APX-Hardness of Domination Problems in Circle Graphs Mirela Damian ^a Sriram V. Pemmaraju ^b ^aDepartment of Computer Science, Villanova University, Villanova, PA 19085 (mirela.damian@villanova.edu) b Department of Computer Science, University of Iowa, Iowa City, IA 52242 (sriram@cs.uiowa.edu) ## Abstract We show that the problem of finding a minimum dominating set in a circle graph is APX-hard: there is a constant $\delta > 0$ such that, there is no $(1 + \delta)$ -approximation algorithm for the minimum dominating set problem on circle graphs unless P = NP. Hence a PTAS for this problem seems unlikely. This hardness result complements the $(2 + \varepsilon)$ -approximation algorithm for the problem (*Journal of Algorithms*, 42(2), 255-276, 2002). ## 1 Introduction A graph G = (V, E) is a *circle graph* if there is a one-to-one correspondence between vertices in V and a set C of chords in a circle such that two vertices in V are adjacent if and only if the corresponding chords in C intersect. A subset V' of V is a *dominating set* of G if for all $u \in V$ either $u \in V'$ or u has a neighbor in V'. Keil [4] showed that the problem of finding a minimum cardinality dominating set (MDS) is NP-complete for circle graphs. In this paper we study the inapproximability of MDS. In this paper we study the inapproximability of MDS. The class APX is the class of optimization problems, each of which has an α -approximation algorithm for some constant α . A polynomial time approximation scheme (PTAS) is a family F of approximation algorithms such that for each $\varepsilon > 0$, there is a $(1 + \varepsilon)$ -approximation algorithm A_{ε} in F with running time polynomial in the input size. An optimization problem is said to be APX-hard if a PTAS for the problem implies that every problem in APX has a PTAS. Furthermore, as shown by Arora et al. [1], in this case P = NP. In this paper we show that MDS is APX-hard. This is shown via a gappreserving reduction [5] from an optimization version of the 3-SAT problem called MAX-3SAT(8) (defined in Section 2). This APX-hardness results complements the $(2 + \varepsilon)$ -approximation algorithm for MDS on circle graphs presented in [3]. ## 2 APX-hardness of MDS Our results are based on a "gap-preserving" reduction from MAX-3SAT(8), that uses ideas in [4] in which the NP-completeness of MDS is established. The problem MAX-3SAT(k) is defined below. MAX-3SAT(k) INPUT: A set $X = \{x_1, x_2, \ldots, x_n\}$ of variables and a set $C = \{c_1, c_2, \ldots, c_m\}$ of disjunctive clauses such that each clause contains at most 3 literals and each variable occurs in at most k clauses. OUTPUT: A truth-assignment to variables in X that maximizes the number of clauses in C satisfied. For any instance ϕ of MAX-3SAT(k), let SAT (ϕ) denote the largest fraction of clauses in ϕ that can be simultaneously satisfied. For any graph G let $\gamma(G)$ denote the size of a minimum dominating set in G. We show the following theorem. **Theorem 1** There is a polynomial time reduction that takes an instance ϕ of MAX-3SAT(8) with n variables and m clauses and constructs a circle graph G such that $$SAT(\phi) = 1 \Rightarrow \gamma(G) \le 16n + 2$$ $SAT(\phi) < \alpha \Rightarrow \gamma(G) > 16n + 2 + (1 - \alpha)m/8$ ## 2.1 The reduction Let ϕ be an instance of MAX-3SAT(8); without loss of generality we assume that each variable appears in exactly 8 clauses. We now show a polynomial-time reduction that maps ϕ to a circle graph such that the above theorem holds. We construct in polynomial time from ϕ , a set J of chords of a circle. The theorem holds for the circle graph G(J) induced by the chords in J. Since this reduction is similar to the reduction in [4] (Theorem 2.1) we do not present details such as co-ordinates of endpoints of chords, merely emphasizing intersections between chords. As a running example for the reduction we consider an instance ϕ of MAX-3SAT(8) in which the literal