
Good Quality Virtual Realization of Unit Ball Graphs ∗

Sriram V. Pemmaraju Imran A. Pirwani

April 13, 2007

Abstract

The quality of an embedding Φ : V 7→ R
2 of a graph G = (V, E) into the Euclidean plane is the ratio of

max{u,v}∈E ||Φ(u) − Φ(v)||2 to min{u,v}6∈E ||Φ(u) − Φ(v)||2. Given a graph G = (V, E), that is known to be a unit ball
graph in fixed dimensional Euclidean space R

d, we seek algorithms to compute an embedding Φ : V 7→ R
2 of best

(smallest) quality. Note that G comes with no associated geometric information and in this setting, related problems
such as recognizing if G is a unit disk graph (UDG), are NP-hard. While any connected unit disk graph (UDG) has a
2-dimensional embedding with quality between 1/2 and 1, as far as we know, Vempala’s random projection approach
(FOCS 1998) provides the best quality bound of O(log3 n ·

√
log log n) for this problem.

This paper presents a simple, combinatorial algorithm for computing a O(log2.5 n)-quality 2-dimensional embedding
of a given graph, that is known to be a UBG in fixed dimensional Euclidean space R

d. If the embedding is allowed to
reside in higher dimensional space, we obtain improved results: a quality-2 embedding in R

O(d log d). The first step of
our algorithm constructs a “growth-restricted approximation” of the given UBG. While such a construction is trivial
if the UBG comes with a geometric representation, we are not aware of any other algorithm that can perform this step
without geometric information. Construction of a growth-restricted approximation permits us to bypass the standard
and costly technique of solving a linear program with exponentially many “spreading constraints.” As a side effect of
our construction, we get a constant-factor approximation to the minimum clique cover problem for UBGs, described
without geometry. The second step of our algorithm combines the probabilistic decomposition of growth-restricted
graphs due to Lee and Krauthgamer (STOC 2003) with Rao’s embedding algorithm for planar graphs (SoCG 1999)
to obtain a (k, O(

√
log n))-volume respecting embedding of growth-restricted graphs.

Our problem is a version of the well known localization problem in wireless sensor networks, in which network
nodes are required to compute virtual 2-dimensional Euclidean coordinates given little or (as in our case) no geometric
information.

1 Introduction

A graph G = (V, E) is a d-dimensional unit ball graph (UBG) if there is an embedding Φ : V 7→ R
d such that {u, v} ∈ E

iff ‖Φ(u)−Φ(v)‖2 ≤ 1. Such an embedding Φ of G is called a realization of G. In this paper, we are essentially interested
in the problem of finding a realization Φ of a given UBG. It is unlikely that this problem has a polynomial-time algorithm
because even the problem of recognizing if a given graph is a 2-dimensional UBG (henceforth, a unit disk graph and in
short a UDG) is NP-hard [7]. Recently, Aspnes et al. [1] have shown that the problem of computing a realization of a
given UDG is NP-hard even if all edge lengths between pairs of neighboring vertices are known. The problem remains
NP-hard when all angles between adjacent edges are known [8] and also when all angles plus slightly noisy, pairwise
distances are known [2]. Given this situation, we consider the problem of computing an “approximate” realization of the
given UBG. Let G = (E, V) be a d1-dimensional UBG. Let Φ : V 7→ R

d2 be an embedding of G into R
d2 . If G is not a

clique, then the quality of the embedding Φ is defined as:

max{u,v}∈E ‖Φ(u)− Φ(v)‖2
min{u′,v′}/∈E ‖Φ(u′)− Φ(v′)‖2

In case G is a clique, then the quality of Φ is simply max{u,v}∈E ‖Φ(u)− Φ(v)‖2. The specific optimization problem we
consider is the following.

Given d1, d2, and a d1-dimensional UBG G = (V, E), find an embedding Φ : V 7→ R
d2 with best (smallest)

quality.

∗The authors are in the Department of Computer Science, The University of Iowa, Iowa City, IA 52242-1419. E-mail addresses: [sriram,

pirwani]@cs.uiowa.edu.

1

We call this the best quality embedding problem. It is easy to see that every connected d-dimensional UBG has an
embedding into R

d with best quality, between 1/2 and 1. This paper focuses on devising an approximation algorithm for
the best quality embedding problem.

Motivated by applications in VLSI design, Vempala considers a similar problem [28]: given an undirected graph G,
compute a one-to-one assignment of vertices of G to points of a 2-dimensional grid (with unit square cells) such that
the maximum Euclidean length of an edge is minimized. Note that G is an arbitrary graph, not just a UBG. Using
the random projection approach, Vempala obtains an embedding with maximum length O(log3 n

√
log log n)1. Note that

the embedding constructed by Vempala’s algorithm has quality O(log3 n
√

log log n) because every pair of vertices are
separated by at least one unit distance. Motivated by the localization problem in wireless sensor networks, Moscibroda et
al. define quality as a measure the “goodness” of a realization [22]. This paper [22] claims an O(log2.5 n·√log log n)-quality
embedding for UDGs into R

2, but a subsequent full version of the paper [17] corrects this bound to O(log3.5 n ·√log log n).
The only hardness of approximation result for the best quality embedding problem, that we are aware of, is this [18]:
there is no polynomial time algorithm (unless P = NP) that can compute a (

√

3/2−ε)-quality, 2-dimensional embedding
of a given UDG in which non-adjacent vertices are required to be more than one unit away from each other. Here ε goes
to 0 as n, the number of vertices in the given UDG, tends to ∞.

As mentioned earlier, the best quality embedding problem for UBGs is motivated by the localization problem in wireless
sensor networks [9, 23]. Low dimensional UBGs are typically used to model wireless sensor networks. The localization
problem requires each node in a wireless sensor network to compute its own coordinates with respect to some global
coordinate system. For most sensing applications, it is critical that each node know its location, at least approximately.
Knowledge of location information can also dramatically improve the performance of routing algorithms because it allows
the use of geometric routing techniques [6, 12, 19]. One technological solution to the localization problem is to equip
each node with a GPS receiver. However, this solution seems too costly, currently and in any case such a solution will
have to deal with GPS errors and the fact that GPS results can have additional errors when used indoors. Another
solution is to equip a few “anchor” nodes with GPS receivers [3] and have the rest of the nodes compute their coordinates
by using the known coordinates of the anchor nodes. The main drawback of this approach is that for a good quality
solution, the number of anchor nodes needed may be fairly high and furthermore they may have to be placed manually.
Recent work has suggested that for geometric routing schemes, having “real” coordinates is not necessary; having virtual
coordinates suffices to ensure prompt and guaranteed routing [24, 26]. In fact, virtual coordinates that are derived only
from connectivity information are preferable as this information is robust to errors in radio signals. Motivated by the
localization problem, we assume that our input graph is a d1-dimensional UBG for small fixed values of d1; d1 = 2, 3 are
probably the most relevant values for wireless sensor networks. While the best quality embedding problem allows the
host space to have arbitrary dimensions (specified as d2 in the input), we are particularly interested in the case when
d2 = 2. Even though our results generalize to higher dimensional host spaces, they are most relevant to the wireless
sensor networks application when d2 = 2. This is because currently, well-known geometric routing algorithms such as
GPSR [12] only provide guaranteed delivery for networks in the plane. Thus, even though G may be a 3-dimensional
UBG, we are mainly interested in obtaining in a 2-dimensional embedding of G.

