
Oriented Edge Colorings and Link Scheduling in Sensor Networks∗

Ted Herman Imran Pirwani Sriram Pemmaraju

Abstract

This paper shows that TDMA slot assignment for unicast com-
munication in a wireless network can be distributively computed
for an n-node acyclic network in O(polylog(n)) time, with high
probability. The best previous distributed algorithm for this prob-
lem requires O(n) time and obtains a TDMA schedule using 2∆
time slots. The new algorithm uses (1 + ε) · 2∆ time slots where ε
is a tunable fraction.

Keywords: edge-coloring, TDMA, wireless networks

1 Introduction

Power conservation is a priority in many wireless sensor net-
works. Basic activities of sensing and communication consume
energy, and careful scheduling of operations can extend the useful
lifetime of sensors and their batteries. Transmission is wasted in
cases where receivers are not listening or where a receiver is the tar-
get of multiple transmissions (a collision). Time Division Multiple
Access (TDMA) is a real-time scheduling technique to avoid such
situations. Moreover, some popular sensor platforms consume as
much power receiving as transmitting messages [14], so schedul-
ing timeslots can also be used by receivers to further reduce energy
needs by powering off the radio during idle periods.

Two communication modes of interest in sensor networks and
ad hoc networks are local broadcast and unicast. A local broadcast
transmission is the case where a node transmits a message to all
its neighbors in the communication graph, and unicast is the case
where a node transmits a message that is only intended for one
neighbor. Local broadcast only succeeds if all the nodes neighbors
receive the message without collision; unicast succeeds if (i) the
targeted neighbor does not concurrently transmit, and (ii) the target
receives without collision. Radio transmissions in sensor networks
are not spatially directed. A unicast could be overheard by a num-
ber of the transmitter’s neighbors; and at a non-targeted neighbor,
there can be a collision or that neighbor could be transmitting con-
currently. The success of the unicast depends only on reception at
the target node. Thus the scheduling of unicast transmissions is less
constrained than the scheduling of local broadcast transmissions.

If unicast is the communication mode of interest, then the prob-
lem of scheduling unicasts is equivalent to assigning to each edge in
the communication network a color so that transmissions on edges
of the same color are concurrent and there are no collisions at uni-

∗The authors are at the Department of Computer Science, The Univer-
sity of Iowa, Iowa City, IA 52240-1419. E-mail: [herman , pirwani ,
sriram]@cs.uiowa.edu .

cast destinations. This is the focus of our paper, TDMA for unicast.
We refer to this as the link scheduling problem.

Contributions of this paper. The recent paper [6] proposes a
distributed protocol to find a link schedule for acyclic networks.
On an n-node network with maximum degree ∆, the protocol runs
in Θ(n) time and computes a link schedule using 2∆ time slots.
This paper is motivated by the fact that for large sensor networks,
protocols with linear running time may be unacceptably slow.
We present a simple, randomized, distributed protocol that runs
in O(polylog(n)) time on acyclic networks and computes a link
schedule using 2∆ · (1+ ε) time slots, for any fraction ε > 0.

Organization. The remainder of the paper starts in Section 2
with a brief review of link scheduling on sensor networks. This
is followed in Section 3 with a description of the connection be-
tween link scheduling and two graph coloring problems: distance-
2 edge coloring and oriented edge coloring. Section 4 presents the
main result of this paper: a simple, fast, randomized protocol for
oriented edge coloring for acyclic networks, followed by its analy-
sis. The oriented edge coloring constructed by our protocol yields
a link schedule that uses close to optimal number of time slots. In
Section 5 we report on experiments that provide additional insights
into our results. The paper ends in Section 6 with a brief discussion
of future work.

