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Abstract

We show that the problem of finding a minimum dominating set in a circle graph
is APX-hard: there is a constant § > 0 such that, there is no (1 + d)-approximation
algorithm for the minimum dominating set problem on circle graphs unless P = NP.
Hence a PTAS for this problem seems unlikely. This hardness result complements
the (2 4 ¢)-approximation algorithm for the problem (Journal of Algorithms, 42(2),
255-276, 2002).

1 Introduction

A graph G = (V, E) is a circle graph if there is a one-to-one correspondence
between vertices in V' and a set C of chords in a circle such that two vertices
in V are adjacent if and only if the corresponding chords in C intersect. A
subset V' of V is a dominating set of G if for all u € V either u € V' or u
has a neighbor in V’. Keil [4] showed that the problem of finding a minimum
cardinality dominating set (MDS) is NP-complete for circle graphs. In this
paper we study the inapproximability of MDS. In this paper we study the
inapproximability of MDS.

The class APX is the class of optimization problems, each of which has an
a-approximation algorithm for some constant a. A polynomial time approzi-
mation scheme (PTAS) is a family F' of approximation algorithms such that
for each € > 0, there is a (1 + ¢)-approximation algorithm A, in F' with run-
ning time polynomial in the input size. An optimization problem is said to be
APX-hard if a PTAS for the problem implies that every problem in APX has
a PTAS. Furthermore, as shown by Arora et al. [1], in this case P = NP.

In this paper we show that MDS is APX-hard. This is shown via a gap-
preserving reduction [5] from an optimization version of the 3-SAT problem
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called MAX-35AT(8) (defined in Section 2). This APX-hardness results com-
plements the (2 + ¢)-approximation algorithm for MDS on circle graphs pre-
sented in [3].

2 APX-hardness of MDS

Our results are based on a “gap-preserving” reduction from MAX-3SAT(8),
that uses ideas in [4] in which the NP-completeness of MDS is established.
The problem MAX-3SAT(k) is defined below.

MAX-3SAT(k)

INPUT: A set X = {x1,29,...,x,} of variables and a set C = {c¢1,¢o, ..., Cm}
of disjunctive clauses such that each clause contains at most 3 literals and
each variable occurs in at most k clauses.

OUTPUT: A truth-assignment to variables in X that maximizes the number of
clauses in C satisfied.

For any instance ¢ of MAX-3SAT(k), let SAT(¢) denote the largest fraction
of clauses in ¢ that can be simultaneously satisfied. For any graph G let v(G)
denote the size of a minimum dominating set in G. We show the following
theorem.

Theorem 1 There is a polynomial time reduction that takes an instance ¢ of
MAX-8SAT(8) with n variables and m clauses and constructs a circle graph
G such that

SAT(¢) = 1=~(G) < 16n + 2
SAT(¢) < a=~(G) > 16n+2+ (1 —a)m/8

2.1 The reduction

Let ¢ be an instance of MAX-3SAT(8); without loss of generality we assume
that each variable appears in exactly 8 clauses. We now show a polynomial-
time reduction that maps ¢ to a circle graph such that the above theorem
holds. We construct in polynomial time from ¢, a set J of chords of a cir-
cle. The theorem holds for the circle graph G(J) induced by the chords in J.
Since this reduction is similar to the reduction in [4] (Theorem 2.1) we do not
present details such as co-ordinates of endpoints of chords, merely emphasiz-
ing intersections between chords. As a running example for the reduction we
consider an instance ¢ of MAX-3SAT(8) in which the literal z; appears in
clauses ¢y, ¢9, ¢4, and Ty appears in c3, s, cg, C7, Cs.

The set J contains m pairwise non-intersecting chords C4,Cs, ..., C,, corre-
sponding respectively to the clauses ¢, ¢y, ..., ¢y The chords Cy, Co, ..., Cp,
are placed in counterclockwise order around the circle as shown in Figure 1(a).
For each variable z; and each clause c;, the set J contains a base chord B;,



Fig. 1. m = 8 (a) Clause chords and base chords corresponding to variable z; (b)
The lower and and upper chords corresponding to variable z;.

provided z; appears (as x; or T;) in clause ¢;. Thus the number of base chords
in J associated with each z; is exactly 8. This step of the reduction differs
from Keil’s reduction in which exactly m base chords corresponded to each
variable z;, independent of the number of clauses x; appeared in. The base
chords are pairwise non-intersecting and are placed as in Figure 1(a). Specifi-
cally, as we travel counterclockwise around the circle starting from any clause
chord, we first encounter the base chords for x;, then the base chords for z,,
and so on. Assuming that variable z; appears in clauses c¢;,, with 1 < ¢ <8
and ji; < jp < -+ < jg, then the base chords B}, B ,..., B} appear in this
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order as we travel counterclockwise around the circle.