1.1 Results and Techniques

In this paper, we present a combinatorial algorithm for computing an O(log2.5 n)-quality embedding of any d-dimensional
UBG (for any fixed d) into R

2. Our result can be seen as improving Vempala’s bound [28] when the input is restricted
to be a d-dimensional UBG. However, the most important aspect of our algorithm is that it is combinatorial and seems
amenable to local, distributed implementation. Our algorithm avoids the costly first step of Vempala’s algorithm in
which an exponentially large linear program (LP), that imposes spreading constraints on the vertices, is solved via the
ellipsoid method. Starting with an LP or a semi-definite program that imposes spreading constraints is a fairly common
approach to solving vertex-ordering problems (such as the minimum bandwidth problem) [5, 10]. We avoid the spreading
constraints approach via a combinatorial algorithm for computing a “growth-restricted approximation” of the given UBG.
This step may be of independent interest since it can be implemented efficiently (in polylogarithmic number of rounds
under the LOCAL model of computation) in a distributed setting as well. In a related result, we point out that using
the “growth-restricted approximation” of the UBG in combination with a recent result due to Krauthgamer and Lee [14]
leads to a quality-2 embedding of any d-dimensional UBG into R

O(d log d). Since we are primarily interested in small,
fixed values of d, this is a quality-2 embedding into constant dimensional space. Our algorithm has three main steps.

1Due to a small error in Lemma 2 in Vempala’s paper [28], the bound proved in the paper is O(log4 n). However, by using a stronger
version of Theorem 2 in his paper, one can obtain an O(log3 n

√

log log n) bound.

2

1.1.1 Constructing a Growth-Restricted Approximation

In the first step, we partition the given UBG into cliques such that when the cliques are contracted into vertices, we get
a “growth-restricted approximation” of the given UBG. To describe this step more precisely, we need some definitions.
For any graph G = (V, E) and for any pair of vertices u, v ∈ V , let dG(u, v) denote the shortest path distance between u
and v. Let BG(v, r) = {u ∈ V | dG(u, v) ≤ r}2 denote the closed ball of radius r centered at v in G. Define the growth
rate of G to be

ρG = inf{ρ : |BG(v, r)| ≤ rρ for all v ∈ V and all integers r > 1}.
A class G of graphs is growth-restricted if there is some constant c such that for every graph G in G, ρG ≤ c. For any
partition C = {C1, C2, . . .} of the vertex set V of G, the cluster graph of G induced by C, denoted G[C], is obtained from
G by contracting each Ci into a vertex. In Section 2, we show how to partition a given d-dimensional UBG G = (V, E)
into cliques C = {C1, C2, . . .} such that the cluster graph G[C] induced by the clique partition has constant growth rate.
Note that if we can construct an α-quality embedding Φ of G[C] into R

L, we can immediately get an α-quality embedding
Φ′ of G into R

L: for each vertex v of G set Φ′(v) := Φ(Ci), where Ci is the clique that contains v. This allows us to focus
on the problem of obtaining a good quality embedding of growth-restricted graphs.

It is quite easy to obtain a clique-partition C = {C1, C2, . . .} with the desired properties if a realization of G is given.
For example, given a UDG with 2-dimensional coordinates of vertices known, one can place an infinite grid of 1√

2
× 1√

2

square cells on the plane and obtain a vertex partition C = {C1, C2, . . .} in which each part Ci is all vertices in a cell.
Due to the size of the cells each Ci is a clique and furthermore a simple geometric argument shows that there are O(r2)
cells in the radius-2r disk centered at the center of any cell. This suffices to show that in H := G[C], |BH(v, r)| = O(r2),
implying that ρH is bounded by a constant. See Figure 1(a) for an illustration. The above argument generalizes in a
straightforward way to d-dimensional space, where d-dimensional cubes of length 1/sqrtd can be used to partition the
vertices.

In the absence of geometric information, it is not immediately clear how to obtain the desired clique partition. One
possible approach is to start with a maximal independent set I of G and attach each v ∈ V \I to an arbitrary neighbor in I .
For each v ∈ I , let Sv denote the set consisting of v along with neighbors which have attached to v. Let S = {Sv | v ∈ I}
be the induced vertex partition of V . Since I is an independent set, in any realization Φ of G into R

d, ‖Φ(u)−Φ(v)‖2 > 1
for all u, v ∈ I, u 6= v. From this observation, one can deduce the fact that H := G[S] has bounded growth rate. However,
the sets Sv are not cliques, even though the subgraphs they induce Hv := G[Sv] have diameter at most 2. We know
that each Hv has a partition into O(1) cliques. For example, if G is a UDG, there exists a partition of Hv into at most
5 cliques. But, how to find a constant-sized partition of Hv? Noteworthy is the work of Raghavan and Spinrad [25]
that computes a maximum cardinality clique of an input UBG, given without any geometric information; one can use
their algorithm as a subroutine in the following greedy approach: repeatedly find and remove a maximum size clique
from Hv , until it becomes empty. Since we know that Hv can be partitioned into a constant c number of cliques, Hv

contains a clique of size at least |Sv |/c and therefore each step removes a 1/c fraction of vertices (or more) from Hv. This
immediately implies that the greedy approach produces O(log n) cliques, where n = |Sv|. Unfortunately, this bound is
tight and there is a simple example (see Figure 1(b)) showing that the greedy approach can lead to a clique-partition of
Sv of size Ω(log n).

To further motivate the problem, note that the problem of partitioning Hv into a constant number of cliques is
equivalent to the problem of coloring Hv with a constant number of colors. Computing a constant-sized coloring of a
graph, even when it is known to have a coloring of constant size, seems quite hard. For example, the best approximation
algorithm for coloring 3-colorable graphs uses Õ(n3/14) colors [4]3.

In Section 2 we present an algorithm for partitioning each Hv into a constant number of cliques; this involves
extending ideas developed by Raghavan and Spinrad [25] in the context of finding a maximum clique in a UDG with
no given realization. Since our problem arises in sensor network localization, it is worth pointing out that the overall
construction of the growth-restricted cluster graph induced by cliques has a very simple distributed implementation. The
first step of the construction is to compute a maximal independent set (MIS) of G and recent papers by Kuhn et al.
[15, 16] are relevant here. Kuhn et al. [15] show how to compute a MIS on a class of graphs, bounded growth graphs, that
contains UBGs in O(log ∆· log∗ n) rounds using only connectivity information, where ∆ is the maximum degree of G.
Kuhn et al. [16] compute a (1+ ε) approximation to the maximum independent set (MaxIS) problem for any given ε > 0
in O(log ∆· log∗ n + log∗ n/εO(1)) rounds of distributed computation also on the same class of graphs. Using either of the
distributed algorithms [15, 16], one can compute a MIS of G without any geometry. Following this step, the remaining
vertices join a neighboring independent vertex in O(1) rounds, forming neighborhood partition of the vertex set. Next,
the partition of neighborhoods, Hv , into constant number of cliques can be done again in O(1) rounds since the diameter
of each neighborhood is at most 2.