2 Transmission Scheduling in Sensor Networks

Protocols that schedule transmissions to avoid collision can be
randomized, use static schedules, or be a hybrid of both [2]. All
such protocols exploit, to varying degrees, access to real-time hard-
ware in the participating nodes. Access to synchronized time in
sensor networks can be an out-of-band signal, such as GPS or a
standard time broadcast service [11], or generated by clock syn-
chronization protocols now widely implemented for sensor net-
works [16]. Randomized protocols [17] reduce the probability
of collisions, but do not eliminate collisions entirely; advantages
of randomized protocols are simplicity and fault tolerance. Static
schedules exclude all collisions, but require setup time and regen-
eration as nodes join and leave the network. Papers [10, 3, 8] are
examples of proposed static scheduling in sensor networks. Hybrid
protocols divide time into two phases, a contending phase (which
can use randomized backoff), and a message phase. During the
contending phase, participating nodes agree on a static schedule
for the subsequent message phase.

Sensor networks differ from other wireless, ad hoc networks in
that nodes have less powerful computing hardware, power conser-

1

vation is crucial, and sensor network protocols cannot rely on pow-
erful and complex base-station infrastructure (such as cellular net-
works do). In sensor networks, it is therefore a reasonable idea to
use transmission scheduling layered on top of a randomized, lower-
layer access protocol such as CSMA [17]: a TDMA schedule can
have coarser granularity of time slots than the underlying CSMA
protocol, and be used chiefly to conserve power, by turning off ra-
dios during periods when no communication is scheduled.

Sensor networks are an instance of ad hoc networking, where
topology is dynamic. Moreover, sensor nodes may enter a sleep-
ing state to harvest ambient energy, and later awake to rejoin the
system. It follows that link scheduling is not a one-time problem.
It is generally an open research problem how best to accommodate
topology change in the context of TDMA. Depending on applica-
tion needs and the frequency of join/leave events, periodic time slot
reassignment can be adequate to deal with topology change. Peri-
odically recomputing a link schedule is only viable if the overhead
is low — this is an important motivator for our research, namely
to find algorithms that quickly (in sublinear time) compute a link
schedule, and do so distributively rather than having to rely on a
centralized solution.

3 Coloring and Time Slots for Link Scheduling

The connection between transmission scheduling and graph col-
oring problems has been studied extensively [15], where schedul-
ing parameters include frequency, time, and spatial domains.
Here, we limit the investigation to scheduling in the time domain
(TDMA) assuming reuse of a single radio frequency. Spatial reuse
is a consequence of the fact that sensor networks have low power
radios, enabling concurrent transmission by distant nodes without
collision. As in several other previous works on TDMA in sen-
sor networks, we make simplifying assumptions about the graph
of communication: edges in the graph represent links with bidirec-
tional communication. In practice, communication links may be
unidirectional and even if two nodes p and q are unable to directly
communicate, p may be able to interfere with q’s reception of a
transmission from another node. These situations, for purposes
of TDMA slot assignment, can also be modeled by graph edges
[10] which put constraints on allowable time slot assignments to
avoid collision and interference. We consider these issues, as well
as other abilities of sensor nodes to attenuate radio transmission
power levels, to be outside the scope of our present investigation.

A distance-k edge coloring assigns colors to edges such that for
any two edges e and e′ with the same color, the minimum path
length between e and e′ is at least k. Two graph coloring prob-
lems can be exploited to find a link schedule, as follows. Sup-
pose the edge colors are 1,2, . . . , t. Then assign discrete time slots
1,2, . . . ,2t so that color i corresponds to time slots 2i− 1 and 2i;
for any edge {u,v} of color i, time slot 2i−1 is reserved for trans-
mission from u to v, and time slot 2i is reserved for transmission
from v to u. Distance- j edge colorings for j > k generally require
the use of more colors than distance-k edge colorings, and a re-
quirement for a larger number time slots decreases the frequency
at which a given vertex is allowed to transmit. As observed in [6],
there are cases where distance-1 edge coloring (also called proper
edge coloring) can be used to solve link scheduling, such as for

acyclic graphs. Proper edge coloring can only be used if colors are
“oriented”, as defined below.

