than 7. More precisely, assume that a vertex u has k + 1 neighbors v, vy,...,v; in Grxre, listed in
counterclockwise order starting at some arbitrary neighbor vo. Further assume that Zvouvy < 3. Figure

6 illustrates the situation.

Figure 6: The neighbors vg,v1, ..., vt of u. For the proof we suppose that Zvguvy, < 7/3.
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Suppose that among the neighbors vy, v, ..., v, the neighbor v; for some ¢, 0 <i < k, is considered
last by k-XTC. Since v; is considered last we have v; <, v; for all j # 4, 0 < j < k. Since < is the
distance-based ordering, this implies that |uv;| < |uv;|, for all j #4,0 < j < k.

Now consider a triangle uv;v;, j # 4, 0 < j < k. Since |uv;| < |uv;|, uv; is not the longest edge of the
triangle. Also since Zvjuv; < 7, the line segment v;v; is strictly shorter than at least one of the other
two line segments in the triangle, namely uv; and wv;. Combining this with the fact that |uv;| < |uv;,
we have |v;v;| < |uv;|, implying that v; <,; u. Thus, we have v; <, v; and v; <,, u for all j # i,
0 < j < k. This means that edge {u,v;} will not be included in Gy x1¢, contradicting the fact that v; is
a neighbor of u in Gyxrc- O

5 Future Directions

The spanner properties of Gixrc remain unexplored and there are several interesting questions one
could ask. For example, as k increases G xTc becomes more dense and we expect it to become a better
spanner for G. One could ask if given any ¢ > 1 and a unit disk graph G, whether there is a k = k(t) such
that Gpx1c is a t-spanner for G. It is possible that the answer to this question is “no” and one could
then ask the following “smaller” question. Are there a pair of constants (¢, k) such that for any unit disk
graph G, G xrc is a t-spanner. Again, it is possible that for any k, one could construct a unit disk graph
G that would force Gy x7¢ to be an arbitrarily bad spanner. In this case, one could focus on random unit
disk graphs (those obtained by distributing points uniformly at random in a bounded planar region) and
investigate spanner properties of Grx7¢ in this setting. This would also be an attempt at analytically
proving the conclusion, experimentally derived in [8], that Gx ¢ is a good spanner for random unit disk
graphs.
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wireless networks.
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