2Where it is clear from the context, we write B(u, v) instead of BG(u, v)
3Here the Õ notation hides factors that are logarithmic in n.

3

B1

1 unit

1 unit

A1 A2 AkA3

B2 B3 Bk

1 unit

(a) (b)

Figure 1: (a) A realization of a UDG G, partitioned by a grid of 1√
2
× 1√

2
square cells. The cluster graph G[C] induced

by the partition C is also shown. (b) A bad example for the greedy approach. Each Ai and each Bi is a set of 2i points.
A point in Ai is adjacent to all points in Aj , 1 ≤ j ≤ k and exactly the points in Bi. The adjacencies for points in
Bi are symmetric. Thus the largest clique is Ak ∪ Bk and has size 2 · 2k. Removing this clique leaves sets Aj and Bj ,
1 ≤ j ≤ k − 1 intact. Thus the algorithm uses k cliques to cover about 2k+2 points, yielding a lower bound of Ω(log n)
on the size of the clique cover produced by the greedy algorithm.

1.1.2 Constructing Volume Respecting Embeddings

The remaining two steps of our algorithm follow the approach introduced by Vempala [28], with some important differences
due to the fact that our input graph is growth-restricted. Let H = G[C] be the cluster graph of G constructed in the
previous step.

In the second step of our algorithm, we construct a volume respecting embedding of the shortest path metric of H .
The notion of volume respecting embeddings was introduced by Feige [11] in the context of the minimum bandwidth
problem. Let (X, d) be a metric space. An embedding Φ : X 7→ R

L is a contraction if ‖Φ(u) − Φ(v)‖2 ≤ d(u, v) for all
u, v ∈ X . For a set T of k points in R

L, define Evol(T) to be the (k − 1)-dimensional volume of the (k − 1)-dimensional
simplex spanned by T , computed using the `2 norm. Note that Evol(T) = 0 if T is affinely dependent. For any finite
metric space (X, d), define Vol(X) as supΦ Evol(Φ(X)), where the supremum is over all contractions Φ : X → R

|X|−1.
Given an arbitrary metric space (X, d), a contraction Φ : X → R

L is called (k, D)-volume respecting embedding if for
every size-k subset S ⊆ X , we have:

Evol(Φ(S)) ≥
(

Vol(S)

Dk−1

)

Note that when k = 2, this condition reduces to ‖Φ(u)−Φ(v)‖2 ≥ d(u, v)/D for all u, v ∈ X . Thus, a volume respecting
embedding is a generalization of the more commonly used notion of small distortion embeddings [21], in which only pairs
of points are considered. A volume respecting embedding will be very useful for the last step our algorithm, in which
a random projection of the vertices of H into R

2, will be performed. For the random projection step to spread points
fairly well in R

2, we require sets of points to have large volumes, because intuitively, point sets with large volume will
be spread out in their projection into a lower dimensional sub-space. For arbitrary metric spaces, Feige [11] presents a
polynomial time algorithms to compute a (k, O(

√
log n·√k log k + log n))-volume respecting embedding. We are interested

in k = log n and therefore, Feige’s algorithm yields a (log n, O(log n · √log log n))-volume respecting embedding.
However, it is possible to improve on Feige’s bounds in our context where the graph has constant growth rate.

Specifically, we perform a probabilistic decomposition of H using a technique due to Krauthgamer and Lee [14] for
growth-bounded graphs and then use the decomposition as a starting point for Rao’s algorithm [27] for constructing a
(k, O(

√
log n))-volume respecting embedding of H . Rao [27] describes an algorithm for constructing a (k, O(

√
log n))-

volume respecting embedding of Kr,r-minor free graphs, for any fixed r. The starting point of Rao’s algorithm is a
probabilistic version of a graph decomposition due to Klein, Plotkin, and Rao [13] that works for Kr,r-minor free graphs.
Note that H may contain a Kr,r-minor for any r, and therefore Rao’s algorithm cannot be used as is. However, the
Krauthgamer-Lee probabilistic decomposition [14] for growth-restricted graphs can be used to replace the Klein-Plotkin-
Rao decomposition in the volume respecting embedding algorithm by Rao [27].

Now we mention a useful lemma due to Feige [11] that establishes a lower bound on Vol(S). To show that an an
embedding Φ : X 7→ R

L is a (k, D)-volume respecting embedding of X , we need to show that Evol(Φ(S)) ≥ Vol(S)/Dk−1.
Vol(S) is difficult to compare against and so Feige defined the notion of a tree volume and showed a lower bound on

4

Vol(S) in terms of the tree volume of S. For any S ⊆ X , the tree volume of S, denoted Tvol(S) the product of the edge
lengths in a minimum spanning tree of S.

Lemma 1 (Feige [11]) Let (X, d) be a metric space. For any size-k subset S ⊆ X, Tvol(S) ≤ 2k(k − 1)!Vol(S).

1.1.3 Random Projections

The third and the last step of our algorithm uses a slightly modified version of Vempala’s random projection and rounding
technique. A similar technique is used by Moscibroda et al. [22]. After computing a volume respecting embedding of
H , we project the vertices onto a plane defined by two unit vectors chosen uniformly and independently at random. We
state two lemmas due to Vempala [28] that show how the random projection step affects individual points and subsets of
points, respectively. These lemmas are used in estimating the number of vertices of H that fall in a region of the plane.

Lemma 2 (Vempala [28]) Let v ∈ R
d. For a random unit vector l, c > 1,

Pr

[

|v· l| ≥ c√
d
|v|
]

<
1

ec2/4
.

Lemma 3 (Vempala [28]) Let S be a set of vectors v1, v2, . . . , vk ∈ R
d. For a random unit vector l,

Pr[max
i
{vi· l} −min

i
{vi· l} ≤W] = O

(

W k−1d
k−1
2

(k − 1)!Evol(S)

)

Next, we partition the plane into squares and then construct a fine enough square grid inside each square so that all
vertices of H that fall into any square can be mapped to a distinct grid point. Vempala [28] calls this step “rounding”.
Finally, vertices in the clique Cv in G that correspond to v in H are assigned the grid point that v is mapped to.

2 Constructing a Growth-Restricted Approximation

In this section, we show how to construct a clique partition C = {C1, C2, . . .} of a given d-dimensional UBG G so that
G[C] has constant growth rate. Recall that G[C] is the graph obtained from G by contracting each Ci into a vertex. As
mentioned in the introduction, our starting point is the following algorithm.