Distance-2 Edge Coloring. Let G = (V,E) be a graph, with ∆(G)
the maximum vertex degree. A matching M of G is a subset of
edges such that no two edges in M are incident on the same ver-
tex. A proper edge coloring of G is as assignment of colors to the
edges of G such that each color class is a matching. The chromatic
index of G, denoted χe(G), is the fewest number of colors used in
any proper edge coloring of G. Clearly, ∆(G) ≤ χe(G) and Viz-
ing’s theorem tells us that χe(G) ≤ ∆(G) + 1. Let EC denote the
problem of computing an edge coloring of a given graph G using
the fewest number of colors. EC is NP-complete [9], despite the
fact that χe(G) ∈ {∆(G),∆(G) + 1}, and despite the fact that the
proof of Vizing’s theorem yields a simple algorithm to color G us-
ing ∆(G)+1 colors [13].

A distance-2 matching M of G is a subset of edges such that
no two edges in M are incident on the same vertex and no two
edges in M are incident on neighbors. Such a matching is also
called an induced matching [4, 5]. A distance-2 edge coloring of
G is a proper edge coloring of G in which each color class is a
distance-2 matching. Let D2EC denote the problem of computing a
distance-2 coloring with the least number of colors possible. D2EC
is in general harder than EC and is in fact NP-complete even for
certain subclasses of bipartite graphs [12]. Let χ2

e(G) denote the
distance-2 edge chromatic number of G, the fewest colors needed
by a distance-2 coloring of G. Part of the difficulty in solving D2EC
comes from the fact that χ2

e(G) can range from ∆(G) to Θ(∆(G)2).
Given the negative results regarding D2EC , it is reasonable to seek
efficient approximation algorithms for this problem. [1] reports
on constant-factor approximation algorithms for D2EC for planar
graphs and unit disk graphs (UDGs).

Oriented Edge Coloring. An orientation of an undirected graph
is an assignment of a direction to each edge. If O is an orientation
of an undirected graph G, then for each e = {u,v} ∈ E(G), we
have that O(e) ∈ {(u,v),(v,u)}. If O(e) = (u,v) then we say that
u is the tail of e and v is the head of e. An oriented edge coloring
of a graph G is an ordered pair, (C,O) consisting of a proper edge
coloring C of G and an orientation O of G such that for any two
edges e1 = {u1,v1} and e2 = {u2,v2} that are incident on neighbors
and have the same color, the orientation O satisfies the following
condition:

for any x ∈ e1 and y ∈ e2, if x and y are neighbors, then
either both x and y are tails of e1 and e2 respectively or
both x and y are heads of e1 and e2 respectively.

See Figure 1 for an illustration of this definition.
An oriented edge coloring (C,O) of G that uses t colors leads to

a link schedule that uses 2t time slots. For each i, 1 ≤ i ≤ t, assign
time slot 2i− 1 and 2i to all edges colored i with the requirement
that for each edge e = {u,v} colored i, the tail of O(e) transmits to
the head of O(e) in slot 2i−1 and the head of O(e) transmits to the
tail of O(e) in slot 2i.
Let ~χe(G) denote the oriented edge chromatic number of G, the
fewest colors needed by an oriented coloring of G. It is easy to
see that ~χe(G) ≤ χ2

e(G). start with any distance-2 edge coloring C

2

u
1

u
1

v
1

u
2

v
2

(a)

v
1

u
2

v
2

(b)

Figure 1. Figures (a) shows an oriented edge color-
ing of a 3-path. No orientation is shown for edge
{u1,u2} because it does not matter. The edges
{u1,v1} and {u2,v2} are assigned the same color and
therefore they must be oriented as shown in (a) or
both edges must be reversed. Figure (b) shows an
oriented edge coloring of a 4-cycle using 2 colors.
This implies a collision-free assignment of 4 time
slots to the edges of the 4-cycle. Note that in any
distance-2 edge coloring of a 4-cycle, all edges need
to be assigned distinct colors, implying a collision-
free assignment of 8 time slots to the edges.

of G and arbitrarily orient the edges of G to get a valid oriented
edge coloring of G. In fact, [6] show that every tree T has an ori-
ented edge coloring that uses ∆(T) colors. In contrast, it is easy to
construct a tree T that requires 2∆(T)−1 colors in any distance-2
edge coloring. Link schedules constructed from oriented colorings
typically use fewer colors than those constructed from distance-2
edge colorings - a fact that makes oriented colorings attractive.