For each variable z;, we add to J four upper chords U* = {U}, Us, Ui, Ui}
and four lower chords L* = {L}, L}, L%, L }. Each chord in U* U L' intersects
exactly two base chords corresponding to x;. Suppose variable z; appears in
clauses c;,, 1 <t <8, j; < jp < -+ < js. Then U] intersects B} and B};; Us
intersects B, and Bj_; Us intersects B, and Bj; and U intgrsects B, and
B;,. The lower chords intersect the base chords as follows: L intersects B}
and By ; L intersects B}, and B ; Ly intersects By, and B} ; and Lj intersects
B}, and Bj,. Figure 1(b) shows the placement of the upper and lower chords

for variable z; and how their interaction with the base chords.

Note that chords in U® dominate all base chords corresponding to z; and
similarly chords in L dominate all base chords corresponding to x;. For any
dominating set D of G(J), U* C D and L' N D = {) corresponds to setting z;
true, and L' C D and U’ N D = () corresponds to setting z; false.

We include in J four more chords associated with each variable x; that appears
in a clause c;. If the literal z; appears in C; then we add the chords wj-, d;,
fj and g} to J. These chords induce a simple path from w} to C; in G(J).
The chord wj intersects B} and an upper chord in U’. See Figure 2(a). Thus

in any set containing all the chords in U?, w’ is dominated. Dominating C,
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with g? corresponds to satisfying c; by setting z; to true. Figure 2(b) shows
the chords w3, d}, f) and g,. Figure 4(a) shows all type w, type d, type f and
type g chords associated with z.

Fig. 2. z1 appears in Cy: J contains a sequence of chords w3, d}, f1, g that induce
a path from w} to Cy. (a) Placement of w} (b) Placement of d3, f5, and g3.

Fig. 3. T1 appears in Cg: J contains a sequence of chords v}, ef, fa, g4 that induce
a path from v} to Cs. (a) Placement of v} (b) Placement of v}, el, fo and g§.

If Z; appears in Cj, then we include in J four chords v}, €, fi and g}. Again,
these Chords induce a simple path in the ciljcle graph from v} to Cj. The
chord v; intersects B; and a lower chord in L*. See Figure 3(a). Thus in any
dominating set containing all the chords in L*, v} is dominated. As before,
dominating Cj with g} corresponds to satisfying C; with z;, but by setting z;
to false. Figure 3(b) shows chords v¢, e, f¢ and g;. Figure 4(a) shows all type
v, type e, type f and type g chords associated with z;.

All type f chords are grouped together as in Figure 4(a). As we travel coun-
terclockwise from the clause chords, we first encounter all the base chords,
then the 8 type f! chords, followed by the 8 type f? chords, and so on. If a



variable z; appears in clauses ¢;, 1 <t < 8, j; < j» < -+ < jg, then the
8 type f* chords f} , fi,,..., f}, appear in this order counterclockwise around
the circle. Next we add a pair of chords p| and p; so that p) intersects all the
type d and e chords and p; intersects only p| (see Figure 4(a)). This implies
that if D is a dominating set of G(J) that does not contain p}, there exists
a dominating set, no larger, than contains p|. Including p)| in a dominating
set D will enable us to treat all the type d and type e chords as dominated;
such chords will occur in D only if they are needed to dominate other chords.
Similarly, we add a pair of chords p} and py such that pj intersects all type
g chords and py intersects exactly pf ( see Figure 4(a)). Again, there exists a
minimum dominating set that contains pyj.

s
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Fig. 4. (a) p, dominates all type g type intervals; p, dominates all type d and e
intervals (b) type p intervals dominate all type U and L intervals: p;; dominates
Ull, L%; p'12 dominates U%,L%; p'13 dominates Ué,L%; and p'14 dominates U41, L}L.