CLIQUE-PARTITION(G)

1. Compute a maximal independent set (MIS) I of G.

2. Associate each vertex u ∈ V \ I to a neighbor in I . For each v ∈ I , let Sv consist of v and its associated vertices.

3. Partition each vertex subset Sv into a constant number of cliques.

The first two steps are simple and for the third step we makes use of ideas due to Raghavan and Spinrad [25].
For simplicity, we discuss only the 2-dimensional case; extension to d-dimensional UBGs is straightforward. Raghavan
and Spinrad [25] present a “robust” algorithm for the problem of finding a maximum cardinality clique (henceforth,
maximum clique) in a given UDG. Their algorithm is robust in the sense that it takes as input an arbitrary graph G
and in polynomial time, (i) either returns a maximum clique in G or (ii) produces a certificate indicating that G is not
a UDG. The existence of such an algorithm is surprising because both problems (a) recognizing whether a given graph
is a UDG and (b) finding a maximum cardinality clique in a given graph, are NP-hard. The key idea underlying the
Raghavan-Spinrad algorithm is the existence of a superclass G of the class of UDGs such that in polynomial time one
can determine if a given graph G is in G or not. Furthermore, for any G in G a maximum clique can be computed in
polynomial time.

The superclass G is the set of all graphs that admit a cobipartite neighborhood edge elimination ordering (CNEEO).
Given a graph G = (V, E) and an edge ordering L = (e1, e2, . . . , em) of E, let GL[i] denote the spanning subgraph of G
with edge set {ei, ei+1, . . . , em}. For each edge ei = {x, y} define NL[i] to be the set of common neighbors of x and y in
GL[i]. An edge ordering L = (e1, e2, . . . , em) of G = (V, E) is a CNEEO if for every edge ei, NL[i] induces a cobipartite
(i.e., the complement of a bipartite) graph. Raghavan and Spinrad prove three results: (1) If a graph G admits a CNEEO,
then there is a simple greedy algorithm for finding a CNEEO of G. (2) Given a graph G and a CNEEO of G, a maximum
clique in G can be found in polynomial time. (3) Every UDG admits a CNEEO. To see the second result, consider a
maximum clique C in G. Let L = (e1, e2, . . . , em) be a CNEEO of G and let ei be the edge in G[C] that occurs first in L.
Then C is contained in the cobipartite graph NL[i]. In fact, C is a maximum clique in NL[i]. Using the fact that NL[i]
is cobipartite and the fact that a maximum independent set in a bipartite graph can be computed in polynomial time,

5

we can compute a clique of cardinality |C| in NL[i] in polynomial time. Raghavan and Spinrad obtain the third result by
showing that if we take a geometric representation of the given UDG G and order edges in non-increasing length order,
we get a CNEEO of G. This follows fairly easily from the following geometric observation. Let {x, y} be a line segment
in the plane and let r = ‖x − y‖2. Then {x, y} partitions the intersection of Disk(x, r) ∩Disk(y, r) into two regions of
diameter at most r. See Figure 2(a) for an illustration. The three results mentioned above lead to a polynomial-time

x y
r units

� ����

��

��

���
���

(a) (b)

Figure 2: (a) Suppose that edge {x, y} has rank i in an ordering of the edges of G in non-increasing length order. The
points in the common neighborhood of x and y in GL[i] are exactly those in the lune shown above. A point outside the
lune may be a common neighbor of x and y in G, but not in GL[i]. The diameter of the upper and lower halves of the
lune are r and therefore the vertices in each half induce a clique in GL[i]. Hence, NL[i] induces a cobipartite graph. (b)
A sample run of NBD-CLIQUE-PARTITION. Each “cloud” is a clique. Patterns in the clouds represent the cliques obtained;
the a vertical line pattern is C ′

1, and the horizontal line pattern is C ′′
1 ; the down-sloping pattern is C ′

2 and the up-sloping
one is C ′′

2 ; the shaded pattern is C ′
3, and the checkered pattern is C ′

4 for a totoal of 6 cliques.

algorithm that will successfully report a maximum clique for every input UDG and for some graphs that are not UDGs
(but admit a CNEEO). We now show how to use the CNEEO idea to implement Step (3) of the CLIQUE-PARTITION

algorithm. Let Gv = G[Sv] be the subgraph of G induced by Sv. Since Gv is also a UDG, it admits a CNEEO. We start
with a simple lemma.

Lemma 4 Let C be a clique in Gv and let L = (e1, e2, . . . , em) be a CNEEO of Gv. There is an i, 1 ≤ i ≤ m, such that
NL[i] contains C.

Proof: Let ei = {x, y} be the edge in Gv[C] that occurs first in L. Recall the notation NL[i]: this denotes the common
neighborhood of the endpoints of edge ei in the spanning subgraph of Gv containing only edges ei, ei+1, Since ei is
the first edge in C, NL[i], contains C.

Recall that the closed neighborhood of an vertex in a UDG can be partitioned into at most 5 cliques. Let C1, C2, . . . , C5

be a clique partition of Sv. The implication of the above lemma is that even though we do not know the clique partition
C1, C2, . . . , C5, we do know that for every CNEEO L = (e1, e2, . . . , em) of Gv , there is an edge ei such that NL[i] can
be partitioned into two cliques that cover C1. This follows simply from the fact that L is a CNEEO and therefore the
graph induced by NL[i] is cobipartite. This suggests an algorithm that starts by guessing an edge sequence (f1, f2, . . . f5)
of Gv . Then the algorithm computes L, a CNEEO of Gv . The algorithm’s first guess is “good” if f1 is the edge in C1

that occurs first in L. Suppose this is the case and further suppose that f1 has rank i in L. Then C1 is contained in
NL[i]. Therefore, when NL[i] is deleted from Gv we have a graph, say G′

v , that can be partitioned into 4 cliques, namely
Cj \NL[i] for j = 2, 3, 4, 5. For each j, let C ′

j denote Cj \NL[i] and let L′ be a CNEEO of G′
v . The algorithm’s second

guess, f2, is “good” if f2 is the edge in C ′
2 that occurs first in L′. Letting i′ denote the rank of f2 in L′, we see that

NL′ [i′] contains C ′
2. We then delete NL′ [i′] from G′

v to get a graph that can be partitioned into 3 cliques. Continuing in
this manner we get a partition of Gv into 10 cliques. Below, the algorithm is described more formally.

NBD-CLIQUE-PARTITION(Gv)

1. for each 5-edge sequence (f1, f2, . . . f5) of E(Gv) do

6

2. G0 ← Gv

3. for j ← 1 to 5 do
4. Compute a CNEEO L of Gj−1

5. i← rank of fj in L
6. Partition NL[i] into two cliques C ′

j and C ′′
j

7. Gj ← Gj−1 \NL[i]
8. if (G5 = ∅) return {C ′

j , C
′′
j | j = 1, 2, . . . , 5}

The correctness of NBD-CLIQUE-PARTITION follows from the fact that there is some edge sequence (f1, f2, . . . f5) of
E(Gv) for which G5 is empty. Figure 2(b) shows a sample run of the algorithm. We state without proof the following
lemma.