x_1 appears in clauses c_1, c_2, c_4 , and \overline{x}_1 appears in c_3, c_5, c_6, c_7, c_8 . The set J contains m pairwise non-intersecting chords C_1, C_2, \ldots, C_m corresponding respectively to the clauses c_1, c_2, \ldots, c_m . The chords C_1, C_2, \ldots, C_m are placed in counterclockwise order around the circle as shown in Figure 1(a). For each variable x_i and each clause c_j , the set J contains a base chord B_j^i , Fig. 1. m = 8 (a) Clause chords and base chords corresponding to variable x_1 (b) The lower and and upper chords corresponding to variable x_1 . provided x_i appears (as x_i or $\overline{x_i}$) in clause c_j . Thus the number of base chords in J associated with each x_i is exactly 8. This step of the reduction differs from Keil's reduction in which exactly m base chords corresponded to each variable x_i , independent of the number of clauses x_i appeared in. The base chords are pairwise non-intersecting and are placed as in Figure 1(a). Specifically, as we travel counterclockwise around the circle starting from any clause chord, we first encounter the base chords for x_1 , then the base chords for x_2 , and so on. Assuming that variable x_i appears in clauses c_{j_t} , with $1 \le t \le 8$ and $j_1 < j_2 < \cdots < j_8$, then the base chords $B^i_{j_1}, B^i_{j_2}, \ldots, B^i_{j_8}$ appear in this order as we travel counterclockwise around the circle. For each variable x_i , we add to J four $upper\ chords\ U^i=\{U_1^i,U_2^i,U_3^i,U_4^i\}$ and four $lower\ chords\ L^i=\{L_1^i,L_2^i,L_3^i,L_4^i\}$. Each chord in $U^i\cup L^i$ intersects exactly two base chords corresponding to x_i . Suppose variable x_i appears in clauses c_{j_t} , $1\leq t\leq 8$, $j_1< j_2<\cdots< j_8$. Then U_1^i intersects $B_{j_1}^i$ and $B_{j_2}^i$; U_2^i intersects $B_{j_1}^i$ and $B_{j_2}^i$; U_3^i intersects $B_{j_4}^i$ and $B_{j_6}^i$; and U_4^i intersects $B_{j_7}^i$ and $B_{j_8}^i$. The lower chords intersect the base chords as follows: L_1^i intersects $B_{j_1}^i$ and $B_{j_3}^i$; L_2^i intersects $B_{j_2}^i$ and $B_{j_4}^i$; L_3^i intersects $B_{j_5}^i$ and $B_{j_7}^i$; and L_4^i intersects $B_{j_6}^i$ and $B_{j_8}^i$. Figure 1(b) shows the placement of the upper and lower chords for variable x_1 and how their interaction with the base chords. Note that chords in U^i dominate all base chords corresponding to x_i and similarly chords in L^i dominate all base chords corresponding to x_i . For any dominating set D of G(J), $U^i \subseteq D$ and $L^i \cap D = \emptyset$ corresponds to setting x_i true, and $L^i \subseteq D$ and $U^i \cap D = \emptyset$ corresponds to setting x_i false. We include in J four more chords associated with each variable x_i that appears in a clause c_j . If the literal x_i appears in C_j then we add the chords w_j^i , d_j^i , f_j^i and g_j^i to J. These chords induce a simple path from w_j^i to C_j in G(J). The chord w_j^i intersects B_j^i and an upper chord in U^i . See Figure 2(a). Thus in any set containing all the chords in U^i , w_j^i is dominated. Dominating C_j with g_j^i corresponds to satisfying c_j by setting x_i to true. Figure 2(b) shows the chords w_2^1 , d_2^1 , f_2^1 and g_2^1 . Figure 4(a) shows all type w, type d, type f and type g chords associated with x_1 . Fig. 2. x_1 appears in C_2 : J contains a sequence of chords $w_2^1, d_2^1, f_2^1, g_2^1$ that induce a path from w_2^1 to C_2 . (a) Placement of w_2^1 (b) Placement of d_2^1, f_2^1 , and g_2^1 . Fig. 3. \overline{x}_1 appears in C_6 : J contains a sequence of chords $v_6^1, e_6^1, f_6^1, g_6^1$ that induce a path from v_6^1 to C_6 . (a) Placement of v_6^1 (b) Placement of v_6^1, e_6^1, f_6^1 and g_6^1 . If \overline{x}_i appears in C_j , then we include in J four chords v_j^i , e_j^i , f_j^i and g_j^i . Again, these chords induce a simple path in the circle graph from v_j^i to C_j . The chord v_j^i intersects B_j^i and a lower chord in L^i . See Figure 3(a). Thus in any dominating