Distributed Edge Coloring. The problem of devising distributed
algorithms, for the problem of computing a proper edge coloring
with a small number of colors, has received considerable attention.
It is of course possible to construct a distributed version of Vizing’s
algorithm that produces a ∆+1-coloring for any graph with maxi-
mum degree ∆ [13]. This is essentially the technique used by [6] to
obtain a ∆-coloring of the edges of an acyclic graph. The problem
with this approach is that it runs in linear time.

There are several randomized, distributed algorithms that run in
O(polylog(n)) time on n-vertex graphs and produce an edge col-
oring close to an optimal edge coloring. Currently, the fastest dis-
tributed edge coloring algorithm is due to Grable and Panconesi
[7] that computes a proper edge coloring of a given graph n-vertex
graph G in O(polylog(n)) rounds using (1+ ε)∆(G) colors for any
ε > 0. This algorithm is also extremely simple and we repro-
duce it here. Each edge e = {u,v} is initially given a palette of
(1 + ε)max{deg(u),deg(v)} colors. The computation takes place
in rounds. In each round, each uncolored edge independently picks
a tentative color uniformly at random from its current palette. If
no neighboring edge picks the same color, it becomes final. Oth-
erwise, the edge tries again in the next round. At the end of each
round palettes are updated: colors successfully used by neighbor-
ing edges are deleted from the current palette. This algorithm is
inherently distributed since each edge only needs to exchange in-
formation with its neighboring edges. We call this the Grable-
Panconesi algorithm and use it later.

Distributed Edge Orientation. The line graph of a graph G =
(V,E), denoted L(G) has vertex set E and edges connecting e1,e2 ∈
E, whenever e1 and e2 share an endpoint. The problem of edge
coloring G is equivalent to the problem of vertex coloring L(G).
The square of a graph G = (V,E), denoted G2 has vertex set V
and edges connecting pairs of vertices that are at distance at most 2
from each other in G. The problem of distance-2 edge coloring G
is equivalent to the problem of vertex coloring L2(G).

Let T be a tree and C be a proper edge coloring of T . For any
color c ∈ C, let L2(T,c) denote the subgraph of L2(T) induced by
edges colored c. See Figure 2 for an illustration. The following

A D

B

C

A D

B

C

Figure 2. A 3-edge coloring of a tree T is shown on
the left. On the right L2(T,c) is shown, where c is the
color assigned to the thick edges.

proposition is easy to verify.

Proposition 1 For any tree T , any proper edge coloring C of T ,
and any color c used by C, L2(T,c) is a forest.

[6] presents an algorithm which starts with a proper edge col-
oring C of T and then constructs an orientation O of T such that
(C,O) is a valid oriented edge coloring of T . This is done by doing
a traversal (depth-first) of L2(T,c) for each color c ∈C. Given that
L2(T,c) is a forest, the algorithm picks a component of L2(T,c),
makes an arbitrary node the root, assigns the root an arbitrary ori-
entation and then repeatedly assigns an orientation to children that
is consistent with their parent’s orientation (technically, all vertices
begin as candidates for the root, initiating multiple traversals in par-
allel; the traversal initiated at the vertex with maximum identifier
overtakes all other traversals to get the final orientation). The worst
case running time of this algorithm is Θ(m), where m is the num-
ber of vertices in L2(T,c). In the worst case, this can be linear in
number of vertices of T . Since the line graphs for each color can be
oriented independently, |C| concurrent incarnations of the traversal
can orient all the edges in O(n) time.

4 A distributed algorithm for oriented coloring

We propose a randomized algorithm that takes an n-vertex tree
T with maximum degree ∆, and for any fraction ε > 0, returns an
oriented edge coloring (C′,O) of T , where C′ uses at most (1 +
ε) ·∆ colors. The algorithm runs in O(polylog(n)) time, with the
asymptotic notation hiding a constant that depends on ε.