Lemma 5 Algorithm NBD-CLIQUE-PARTITION partitions Gv into at most 10 cliques.

The above algorithm can be optimized a bit to yield an 8-clique partition; when cliques C1, C2, and C3 have been
deleted (at which time we have output 6 cliques), we are left with a cobipartite graph that can be easily partitioned into
2 cliques. If Gv has m edges then the number of guesses verified by the algorithm is O(m5). Since a CNEEO of a graph
can be computed polynomial time (if it exists) and since a cobipartite can be partitioned into two cliques in linear time,
we see that the algorithm NBD-CLIQUE-PARTITION runs in polynomial time. Thus Step (3) of the CLIQUE-PARTITION

algorithm can be implemented by calling the NBD-CLIQUE-PARTITION algorithm for each vertex v ∈ I .
Let C = {C1, C2, . . .} be the clique partition of G produced by the algorithm CLIQUE-PARTITION. Let H = G[C]. We

now prove that H is growth-restricted. For each vertex c ∈ V (H), there is a corresponding vertex v in the MIS I of
G. Specifically, c corresponds to a clique in G that was obtained by partitioning Sv for some vertex v ∈ I . Recall that
Sv consists of v along with some neighbors of v. Denote by i(c) the vertex in I corresponding to c ∈ V (H). Consider
an arbitrary 2-dimensional realization Φ of G and for any pair of vertices x, y ∈ V , let |xy| denote ‖Φ(x) − Φ(y)‖2. Let
B(v, r) = {u ∈ V (H) | dH(v, u) ≤ r} denote the closed ball of radius r, centered at v, with respect to shortest path
distances in H .

Lemma 6 For any u, v ∈ V (H) and r ≥ 0, if u ∈ B(v, r) then |i(u)i(v)| ≤ 3r.

Proof: Consider two neighbors in H , x and y. Let Cx and Cy denote the cliques in G that were contracted into x and
y respectively. Since x and y are neighbors in H , there are vertices x′ ∈ Cx and y′ ∈ Cy that are neighbors in G. Also,
because of the way the cliques are constructed, x′ is a neighbor of i(x) and y′ is a neighbor of i(y). Since G is a UDG,
by triangle inequality |i(x)i(y)| ≤ |i(x)x′|+ |x′y′|+ |y′i(y)| ≤ 3.

If u ∈ B(v, r), then there is a uv-path P in H of length at most r. Corresponding to P there is a sequence of vertices
in I starting with i(u) and ending with i(v) such that consecutive vertices in this sequence are at most 3 units apart in
any realization. Therefore, by triangle inequality |i(u)i(v)| ≤ 3r.

Lemma 7 There is a constant α such that for any v ∈ V (H), |B(v, r)| ≤ α · r2.

Proof: Let X be the number of vertices in B(v, r). By the previous lemma, for each u ∈ B(v, r), there is a vertex
i(u) ∈ I such that i(u) ∈ Disk(i(v), 3r). Here Disk(i(v), 3r) denotes the disk of radius 3r centered at vertex i(v) in any
realization of G. Also, by Lemma 5, there are at most 10 vertices in H that have the same corresponding vertex in I .
Therefore, the number of vertices in Disk(i(v), 3r) needs to be at least X/10. Any pair of vertices in I are more than
one unit apart (in Euclidean distance) from each other. By the standard packing argument, this implies that the ball
Disk(i(v), 3r) can contain at most 4 · (3r + 1/2)2 points in I . Therefore, X/10 ≤ 4(3r + 1/2)2 and hence for a constant
α, we have X ≤ α · r2.

Lemma 7 can be generalized to higher dimensions to yield the following theorem.

Theorem 1 There is a polynomial time algorithm that takes as input the combinatorial representation of a d-dimensional
UBG G = (V, E) and constructs a clique partition C = {C1, C2, . . .} of G such that G[C] has growth rate O(d).

A side effect of our construction is that the constructed clique partition C = {C1, C2, . . .} is a constant-factor approx-
imation to the minimum clique cover problem for any UBG in fixed dimensional space. This follows from the fact that
the size of any independent set is a lower bound on the size of a minimum clique cover and our solution produces a clique
partition whose size is within a constant of the size of a maximal independent set.

7

3 Embeddings of Growth-Restricted Graphs

In this section, we show that by combining techniques due to Krauthgamer and Lee [14] with Rao’s technique [27], we can
derive a simple, combinatorial algorithm for constructing a (k, O(

√
log n))-volume respecting embedding of any n-vertex

growth-restricted graph and any k ≥ 2. We emphasize the combinatorial nature of our algorithm because in earlier papers
[28, 22], this step involved solving an LP with exponentially many constraints via the ellipsoid method. Rao [27] presents
an algorithm for computing a (k, O(

√
log n))-volume respecting embedding for planar graphs. This algorithm has two

steps. Let G be a given planar graph and let r be an integer satisfying 1 ≤ r ≤ diam(G).

Step 1. Decompose G into clusters using a probabilistic version of the Klein-Plotkin-Rao decomposition [13] for K3,3-
minor free graphs, that takes r as a parameter. Since planar graphs are K3,3-minor free, the Klein-Plotkin-Rao
decomposition successfully decomposes G. Due to a result proved by Klein et al. [13], each cluster resulting from
this decomposition is guaranteed to have weak diameter bounded above by O(r).

Step 2. Each vertex v in G is assigned a weight that is (roughly speaking) a function of the distance between v and the
boundary of the cluster it belongs to.

Each vertex weight forms one coordinate in the embedding for that vertex. For each value of r, the above two steps are
repeated αk log n times, where α is a large enough constant. Finally, the process is repeated for r = 1, 2, 4, . . . , diam(G).
This yields a total of αk log n · log(diam(G)) coordinates, thus leading to an embedding in O(k log2 n)-dimensional space.

In our case, the input graph is not guaranteed to be Kt,t-minor free for any t and therefore the Klein-Plotkin-Rao
decomposition algorithm cannot be used. But, since our input graph is growth-restricted, we replace Step 1 above, by
the probabilistic decomposition due to Krauthgamer and Lee [14] that exploits the growth-restricted nature of the graph.

Let G = (V, E) be a graph with growth rate ρ. Krauthgamer and Lee [14] present the following simple partitioning
procedure for G, parameterized by an integer r > 0, that will be the first step of our algorithm. For any M > 0, let
Texp(r, M) denote the probability distribution obtained by taking the continuous exponential distribution with mean r,
truncating it at M , and rescaling the density function. The resulting distribution has density function

p(z) =
eM/r

r(eM/r − 1)
· e−z/r for any z ∈ (0, M).

Let V = {v1, v2, . . . , vn}. For each vertex vj , independently choose a radius rj by sampling the distribution Texp(r, 8ρr ln r).