set containing all the chords in L^i , v_j^i is dominated. As before, dominating C_j with g_j^i corresponds to satisfying C_j with x_i , but by setting x_i to false. Figure 3(b) shows chords v_6^1 , e_6^1 , f_6^1 and g_6^1 . Figure 4(a) shows all type v, type e, type f and type g chords associated with x_1 . All type f chords are grouped together as in Figure 4(a). As we travel counterclockwise from the clause chords, we first encounter all the base chords, then the 8 type f^1 chords, followed by the 8 type f^2 chords, and so on. If a variable x_i appears in clauses c_{j_t} , $1 \le t \le 8$, $j_1 < j_2 < \cdots < j_8$, then the 8 type f^i chords $f^i_{j_1}, f^i_{j_2}, \ldots, f^i_{j_8}$ appear in this order counterclockwise around the circle. Next we add a pair of chords p'_1 and p_1 so that p'_1 intersects all the type d and e chords and p_1 intersects only p'_1 (see Figure 4(a)). This implies that if D is a dominating set of G(J) that does not contain p'_1 , there exists a dominating set, no larger, than contains p'_1 . Including p'_1 in a dominating set D will enable us to treat all the type d and type e chords as dominated; such chords will occur in D only if they are needed to dominate other chords. Similarly, we add a pair of chords p'_0 and p_0 such that p'_0 intersects all type g chords and p_0 intersects exactly p'_0 (see Figure 4(a)). Again, there exists a minimum dominating set that contains p'_0 . Fig. 4. (a) p'_0 dominates all type g type intervals; p'_1 dominates all type d and e intervals (b) type p intervals dominate all type U and L intervals: p'_{11} dominates U_1^1, L_1^1 ; p'_{12} dominates U_2^1, L_2^1 ; p'_{13} dominates U_3^1, L_3^1 ; and p'_{14} dominates U_4^1, L_4^1 . Finally, we add to J 4n pairs of chords: p_{is} and p'_{is} , $1 \le i \le n$, $1 \le s \le 4$. Each p_{is} intersects exactly one chord, p'_{is} . For each i, $1 \le i \le n$, the chords in $\{p'_{is} \mid 1 \le s \le 4\}$ collectively dominate all the type U^i and type L^i chords, as shown in Figure 4(b). None of the p_{is} chords intersect a base chord of x_i . This completes our construction; see [4] for details such as actual coordinates of endpoints. The total number of vertices in our circle graph is |J| = m + 56n + 4. To see this, observe that J contains m clause chords. For each variable x_i , J contains: 8 base chords, 4 upper chords, 4 lower chords, and 32 chords of types w, v, d, e, f and g. Thus for each variable we have 48 chords. In addition, we have a total of 4 + 8n type p and p' chords for a total of m + 56n + 4 chords. 2.2 Analysis Lemma 2 $SAT(\phi) = 1 \Rightarrow \gamma(G) \leq 16n + 2$. **PROOF.** Since SAT(ϕ) = 1, there is a satisfying truth assignment A for ϕ . We construct a dominating set D of size 16n + 2 using the procedure described in [4], which we briefly sketch here. As mentioned earlier, we can assume without loss of generality that D contains all the type p' chords. There are 4n + 2 such chords and they dominate all the type p, U, L, d, e and g chords. It remains to dominate the type B, C, v, w and f chords. If x_i is true in A, we include in D all type U^i chords; if x_i is false in A, we include all L^i chords. Thus we have added 4n more chords to D and have dominated all base chords. Suppose that the literal x_i appears in a clause c_j . Then if x_i is true in A, w_j^i is dominated by chords in U^i , and d_j^i is dominated by a type p' chord. We add the chord g_j^i to D to dominate f_j^i . If x_i is false in A, we add d_j^i to dominate w_j^i and f_j^i . In either case, we use a single chord for the (i,j) pair. Now suppose that the literal \overline{x}_i appears in a clause c_j . Then if x_i is false in A, v_j^i is dominated by chords in L^i , and e_j^i is dominated by a type p' chord. We add the chord g_j^i to D to dominate f_j^i . If x_i is false in A, we add e_j^i to dominate v_j^i and f_j^i . In either case, we add a single chord for the (i,j) pair. Since there are 8n possible (i, j) pairs, we add 8n additional chords and dominate all the type v, type w, and type f chords. Since A is a satisfying truth assignment, every clause c_j is dominated by a chord g_j^i for some i. The number of chords we have included in D is 16n + 2. Lemma 3 $$SAT(\phi) < \alpha \Rightarrow \gamma(G) > 16n + 2 + (1 - \alpha)m/8$$. **PROOF.