Execution of the algorithm proceeds in three phases. The first
phase uses the randomized Grable-Panconesi algorithm to obtain a
proper edge coloring. The second phase consists of a randomized
recoloring of the edges using an expanded palette. The edge color-
ing remains proper after this phase. The third phase orients edges
of each color.

3

Algorithm OrientedEdgeColoring (T , ε)

1. Use the Grable-Panconesi algorithm to compute a proper edge
coloring C of T with ∆(1+ ε/3) colors.

2. ExpandPalette (T , C, ε).

3. Let C′ be the expanded set of colors used for the edges of T .
For each color c ∈C′, orient the edges colored c by constraint
propagation in L2(T,c).

The first phase completes in O(polylog(n)) time and so if we can
complete the remaining two phases also in O(polylog(n)) time,
then the entire algorithm would run in O(polylog(n)) time. But,
how can the orientation phase be run in O(polylog(n)) time? The
depth-first traversal technique used for orientation in [6] takes time
proportional to the number of vertices in L2(T,c), and this can,
in the worst case be linear in the number of vertices in T . We
make our first improvement by replacing depth-first traversal with
a constraint propagation technique, whose time complexity is pro-
portional to the diameter of L2(T,c) rather than the number of ver-
tices. We sketch the details now. An immediate consequence of
the definition of an edge orientation is: if OR is an orientation, then
OR is also an orientation, where OR is obtained by reversing the
orientation of OR(e) for every e ∈ E. Therefore, any chosen “root”
vertex r of a component of L2(T,c) can arbitrarily select some ori-
entation. The orientation selected by r is a sufficient constraint to
fix the orientations of all neighbors of r in L2(T,c); these neighbor
orientations can be assigned concurrently in O(1) time. It follows
by induction that all edges of each component of L2(T,c) will be
oriented within time proportional to the maximum diameter of any
component of L2(T,c). We call this procedure the constraint prop-
agation algorithm for orientation. As with the traversal algorithm
used in [6], there is no need to explicitly establish a root vertices in
each component of L2(T,c). All vertices start, in parallel, to initi-
ate constraint propagation. Orientations are tagged by the identity
of the root constraint; constraint propagation initiated by a vertex
with a larger identity overtakes those with smaller identities.

Thus the running time of the third phase is proportional to the
maximum diameter of any component of L2(T,c), for any color
c. In the rest of this section we present the second phase, which
is a randomized recoloring of the edges of T with an expanded
palette, and show that after this phase, the maximum diameter of
any monochromatic component of L2(T) is O(logn), with high
probability.

We use the following notation in the algorithm. Let k be an
integer exceeding 3/ε and let p = 1/2. Partition the set {1,2, . . . , t}
of colors used by C into subsets C1,C2, . . . ,C`, where ` = dt/ke, and

Ci = {k(i−1)+1,k(i−1)+2, . . .,k · i}, for 1 ≤ i ≤ `−1,

C` = {k(`−1)+1,k(`−1)+2, . . ., t}

For each i, 1 ≤ i ≤ `, let Ei denote the edges of T colored using
some color in Ci.

Algorithm ExpandPalette (T , C, ε)

1. For each i, 1 ≤ i ≤ `, for each edge e ∈ Ei, recolor e with a
new color, (t + i), with probability p.

2. For each vertex v in T and for each i, 1 ≤ i ≤ `, there may be
up to k edges incident on v that are colored using t + i. If there
are two or more edges incident on v that are both colored t + i,
then pick one of these edges uniformly at random and retain its
new color. For the rest of the edges incident on v and colored
t + i, restore the color of each of these edges to their original
color.