Now define Sj = B(vj , rj) \ ∪j−1
i=1 B(vi, ri). Thus Sj is the set of all vertices in the ball B(vj , rj) that are not contained

in any of the earlier balls B(vi, ri), 1 ≤ i ≤ j − 1. It is clear that C = {S1, S2, . . . , Sn} partitions G such that the weak
diameter of each Si is at most 16ρr ln r.

Now we state a key lemma from Krauthgamer and Lee [14] that allows us to use Rao’s technique. For any u ∈ V and
x ≥ 0, let Ex

u denote the event that B(u, x) is split between multiple clusters in C.

Lemma 8 Let u ∈ V , r ≥ 16ρ, and x ≥ 0. Then Pr[Ex
u] ≤ 10x/r.

The implication of this lemma is that for any vertex u, with probability at least a constant, a “large” ball centered at
u is completely contained in one of the clusters in C. This implication can be stated more precisely, as follows. For each
cluster C ∈ C, define the boundary of C, denoted ∂C, as the subset of vertices in C that have neighbors (in G) outside of
C. Let B denote the set of vertices that are in the boundary of some cluster in C. Define a δ-good vertex to be a vertex
that is at least δ hops away from any vertex in B. From Lemma 8 we can immediately derive the following.

Lemma 9 Let u ∈ V and r ≥ 16ρ. With probability at least 1
2 , u is r

20 -good.

The above lemma (which is similar to Lemma 3 in Rao [27]) leads to the second stage of the algorithm. Consider the
graph G − B. For each connected component Y in G − B, pick a rate α independently and uniformly at random from
the interval [1, 2]. To each edge in Y , assign as weight the rate α corresponding to Y . Thus all edges in a connected
component in G−B have the same weight. To all other edges in G (i.e., those that are incident on vertices in B) assign
the weight 0. Finally, to each vertex u in G assign a weight that is the length of a shortest path from u to a vertex in B.
Note that the shortest paths are computed in the weighted version of G. Thus all vertices in B will get assigned a weight
0, whereas vertices in G−B will get assigned a positive weight. In fact, it is easy to verify that the weight assigned to a
vertex in G−B is at least 1 and at most 16ρr ln r. Exactly, as in Rao [27], we can derive the following lemma.

Lemma 10 The weight of any δ-good node ranges uniformly over an interval I of length at least δ. Moreover, the choice
is independent of anything in a different component.

8

As mentioned before, for each vertex v, the weight of v forms one coordinate of v. For each value of r, the above
algorithm is repeated αk log n times for a large enough constant α. Since Lemma 9 holds only for values of r ≥ 16ρ, we
repeat this the entire process for r = 1, 16ρ, (16ρ)2, . . . , diam(G). For any constant ρ, this is essentially the same as using
values of r = 1, 2, 4, . . . , diam(G) as Rao does [27]. Lemmas 9 and 10 are the two key results needed for the rest of Rao’s
analysis [27] to go through. Therefore, we get the following result.

Theorem 2 There is a polynomial time algorithm that constructs a (k, O(
√

log n))-volume respecting embedding, with
high probability, of any growth-restricted graph.

3.1 Constant Quality Embedding in Constant Dimensions

Levin, together with Linial, London, and Rabinovich [21], made a conjecture (Conjecture 8.2 in [21]) that is quite relevant
to the best quality embedding problem. Let Z

d
∞ be the infinite graph with vertex set Z

d (i.e., the d-dimensional integral
lattice) and an edge {u, v} whenever ‖u − v‖∞ = 1. For any graph G, define dim(G) to be the smallest d such that G
occurs as a (not necessarily induced) subgraph of Z

d
∞.

Conjecture 1 [Levin, Linial, London, Rabinovich] For any graph G = (V, E) with growth rate ρG, G occurs as a

(not necessarily induced) subgraph of Z
O(ρG)
∞ . In other words, dim(G) = O(ρG).

Linial [20] introduced the following Euclidean analogue to this notion of dimensionality. For any graph G, define
dim2(G) to be the smallest d such that there is a mapping Φ : V 7→ R

d with the properties: (i) ‖Φ(u)− Φ(v)‖2 ≥ 1 for
all u 6= v ∈ V and (ii) ‖Φ(u)− Φ(v)‖2 ≤ 2 for all {u, v} ∈ V .

Lee and Krauthgamer [14] show that the specific bound on dim(G), mentioned in the above conjecture does not
hold, by exhibiting a graph G for which dim(G) = Ω(ρG log ρG). They also prove a weaker form of the conjecture by
showing that dim(G) = O(ρG log ρG) for any graph G [14]. This proof relies on the Lovász Local Lemma, but can be
turned into a polynomial time algorithm using standard techniques for turning proofs based on the Lovász Local Lemma
into algorithms. Finally, they also prove that dim2(G) = O(ρG log ρG). This result, along with Theorem 1 leads to the
following theorem.

Theorem 3 There is a polynomial time algorithm, that takes as input a d-dimensional UBG and constructs an embedding
of quality-2 in O(d log d) dimensional Euclidean space.

4 Embedding into the Plane

In this section, we describe complete algorithm and prove that the constructed 2-dimensional embedding has quality
O(log2.5 n). The first two steps of our algorithm are described in detail in the previous two sections. The last three
steps respectively describe (i) a random projection in R

2, (ii) a “rounding” step, and (iii) constructing an embedding of
the original input graph G from the embedding of the cluster graph G[C]. The random projection and the subsequent
“rounding” step are essentially the same as in Vempala’s algorithm [28].

Step 1. Construct a clique partition C = {C1, C2, . . .} of the given UBG G = (V, E) so that the induced cluster graph
H := G[C] is growth-restricted. This is described in Section 2.

Step 2. Let V (H) = {v1, v2, . . . , vn}. Construct a (log n, O(
√

log n))-volume respecting embedding Φ of the shortest
path metric of H , as described in Section 3. Let ui := Φ(vi) for i = 1, 2, . . . , n.

Step 3. Choose 2 random lines, `1 and `2 (independently), passing through the origin. Project the point set {u1, u2, . . . , un}
onto each of the two lines, mapping each ui to (ui · `1, ui · `2). Denote each (ui · `1, ui · `2) by wi.

Step 4. Discretize the plane into grid, with each cell having dimension 1/
√

n × 1/
√

n. Call each such grid cell an an
outer grid cell. Let M be the maximum number of points wi that fall in any cell after the random projection step.
Subdivide each outer grid cell into a finer grid, with each cell having dimensions 1/

√
n·M × 1/

√
n·M . For each

outer cell C, map all points that fall into C to grid points of the finer grid. Finally, scale up all grid points by a
factor of

√
n·M along both dimensions so that each cell has unit width.

Step 5. Since every vertex vi in H is associated with a clique Ci in G, all vertices in Ci are assigned the coordinates
assigned to vi in Step (4), to get the final embedding of G.