Finally, we add to J 4n pairs of chords: p;; and p;s, 1<i1<n1<s< 4.
Each p;s intersects exactly one chord, pj,. For each i, 1 < i < n, the chords
in {pl, | 1 < s < 4} collectively dominate all the type U’ and type L! chords,
as shown in Figure 4(b). None of the p;; chords intersectx a base chord of z;.
This completes our construction; see [4] for details such as actual coordinates
of endpoints.

The total number of vertices in our circle graph is |J| = m + 56n + 4. To see
this, observe that J contains m clause chords. For each variable x;, J contains:
8 base chords, 4 upper chords, 4 lower chords, and 32 chords of types w, v, d,
e, f and g. Thus for each variable we have 48 chords. In addition, we have a
total of 4 + 8n type p and p' chords for a total of m + 56n + 4 chords.



2.2 Analysis

Lemma 2 SAT(¢) =1 = v(G) < 16n + 2.

PROOF. Since SAT(¢) = 1, there is a satisfying truth assignment A for
¢. We construct a dominating set D of size 16n + 2 using the procedure
described in [4], which we briefly sketch here. As mentioned earlier, we can
assume without loss of generality that D contains all the type p' chords. There
are 4n + 2 such chords and they dominate all the type p, U, L, d, e and ¢
chords. It remains to dominate the type B, C, v, w and f chords. If x; is true
in A, we include in D all type U® chords; if z; is false in A, we include all
L chords. Thus we have added 4n more chords to D and have dominated all
base chords.

Suppose that the literal x; appears in a clause c¢;. Then if z; is true in A,
w; is dominated by .ChOI"dS in U, and dj- lis dominated by a type p’ chqrd.
We add the‘chord g; to D to dominate f;. If z; is false in A, we add dj to
dominate w; and f;. In either case, we use a single chord for the (i, ) pair.
Now suppose that the literal ; appears in a clause c;. Then if z; is false in
A, v} is dominated by chords in L', and €/ is dominated by a type p' chord.
We add the chord g; to D to dominate f}. If z; is false in A, we add e} to
dominate v} and f}. In either case, we add a single chord for the (4, j) pair.

Since there are 8n possible (i, j) pairs, we add 8n additional chords and dom-
inate all the type v, type w, and type f chords. Since A is a satisfying truth
assignment, every clause c; is dominated by a chord g; for some 7. The number
of chords we have included in D is 16n + 2.

Lemma 3 SAT(¢) < a = v(G) > 16n+2+ (1 — a)m/8.

PROOF. We prove this by showing that if G(J) has a dominating set D of
size |D| < 16n+2+ (1 — a)m/8, then there is a truth assignment to variables
in X that satisfies at least am of the clauses. For any subset J' C J of chords,
define the D-dominating set of J' as

(J'U{y € J |y is a neighbor of some vertex in J'}) N D.

Let D,, Dg, and D; be D-dominating sets respectively for the set of type
p chords, the set of base chords, and the set of type f chords. There are
(4n + 2) type p chords, no two of which have a common neighbor and so
|D,| > (4n + 2). There are 8n base chords, no three of which share a neighbor
and so |Dg| > 4n. There are 8n type f chords, no two of which share a neighbor
and so |Dy| > 8n. Also, the sets D,, Dg, and Dy are pairwise non-intersecting
because no chord in J intersects a type p chord and a base chord, or a base
chord and a type f chord, or a type f chord and a type p chord. Therefore,



the inequality |D,| > 4n + 2 implies that |Dg| + |D¢| < 12n+ (1 — a)m/8.
For notational convenience, let 5 =1 —« and let 31, B2 > 0 be reals such that
|Dp| = 4n + Bim/8 and |Dy| = 8n + Bom/8. This implies that £ + B2 < .

For any i, 1 <1 < n,let D% C Dp be the D-dominating set for the base chords
corresponding to variable ;. It is easy to verify that |D%| > 4 and if |[Dy| =4
then Dy = U* or D = L'. Note that the sets D% are pairwise disjoint for
distinct #’s and therefore |Dg| = Y, |D%|. Since |Dg| = 4n + Bym/8, this
implies that for at most $;m/8 of the i’s we have | D%| > 4, while for the rest
of the i’s we have |D%| = 4 and therefore DY = U* or DYy = L. For any 1,
1 < i< mn,if D4 = U® assign to z; the value true; otherwise if D% = L*, assign
to z; the value false. Variables to which truth values have been assigned are
called consistent; the remaining variables are called inconsistent. Arbitrarily
assign truth values to inconsistent variables. Next we show that this truth
assignment satisfies at least am of the clauses.