Let C′ be the final edge coloring of T and let O be the orientation
of T computed by the algorithm. It is easy to see that the algorithm
guarantees that (C′,O) is an oriented edge coloring of T . Let t
be the number of colors used by the Grable-Panconesi algorithm.
Note that C′ uses t + ` colors. Given that k > 3/ε, it follows that
` = dt/ke < dtε/3e, implying that ` ≤ tε/3. Therefore, C′ uses at
most t · (1 + ε/3) colors. Since t ≤ ∆ · (1 + ε/3), the total number
of colors used by C′ is at most ∆ · (1 + ε/3)2. If 0 < ε < 1, then
(1+ ε/3)2 ≤ (1+ ε) and we get the following result.

Proposition 2 (C′,O) is an oriented edge coloring of T using at
most ∆ · (1+ ε) colors.

We now show that with high probability, there is no connected
component of L2(T,c) for any c, whose diameter exceeds a log2 n
for some constant a (which depends on ε). This shows that with
high probability, phase 3 of OrientedEdgeColoring runs in
O(logn) communication rounds. Therefore the entire algorithm
runs in O(polylog(n)) time with high probability.

Theorem 3 Let c be a color used by C′. There is a constant
a = a(ε) such that the probability that the diameter of a connected
component of L2(T,c) exceeds a log2 n, is at most 1/n.

Proof: Fix an edge e of T and let c be a color such that 1 ≤ c ≤
t. Thus c is one of the original colors used for the edges of T .
We first compute the probability that e is colored c at the end of
ExpandPalette . If e is not colored c originally, that is, before
the start of the algorithm, then the probability that e is colored c
by the algorithm is 0. So we assume that e is originally colored
c. In this case e continues to be colored c either because e was
never recolored or because e was recolored and then restored to its
original color in Step 2. Therefore,

Prob[e is colored c] ≤ (1− p)+ p ·
k−1

k
= 1− p

k
.

Now we compute the probability that an edge e is colored c,
where c is a new color, that is, t < c ≤ t + `. For e to have a new
color when ExpandPalette ends, it must be the case that it was
recolored in Step 1 and retained its new color in Step 2. The upper
bound on this probability is p. Since p = 1/2, the quantity 1−
p/k ≥ p for all k ≥ 1. Thus we conclude that for any edge e and
any color c, 1 ≤ c ≤ t + `,

Prob[e is colored c] ≤ 1− 1
2k

.

4

For notational convenience we denote the quantity 1−1/2k by β.
Now consider a path P in L2(T) of length L. Fix a color c, 1 ≤

c ≤ t + `. We calculate the probability that P appears in L2(T,c).
For this to happen every vertex in P needs to be colored c. Noting
that vertices in P are colored c independently, we obtain

Prob[P is in L2(T,c)] ≤ βL.

We now compute the probability that for some c, there is a path
in L2(T,c) of length exceeding L. Let P be the collection of all
paths in L2(T) of length greater than L. The probability we are
interested in computing is the probability that there is a path P ∈ P
that appears in L2(T,c) for some c. Using the union bound, we see
that this quantity is bounded above by

∑
c

∑
P∈P

Prob[P appears in L2(T,c)] ≤ ∑
c

∑
P∈P

βL

≤ n3 ·βL

The last inequality follows from the fact that (i) L(T) is a forest
with fewer than n vertices and there are fewer than n2 distinct paths
in such a graph and (ii) the algorithm uses at most n colors.

Now substituting L = a log2 n in the above upper bound, we get
that the probability that there is path in L2(T,c) for some c, of
length greater than L is bounded above by

n3 ·βL = n3 ·βa log2 n = n3 ·na log2 β =
n3

na log2(1/β)
.

If we let a = 4/log2(1/β), then the above upper bound simplifies
to 1/n. Thus we have that the probability that there is a connected
component of L2(T,c) for some c whose diameter exceeds a log2 n
is bounded above by 1/n.

5 Experimental Results

We performed experiments to measure the maximum di-
ameter of monochromatic components of L2(T) before and
after recoloring the tree T with extra colors to get a sense of
how much reduction in the maximum diameter is achieved
by expanding the palette. We ran our simulations on three
different types of trees. These experiments were done us-
ing the Combinatorica package that comes with Mathematica
5.2. In the following, we summarize our experiments and re-
sulting observations. For more details, including raw data, see
www.cs.uiowa.edu/˜pirwani/TDMA/sens orware 2006 .