9

4.1 Analysis of Approximation Guarantee

Here we show that the above algorithm, with high probability, yields a 2-dimensional embedding of quality O(log2.5 n).
The analysis is similar to Vempala’s analysis [28] and the proof of Lemma 13 is included mostly for the sake of completeness.
An interesting aspect of our analysis is that a key technical lemma (Lemma 11), that was proved using “spreading
constraints” by Vempala [28], follows quite easily, simply from the fact that we are working with a growth-restricted
graph.

The key technical lemma, that we prove below, gives an upper bound on the sum of inverse squares of distances from
a vertex. In [17] and in [28], this lemma followed from explicitly imposed “spreading constraints.” In our case, the lemma
follows easily from the fact that the cluster graph H is growth-restricted.

Lemma 11 There is a constant β such that for any v ∈ V (H), and any S ⊂ V (H),
∑

u∈S
1

d2(v,u) ≤ β · log |S|.

Proof: Lemma 7 tells us that for some constant α, |B(v, r)| ≤ α · r2. The sum
∑

u∈S
1

d2(v,u) is maximized when, the

largest possible subset S1 ⊆ S of vertices is at distance 1 from v, the largest possible subset S2 ⊆ S \ S1 of vertices is at
distance 2 from v and so on. Thus, |Si| = α · (i2 − (i− 1)2) = α · (2i− 1) for i = 1, 2, Therefore,

∑

u∈S

1

d2(v, u)
≤
∑

i≥1

α · (2i− 1)

i2
≤
∑

i≥1

2α

i
≤ 2α · (ln |S|+ 1).

Hence, for some constant β,
∑

u∈S
1

d2(v,u) ≤ β · log |S|.

The above upper bound on the sum on inverse square distances from v is critically used to derive the following upper
bound on sum of inverse squares of tree volumes of all size-k vertex subsets. We skip the proof of this claim, since it is
identical to the proof of Lemma 5.4 in [17].

Lemma 12
∑

S⊂V (H),|S|=k

1

Tvol2(S)
≤ 2k! ·

(

β

4

)k−1

·n· logk−1 n.

Here β is the constant that appears in previous lemma.

Lemma 13 After Step (4), with high probability, the maximum number of vertices that fall in an outer grid cell is
O
(

log4 n
)

.

Proof: Consider an outer grid cell C. For any subset S of vertices, let X i
S be the indicator random variable that is 1 if

all vectors associated with the vertices of S fall in cell C along li. Let NC denote the number of size-k subsets S ⊆ V (H)
that have fallen into C (as a result of Step (3)). In Step (3), the value of k that was used is log n; we will replace k by
log n later in the proof.

E[NC] =
∑

S⊂V (H),|S|=k

E[X1
S ·X2

S] =
∑

S⊂V (H),|S|=k

E[X1
S]E[X2

S] (by independence of X1
S and X2

S)

=
∑

S⊂V (H),|S|=k

Pr[X1
S = 1]2

≤ γ
∑

S⊂V (H),|S|=k

(

W k−1n
k−1
2

(k − 1)!Evol(S)

)2

(for constant γ, using Lemma 3)

≤ γ
∑

S⊂V (H),|S|=k

(

1

(k − 1)!Evol(S)

)2

(since W = 1/
√

n)

≤ γ
∑

S⊂V (H),|S|=k

(

(

δ
√

log n
)k−1

(k − 1)!Vol(S)

)2

(for constant δ, using Theorem 2)

≤ γ
∑

S⊂V (H),|S|=k

(

(

δ
√

log n
)k−1 · 2k

Tvol(S)

)2

(Lemma 1)

≤ γ · δ2(k−1) · (4 log n)k·
∑

S⊂V (H),|S|=k

1

Tvol2(S)

≤ γ · δ2(k−1) · 8k! · βk·n· log2k n ≤ n · (ζ· k· log2 n)k
(for constant ζ, by Lemma 12)

10

Using Markov’s inequality we get Pr[NC ≥ n4 · n · (ζ· k· log2 n)k] ≤ 1/n4. Since H has n vertices, the maximum distance
between a pair of vertices in H is bounded above by n. Since the embedding in Step (2) is non-expansive, we can bound
the total number of outer cells in each dimension by n1.5, which leads to a total of n3 outer cells. Using the union bound
we get

Pr[There exists an outer cell containing n4 · n · (ζ· k· log2 n)k or more size-k subsets of V (H)] ≤ 1

n

Hence, with probability at least 1− 1/n, every outer cell contains fewer than n4 ·n · (ζ· k· log2 n)k size-k subsets of V (H).
Using the fact that if there are N subsets of size k (in an outer cell), then there are at most kN 1/k points in it, we obtain
that with probability at least 1− 1/n, every outer cell contains at most k(n · (ζ· k· log2 n)k)1/k points. Since the value of
k = log n, using the fact that n1/ log n = O(1), we get that with high probability, every outer cell has at most O(log4 n)
points.

Lemma 14 With high probability, the maximum edge length in the final embedding is O(log2.5 n).

Proof: For any edge {vi, vj} in the cluster graph H , after Step (2), ||ui − uj ||2 ≤ 1, since the embedding constructed
in Step (2) is non-expansive. After the random projection in Step (3), using the value of c = 4

√
log n in Lemma 2, we

see that ||wi − wj ||2 < 4
√

log n√
n

for all edges {vi, vj} ∈ E(H), with probability at least 1− 1/n. Thus, each edge {vi, vj}
spans at most 4

√
log n outer grid cells along each of the two dimensions of the grid. Lemma 13 tells us that with high

probability, each outer grid cell is divided into at most O(log2 n) inner grid cells along each of the two dimensions of
the outer grid cell. Therefore, the scaling in Step (4), will cause each edge to have length at most O(log2.5 n), with high
probability.

Theorem 4 (Main Result) With high probability, the quality of the embedding is O(log2.5 n) .

Proof: Follows immediately from the upper bound on the maximum edge length proved in the above lemma and the
fact that every pair of vertices are separated by at least unit distance.

5 Conclusions

It seems as though the techniques used in this paper may not be able to provide an embedding of quality better than
polylogarithmic in n. So significantly new techniques may have to be developed in order to obtain a constant-quality
2-dimensional embedding. Any of these techniques would probably benefit from starting with the growth-restricted
approximation, described in this paper.

In an orthogonal direction, it may be relevant to the wireless sensor networks application, if we could devise an
efficient distributed algorithm (i.e., one that runs in polylogarithmic number of rounds) for best quality embedding
problem, without sacrificing the quality of the embedding. We have made some progress towards this goal in this paper
as shown by the fact that the cluster graph approximation step can be implemented in polylogarithmic number of rounds
using ideas from recent papers [15, 16]. As future work, we intend to investigate possible distributed implementations of
Rao’s algorithm [27] for constructing a volume-respecting embedding and Vempala’s random projection step [28].