** We prove this by showing that if G(J) has a dominating set D of size $|D| \leq 16n + 2 + (1 - \alpha)m/8$, then there is a truth assignment to variables in X that satisfies at least αm of the clauses. For any subset $J' \subseteq J$ of chords, define the D-dominating set of J' as $$(J' \cup \{y \in J \mid y \text{ is a neighbor of some vertex in } J'\}) \cap D.$$ Let D_p , D_B , and D_f be D-dominating sets respectively for the set of type p chords, the set of base chords, and the set of type f chords. There are (4n+2) type p chords, no two of which have a common neighbor and so $|D_p| \geq (4n+2)$. There are 8n base chords, no three of which share a neighbor and so $|D_B| \geq 4n$. There are 8n type f chords, no two of which share a neighbor and so $|D_f| \geq 8n$. Also, the sets D_p , D_B , and D_f are pairwise non-intersecting because no chord in J intersects a type p chord and a base chord, or a base chord and a type f chord, or a type f chord and a type p chord. Therefore, the inequality $|D_p| \ge 4n + 2$ implies that $|D_B| + |D_f| \le 12n + (1 - \alpha)m/8$. For notational convenience, let $\beta = 1 - \alpha$ and let $\beta_1, \beta_2 \ge 0$ be reals such that $|D_B| = 4n + \beta_1 m/8$ and $|D_f| = 8n + \beta_2 m/8$. This implies that $\beta_1 + \beta_2 \le \beta$. For any $i, 1 \leq i \leq n$, let $D_B^i \subseteq D_B$ be the D-dominating set for the base chords corresponding to variable x_i . It is easy to verify that $|D_B^i| \geq 4$ and if $|D_B^i| = 4$ then $D_B^i = U^i$ or $D_B^i = L^i$. Note that the sets D_B^i are pairwise disjoint for distinct i's and therefore $|D_B| = \sum_{i=1}^n |D_B^i|$. Since $|D_B| = 4n + \beta_1 m/8$, this implies that for at most $\beta_1 m/8$ of the i's we have $|D_B^i| > 4$, while for the rest of the i's we have $|D_B^i| = 4$ and therefore $D_B^i = U^i$ or $D_B^i = L^i$. For any i, $1 \leq i \leq n$, if $D_B^i = U^i$ assign to x_i the value true; otherwise if $D_B^i = L^i$, assign to x_i the value false. Variables to which truth values have been assigned are called consistent; the remaining variables are called inconsistent. Arbitrarily assign truth values to inconsistent variables. Next we show that this truth assignment satisfies at least αm of the clauses. Note that there are at most $\beta_1 m/8$ inconsistent variables. These can participate in at most $\beta_1 m$ clauses and therefore the remaining at least $(1 - \beta_1)m$ clauses contain only consistent variables. Let $C' \subseteq C$ denote the subset of clauses that contain only consistent variables. Call any clause in C' a consistent clause and call any type C chord that corresponds to a clause in C' a consistent chord. Let t be the number of consistent chords in D. It follows that $t \leq (\beta - \beta_1 - \beta_2)m/8$, because otherwise, $$|D| \ge |D_p| + |D_B| + |D_f| + t$$ > $(4n+2) + (4n+\beta_1 m/8) + (8n+\beta_2 m/8) + (\beta - \beta_1 - \beta_2)m/8$ = $16n+2+\beta m/8$ a contradiction. This implies that the number of consistent chords dominated by type g chords is at least $$(1-\beta_1)m - (\beta-\beta_1-\beta_2)\frac{m}{8} \ge (1-\beta)m + \frac{\beta_2 m}{8}.