We generated three types of trees.

(i) Random trees. Given a positive integer n, we construct an n-
vertex labeled tree picked uniformly at random from the col-
lection of all n-vertex labeled trees. Note that the resulting
probability distribution is not uniform on unlabeled trees.

(ii) Caterpillar trees. Given positive integers n and ∆, we con-
struct an n-vertex tree with maximum vertex degree ∆ as fol-
lows. Start with a path of length k. To each of the k−2 internal
vertices of the path we connect ∆−2 new vertices and to the
two endpoints of the path we connect ∆−1 new vertices. The
value k is chosen so that the total number of vertices of the
tree equal n. Note that k is roughly equal to the diameter of

the tree. Caterpillar trees are particularly bad for proper edge
colorings that use ∆ colors in the sense that every maximal
monochromatic subgraph of L2(T) is a long chain of length
approximately k. Our expectation is that for caterpillar trees,
the benefits of expanding the palette would be significant.

(iii) Bush trees. A bush tree is constructed by starting with
a random tree T and connecting each internal vertex u to
∆(T)−degree(u) new vertices.

A typical experiment consisted of generating an n-vertex tree T
with maximum degree ∆, constructing a ∆-edge coloring of T , and
then running ExpandPalette . 20 iterations of this experiment
were performed for each tree type and averages taken over these
20 runs. We reported the maximum diameter of a monochromatic
component of L2(T) before and after running ExpandPalette .
These are shown in the last two rows of the table below. The re-
duction in the diameter is significant in all cases and as expected,
quite dramatic in the case of the caterpillar tree.

Random Caterpillar Bush
n 1000 1000 1237.75
∆ 6.4 9 5.9
diam 97.45 126 62.35
Old color usage 62.80% 62.05% 63.41%
Initial max. diameter 58.05 124 60
Final max. diameter 13 16 16

The row labeled “Old color usage” reports the fraction of edges
that are colored using an old color (that is, a color in the range 1
through ∆). These fractions are remarkably similar for all three
tree types and furthermore they are roughly equal to the fraction
of colors in the final coloring that are old (66%). Trying to keep
the usage of old colors equal to the fraction of old colors seems
to be a reasonable heuristic for achieving substantial reduction in
the diameter of monochromatic components. For example, when
we used p = 2/3, the average number of edges colored using old
colors is about 55%. This decrease in the usage of the old colors
implies that the new colors are being overused. This imbalance
corresponds to a smaller reduction in the diameter of monochro-
matic components at least in the case of the Caterpillar and the
Bush trees, as shown below.

Random Caterpillar Bush
Initial max. diameter 58.02 124 58.35
Final max. diameter 11.7 32.25 22

We also implemented the Grable-Panconesi algorithm for
proper edge coloring. Our main aim in implementing this algo-
rithm was to see if the Grable-Panconesi algorithm, by itself leads
to small diameter monochromatic components. The table below
(last two rows) shows that for all three tree types, just running
the Grable-Panconesi algorithm leads to smaller monochromatic
components than starting with a ∆-edge coloring and applying
ExpandPalette . These experimental results strongly motivate
the following question. Let C be a Grable-Panconesi edge col-
oring of a tree T using ∆(1 + ε) colors, for some ε > 0. Is the
maximum diameter of a component in L2(T,c), for all colors c,
bounded above by O(logn) with high probability? Analysis of the

5

Grable-Panconesi algorithm for obtaining bounds on the diameters
of monochromatic components, seems more difficult than the anal-
ysis in this paper because of dependencies between the coloring
events being analyzed. However, this is an important question for
the future.