References

[1] James Aspnes, David Kiyoshi Goldenberg, and Yang Richard Yang. On the computational complexity of sensor network
localization. In ALGOSENSORS ’04: First International Workshop on Algorithmic Aspects of Wireless Sensor Networks,
pages 32–44, Turku, Finland, 2004. Springer-Verlag.

[2] Amitabh Basu, Jie Gao, Joseph S. B. Mitchell, and Girishkumar Sabhnani. Distributed localization using noisy distance and
angle information. In MobiHoc ’06: Proceedings of the seventh ACM international symposium on Mobile ad hoc networking
and computing, pages 262–273, New York, NY, USA, 2006. ACM Press.

[3] Pratik Biswas and Yinyu Ye. Semidefinite programming for ad hoc wireless sensor network localization. In IPSN ’04:
Proceedings of the third international symposium on Information processing in sensor networks, pages 46–54, New York, NY,
USA, 2004. ACM Press.

[4] Avrim Blum and David Karger. An Õ(n3/14)-coloring algorithm for 3-colorable graphs. Information Processing Letters,
61(1):49–53, 1997.

[5] Avrim Blum, Goran Konjevod, R. Ravi, and Santosh Vempala. Semi-definite relaxations for minimum bandwidth and other
vertex-ordering problems. In STOC ’98: Proceedings of the thirtieth annual ACM symposium on Theory of computing, pages
100–105, New York, NY, USA, 1998. ACM Press.

11

[6] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaranteed delivery in ad hoc wireless networks. Wireless
Networks, 7(6):609–616, 2001.

[7] Heinz Breu and David G. Kirkpatrick. Unit disk graph recognition is NP-hard. Comput. Geom. Theory Appl., 9(1-2):3–24,
1998.

[8] Jehoshua Bruck, Jie Gao, and Anxiao (Andrew) Jiang. Localization and routing in sensor networks by local angle information.
In MobiHoc ’05: Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing, pages
181–192, New York, NY, USA, 2005. ACM Press.

[9] N. Bulusu, J. Heidemann, and D. Estrin. GPS-less low cost outdoor localization for very small devices, 2000.

[10] G. Even, J. Naor, S. Rao, and B. Schieber. Divide-and-conquer approximation algorithms via spreading metrics. In FOCS
’95: Proceedings of the 36th Annual Symposium on Foundations of Computer Science (FOCS’95), page 62, Washington, DC,
USA, 1995. IEEE Computer Society.

[11] Uriel Feige. Approximating the bandwidth via volume respecting embeddings. J. Comput. Syst. Sci., 60(3):510–539, 2000.

[12] Brad Karp and H. T. Kung. Gpsr: greedy perimeter stateless routing for wireless networks. In MobiCom ’00: Proceedings
of the 6th annual international conference on Mobile computing and networking, pages 243–254, New York, NY, USA, 2000.
ACM Press.

[13] Philip Klein, Serge A. Plotkin, and Satish Rao. Excluded minors, network decomposition, and multicommodity flow. In STOC
’93: Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages 682–690, New York, NY, USA,
1993. ACM Press.

[14] Robert Krauthgamer and James R. Lee. The intrinsic dimensionality of graphs. In STOC ’03: Proceedings of the thirty-fifth
annual ACM symposium on Theory of computing, pages 438–447, New York, NY, USA, 2003. ACM Press.

[15] Fabian Kuhn, Thomas Moscibroda, Tim Nieberg, and Roger Wattenhofer. Fast Deterministic Distributed Maximal Inde-
pendent Set Computation on Growth-Bounded Graphs. In 19th International Symposium on Distributed Computing (DISC),
Cracow, Poland, September 2005.

[16] Fabian Kuhn, Thomas Moscibroda, Tim Nieberg, and Roger Wattenhofer. Local approximation schemes for ad hoc and sensor
networks. In DIALM-POMC ’05: Proceedings of the 2005 joint workshop on Foundations of mobile computing, pages 97–103,
New York, NY, USA, 2005. ACM Press.

[17] Fabian Kuhn, Thomas Moscibroda, Regina O’Dell, Mirjam Wattenhofer, and Roger Wattenhofer. Virtual coordinates for ad
hoc and sensor networks. To appear in Algorithmica, 2006.

[18] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Unit disk graph approximation. In DIALM-POMC ’04: Pro-
ceedings of the 2004 joint workshop on Foundations of mobile computing, pages 17–23, New York, NY, USA, 2004. ACM
Press.

[19] Fabian Kuhn, Roger Wattenhofer, Yan Zhang, and Aaron Zollinger. Geometric ad-hoc routing: of theory and practice. In
PODC ’03: Proceedings of the twenty-second annual symposium on Principles of distributed computing, pages 63–72, New
York, NY, USA, 2003. ACM Press.

[20] N. Linial. Variation on a theme of Levin. In J. Matous̆ek, editor, Open Problems, Workshop on Discrete Metric Spaces and
their Algorithmic Applications, 2002.

[21] Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some of its algorithmic applications. Combi-
natorica, 15:215–245, 1995.

[22] Thomas Moscibroda, Regina O’Dell, Mirjam Wattenhofer, and Roger Wattenhofer. Virtual coordinates for ad hoc and sensor
networks. In DIALM-POMC ’04: Proceedings of the 2004 joint workshop on Foundations of mobile computing, pages 8–16,
New York, NY, USA, 2004. ACM Press.

[23] Radhika Nagpal, Howard E. Shrobe, and Jonathan Bachrach. Organizing a global coordinate system from local information
on an ad hoc sensor network. In IPSN ’03: Proceedings of the second international symposium on Information processing in
sensor networks, pages 333–348, New York, NY, USA, 2003. ACM Press.

[24] Dragos Niculescu and Badri Nath. Ad hoc positioning system (APS). In In Proceedings of Sixth Global Internet Symposium
(GI2001) in conjunction with IEEE Globecom 2001, pages 2926–2931, November 25-29 2001.

[25] Vijay Raghavan and Jeremy Spinrad. Robust algorithms for restricted domains. In SODA ’01: Proceedings of the twelfth
annual ACM-SIAM symposium on Discrete algorithms, pages 460–467, Philadelphia, PA, USA, 2001. Society for Industrial
and Applied Mathematics.

[26] Ananth Rao, Christos Papadimitriou, Scott Shenker, and Ion Stoica. Geographic routing without location information. In
MobiCom ’03: Proceedings of the 9th annual international conference on Mobile computing and networking, pages 96–108,
New York, NY, USA, 2003. ACM Press.

[27] Satish Rao. Small distortion and volume preserving embeddings for planar and euclidean metrics. In SCG ’99: Proceedings
of the fifteenth annual symposium on Computational geometry, pages 300–306, New York, NY, USA, 1999. ACM Press.

[28] Santosh Vempala. Random projection: A new approach to VLSI layout. In FOCS ’98: Proceedings of the 39th Annual
Symposium on Foundations of Computer Science, pages 389–395, Washington, DC, USA, 1998. IEEE Computer Society.

12