Note that there are at most 5;m/8 inconsistent variables. These can partic-
ipate in at most S;m clauses and therefore the remaining at least (1 — f)m
clauses contain only consistent variables. Let C' C C denote the subset of
clauses that contain only consistent variables. Call any clause in C’" a consis-
tent clause and call any type C chord that corresponds to a clause in C" a
consistent chord. Let t be the number of consistent chords in D. It follows
that t < (8 — B1 — B2)m/8, because otherwise,

|D| > |Dy|+ |Ds| + |Dg| +¢
> (4n +2) + (4n + Bim/8) + (8n + Bom/8) + (B — b1 — B2)m/8
= 16n+2+ fm/8

a contradiction. This implies that the number of consistent chords dominated

by type g chords is at least
m Bom
(I=B)m—(B— B —52)§ > (1-B)m+ 2?
Let S denote the set of indices j such that ¢; is a consistent chord dominated
by a type g chord. Now construct a set F' of type f chords as follows: for each

j €8, pick a gj- that dominates ¢; (we know such a gj- exists) and add the
chord fl-j to F'. For each j € S, F contains exactly one f; for some 7. Also note
that [F| > (1 — B)m + @Tm and all of the chords in F' are dominated by type
g chords. Of the chords in F', at most fom/8 chords can be dominated by 2
or more chords. This is because |Ds| = 8n + fom/8 and no two type f chords
share a neighbor. Hence, there are at least (1 — 8)m = am type f chords in
F' that are dominated only by type g chords.

Now consider a chord f} € F, dominated only by a type g chord. Since f; is
in J, either z; or Z; appears in ¢;. Suppose that x; appears in ¢;. Then we

have the chords w?, d?, also in J. Since f} is dominated only by type g chords,



d’ ¢ D and this in turn implies that either w} € D or there is an upper chord
that dominates it. Since C; is a consistent chord, it only contains consistent
variables and therefore Di; = U’ or Dy = L'. Hence, w} ¢ D, implying that
D% = U*, which in turn implies that z; is assigned true and therefore clause
c; is satisfied.

A similar argument suffices to show that c; is satisfied even in the case when
Z; appears in c¢;. Therefore, the truth assignment satisfies at least am clauses.
This completes the proof.

For any instance of ¢ of MAX-3SAT(8) with n variables and m clauses, we can
assume that m > %. As a consequence, Theorem 1 implies that if SAT(¢) < «
then
+(G) > (16 n 12—40‘) n+ 2.

Let 8 = % and let € > 0 be fixed. Suppose that there is (8 — €)-
approximation algorithm for MDS on circle graphs. Then there is a constant
n(e), such that for any n > n(e) and for any instance ¢ of MAX-3SAT(8) with
n variables, using the “gap-preserving” reduction in the proof of Theorem 1, it
can be determined in polynomial time whether SAT(¢) = 1 or SAT(¢) < .
Of course any instance ¢ of MAX-3SAT(8) for which n < n(e) has a constant
number of variables and a constant number of clauses and therefore the ex-
act value of SAT(¢) for such instances can be determined in O(1) time. A
fundamental consequence of the PCP theorem [1,2] is that there exists an «,
0 < a < 1 such that it is not possible to distinguish instances ¢ of MAX-
3SAT(8) for which SAT(¢) = 1 from instances for which SAT(¢) < «, unless
P = NP. As a consequence, we have the following theorem.

Theorem 4 There ezists a 6 > 0 such that MDS does not have a (1 + §)-
approximation algorithm, unless P = NP.

Note that in the above theorem, any value of §, 0 < 6 < B where 8 =

W =1+ (1 — «)/384 suffices.

3 Final Remarks

Let V' be a dominating set of a graph G. If the subgraph G[V'] of G induced
by V', is connected, then V' is called a connected dominating set; if G[V'] has
no isolated nodes, then V' is called a total dominating set. Keil [4] showed that
minimum cardinality connected dominating set (MCDS) and minimum cardi-
nality total dominating set (MTDS) are also NP-complete for circle graphs.
The reduction described in this paper can be modified to show that MCDS
and MTDS are also APX-hard. We have shown in [3] that MCDS and MTDS
on circle graphs have constant-factor approximation algorithms also.
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