Random Caterpillar Bush
n 1000 994 1285
∆ 6.65 8 6.15
diam 96.25 143 58.65
Grable-Panconesi 8.3 13 15.1
ExpandPalette 12.8 16.25 15.7

6 Discussion

The analysis of the ExpandPalette algorithm crucially used
the fact that the number of distinct paths in an n-vertex tree is poly-
nomial in n. This is false for most other classes of graphs. As a
consequence the analysis does not directly apply to other classes
of graphs. However the overall three phase scheme of computing
a proper edge coloring, expanding the palette, and then orienting
edges in each monochromatic component, may be useful for other
classes of graphs. ([6] observes that line graphs for which all cycles
are even in length have proper edge orientations, and expanding the
palette could eliminate line graphs with odd-length cycles.) Moti-
vated by this overall goal, we are interested in obtaining a more so-
phisticated probabilistic analysis of ExpandPalette and a pos-
sibly more sophisticated version of the edge orientation phase.

References

[1] C L Barrett, G Istrate, V S Anil Kumar, M V Marathe, S Thite,
and S Thulasidasan. Efficient algorithms for channel assign-
ment in wireless radio networks. unpublished manuscript,
2005.

[2] D Bertsekas and R Gallager. Data Networks. Prentice-Hall,
1987.

[3] C Busch, M Magdon-Ismail, F Sivrikaya, and B Yener.
Contention-free MAC protocols for wireless sensor networks.
In Proceedings of the 18th Annual Conference on Distributed
Computing (DISC), pages 245–259, 2004.

[4] K Cameron. Induced matchings. Discrete Applied Mathemat-
ics, 24:97–102, 1989.

[5] R J Faudree, A Gýarfas, R H Schelp, and Zs Tuza. Induced
matchings in bipartite graphs. Discrete Math., 78:83–87,
1989.

[6] S Gandham, M Dawande, and R Prakash. Link scheduling
in sensor networks: Distributed edge coloring revisited. In
INFOCOM, 2005.

[7] D A Grable and A Panconesi. Nearly optimal distributed edge
coloring in O(loglogn) rounds. In Proceedings of the eighth
annual ACM-SIAM symposium on Discrete algorithms, 1997.

[8] T Herman and S Tixeuil. A distributed TDMA slot assign-
ment algorithm for wireless sensor networks. In Proceed-
ings of the First Workshop on Algorithmic Aspects of Wireless
Sensor Networks (AlgoSensors’2004), pages 45–58. Springer
LNCS 3121, 2004.

[9] I Holyer. The NP-completeness of edge-coloring. SIAM Jour-
nal on Computing, 10(4):718–720, 1981.

[10] SS Kulkarni and U Arumugam. Collision-free communica-
tion in sensor networks. In Proceedings of Self-Stabilizing
Systems, 6th International Symposium, pages 17–31. Springer
LNCS 2704, 2003.

[11] M Lombardi, A Novick, J Lowe, M Deutch, G Nelson, D Sut-
ton, W Yates, and D Hanson. WWVB radio controlled clocks:
Recommended practices for manufacturers and consumers.
Technical Report 960-14, United States National Institute of
Standards, January 2005.

[12] M Mahdian. On the computational complexity of strong edge
coloring. Discrete Applied Mathematics, 118:239–248, 2002.

[13] J Misra and D Gries. A constructive proof of vizing’s theo-
rem. Information Processing Letters, 41:131–133, 1992.

[14] J Polastre, R Szewczyk, and D Culler. Telos: enabling ultra-
low power wireless research. In Proceedings of the Fourth
International Conference on Information Processing in Sen-
sor Networks; Special Track on Platform Tools and Design
Methods for Network Embedded Sensors (SPOTS), 2005.

[15] S Ramanathan. A unified framework and algorithm for chan-
nel assignment in wireless networks. Wireless Networks,
5(2):81–94, 1999.

[16] B Sundararaman, U Buy, and AD Kshemkalyani. Clock syn-
chronization for wireless sensor networks: a survey. Ad Hoc
Networks, 3:281–323, 2005.

[17] A Woo and D Culler. A transmission control scheme for me-
dia access in sensor networks. In Proceedings of the 7th an-
nual international conference on Mobile computing and net-
working, pages 221–235, 2001.

6