$$ Let S denote the set of indices j such that c_j is a consistent chord dominated by a type g chord. Now construct a set F of type f chords as follows: for each $j \in S$, pick a g_j^i that dominates c_j (we know such a g_j^i exists) and add the chord f_i^j to F. For each $j \in S$, F contains exactly one f_j^i for some i. Also note that $|F| \geq (1-\beta)m + \frac{\beta_2 m}{8}$ and all of the chords in F are dominated by type g chords. Of the chords in F, at most $\beta_2 m/8$ chords can be dominated by 2 or more chords. This is because $|D_f| = 8n + \beta_2 m/8$ and no two type f chords share a neighbor. Hence, there are at least $(1-\beta)m = \alpha m$ type f chords in F that are dominated only by type g chords. Now consider a chord $f_j^i \in F$, dominated only by a type g chord. Since f_j^i is in J, either x_i or $\overline{x_i}$ appears in c_j . Suppose that x_i appears in c_j . Then we have the chords w_j^i, d_j^i , also in J. Since f_j^i is dominated only by type g chords, $d_j^i \notin D$ and this in turn implies that either $w_j^i \in D$ or there is an upper chord that dominates it. Since C_j is a consistent chord, it only contains consistent variables and therefore $D_B^i = U^i$ or $D_B^i = L^i$. Hence, $w_j^i \notin D$, implying that $D_B^i = U^i$, which in turn implies that x_i is assigned true and therefore clause c_j is satisfied. A similar argument suffices to show that c_j is satisfied even in the case when \overline{x}_i appears in c_j . Therefore, the truth assignment satisfies at least αm clauses. This completes the proof. For any instance of ϕ of MAX-3SAT(8) with n variables and m clauses, we can assume that $m \geq \frac{n}{3}$. As a consequence, Theorem 1 implies that if SAT(ϕ) < α then $$\gamma(G) > \left(16 + \frac{1-\alpha}{24}\right)n + 2.$$ Let $\beta = \frac{(16+(1-\alpha)/24)}{16}$ and let $\epsilon > 0$ be fixed. Suppose that there is $(\beta - \epsilon)$ -approximation algorithm for MDS on circle graphs. Then there is a constant $n(\epsilon)$, such that for any $n > n(\epsilon)$ and for any instance ϕ of MAX-3SAT(8) with n variables, using the "gap-preserving" reduction in the proof of Theorem 1, it can be determined in polynomial time whether $SAT(\phi) = 1$ or $SAT(\phi) < \alpha$. Of course any instance ϕ of MAX-3SAT(8) for which $n \leq n(\epsilon)$ has a constant number of variables and a constant number of clauses and therefore the exact value of $SAT(\phi)$ for such instances can be determined in O(1) time. A fundamental consequence of the PCP theorem [1,2] is that there exists an α , $0 < \alpha < 1$ such that it is not possible to distinguish instances ϕ of MAX-3SAT(8) for which SAT(ϕ) = 1 from instances for which SAT(ϕ) < α , unless P = NP. As a consequence, we have the following theorem. **Theorem 4** There exists a $\delta > 0$ such that MDS does not have a $(1 + \delta)$ -approximation algorithm, unless P = NP. Note that in the above theorem, any value of δ , $0 < \delta < \beta$ where $\beta = \frac{(16+(1-\alpha)/24)}{16} = 1 + (1-\alpha)/384$ suffices. ## 3 Final Remarks Let V' be a dominating set of a graph G. If the subgraph G[V'] of G induced by V', is connected, then V' is called a connected dominating set; if G[V'] has no isolated nodes, then V' is called a total dominating set. Keil [4] showed that minimum cardinality connected dominating set (MCDS) and minimum cardinality total dominating set (MTDS) are also NP-complete for circle graphs. The reduction described in this paper can be modified to show that MCDS and MTDS are also APX-hard. We have shown in [3] that MCDS and MTDS on circle graphs have constant-factor approximation algorithms also. #### References - [1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and hardness of approximation problems. In *IEEE Symposium on Foundations of Computer Science*, pages 14–23, 1992. - [2] S. Arora and M. Safra. Probabilistic checking of proofs: A new characterization of NP. *Journal of ACM*, 45(1):70–122, 1998. - [3] M. Damian and S. V. Pemmaraju. A $(2+\epsilon)$ -approximation scheme for minimum domination on circle graphs. *Journal of Algorithms*, 42(2):255–276, 2002. - [4] J. M. Keil. The complexity of domination problems in circle graphs. *Discrete Applied Mathematics*, 42:51–63, 1993. - [5] C. Papadimitriou and M. Yannakakis. Optimization, approximation and complexity classes. *Journal of Computer and System Sciences*, 43:425–440, 1991.