
Super-Fast Distributed Algorithms for Metric
Facility Location

Andrew Berns, James Hegeman, and Sriram V. Pemmaraju?

Department of Computer Science
The University of Iowa

Iowa City, Iowa 52242-1419, USA
[andrew-berns,james-hegeman,sriram-pemmaraju]@uiowa.edu

1 Introduction

This paper explores the design of “super-fast” distributed algorithms in set-
tings in which bandwidth constraints impose severe restrictions on the volume
of information that can quickly reach an individual node. As a starting point
of our exploration, we consider networks of diameter one (i.e., cliques) so as to
focus on bandwidth constraints only and avoid penalties imposed by network
distance between nodes. We assume the standard CONGEST model [17], which
is a synchronous message-passing model in which each node in a size-n network
can send a message of size O(log n) along each incident communication link in
each round. By “super-fast” algorithms we mean algorithms whose running time
is strictly sub-logarithmic. Our working hypothesis is that in low-diameter set-
tings, where congestion rather than network distance is the main bottleneck, we
should be able to design algorithms that are much faster than algorithms for
“local” problems in high diameter settings.

The focus of this paper is the distributed facility location problem which has
been considered by several researchers [5,13,14,15] in low-diameter settings. We
first describe the sequential version of the problem. The input to the facility
location problem consists of a set of facilities F = {x1, x2, . . . , xm}, a set of
clients C = {y1, y2, . . . , yn}, an opening cost fi associated with each facility xi,
and a connection cost D(xi, yj) between each facility xi and client yj . The goal
is to find a subset F ⊆ F of facilities to open so as to minimize the facility
opening cost plus connection costs, i.e.,

FacLoc(F) :=
∑
xi∈F

fi +
∑
yj∈C

D(F, yj),

where D(F, yj) := minxi∈F D(xi, yj). Facility location is an old and well studied
problem in operations research [1,3,8,9,19] that arises in contexts such as locating
hospitals in a city or locating distribution centers in a region.

The metric facility location problem is an important special case of facility
location in which the connection costs satisfy the following “triangle inequality:”

? This work is supported in part by National Science Foundation grant CCF 0915543

for any xi, xi′ ∈ F and yj , yj′ ∈ C, D(xi, yj)+D(yj , xi′)+D(xi′ , yj′) ≥ D(xi, yj′).
The facility location problem, even in its metric version, is NP-complete and find-
ing approximation algorithms for the problem has been a fertile area of research.
A series of constant-factor approximation algorithms have been proposed for the
metric facility location problem, with a steady improvement in the constant spec-
ifying the approximation factor. See [11] for a recent 1.488-approximation algo-
rithm. This result is near-optimal because it is known [7] that the metric facility
location problem has no polynomial time algorithm yielding an approximation
guarantee better than 1.463 unless NP ⊆ DTIME(nO(log logn)). For non-metric
facility location, a simple greedy algorithm yields anO(log n)-approximation and
this is also optimal (to within a constant factor) because it easy to show that
the problem is at least as hard as set cover.

More recently, the facility location problem has also been used as an abstrac-
tion for the problem of locating resources in wireless networks [4,16]. Motivated
by this application, several researchers have considered the facility location prob-
lem in a distributed setting. In [13,14,15] the underlying communication network
is the complete bipartite graph with F forming one part and C forming the other
part. At the beginning of the algorithm each node, whether it is a facility or a
client, knows connection costs between itself and all nodes in the other part. In
addition, the facilities know their opening costs. In [5] the underlying commu-
nication network is a clique. Each node in the clique may choose to open as a
facility and each node that is not open will connect to an open facility. Note that
all of this work assumes the CONGEST model of distributed computation. The
facility location problem considered in [16] assumes that the underlying commu-
nication network is a unit disk graph (UDG). While such a network can have
high diameter relative to the number of nodes in the network, this paper [16] re-
duces the UDG facility location problem to a low-diameter facility location-type
problem and uses this in the final solution. In summary, there has been a fair
bit of research on distributed facility location in low-diameter settings.

None of the prior papers, however, achieve near-optimal approximation (i.e.,
constant-factor in the case of metric facility location and O(log n) in the case
of non-metric facility location) in sub-logarithmic rounds. While [5] does present
a constant-round, constant-factor approximation to metric facility location on
a clique, it is only for the special case of uniform metric facility location, i.e.,
when all facility opening costs are identical. The question that drives this paper,
then, is the following: can we achieve a distributed constant-factor approximation
algorithm for the metric facility location problem in the clique setting in strictly
sub-logarithmic time? One can ask similar questions in the bipartite setting and
for non-metric facility location as well, but as a first step we focus on the metric
version of the facility location problem on a clique.

Distributed facility location is challenging even in a low-diameter setting be-
cause the input consists of Θ(m ·n+m) pieces of information, distributed across
the network, which cannot quickly be delivered to a single node (or even a small
number of nodes) due to the bandwidth constraints of the CONGEST model.
Therefore, any super-fast distributed algorithm for the problem must be truly

distributed and needs to take advantage of the available bandwidth and of struc-
tural properties of approximate solutions to the metric facility location problem.
Also worth noting is that even though tight lower bounds on the running time of
distributed approximation algorithms have been established [10], none of these
bounds extend to low-diameter settings.

Main result. The main result of this paper is an O(log log n · log∗ n)-round, O(1)-
approximation algorithm for metric facility location on a clique. If the metric
satisfies additional properties (e.g., it has constant doubling dimension) then we
obtain an O(log∗ n)-round O(1)-approximation to the problem. Our results are
achieved via a combination of techniques that include (i) a new lower bound
for the optimal cost of metric facility location and (ii) a sparsification tech-
nique combining randomization with a deterministic subroutine that repeatedly
leverages the available bandwidth to process sparse subgraphs. These technical
contributions are described in the following section in greater detail.

1.1 Overview of Technical Contributions

We start by describing the distributed facility location problem on a clique, as in
[6]. Let (P,D) be a discrete metric space with point set P = {p1, p2, . . . , pn}. Let
fi be the opening cost of pi. Now view the metric space (P,D) as a completely
connected size-n network C = (P,E) with each point pi represented by a node,
which we will also call pi. Each node pi knows fi and the connection costs
(distances) D(pi, pj) for all pj ∈ P . The problem is to design a distributed
algorithm that runs on C in the CONGEST model and produces a subset X ⊆
P such that each node pi ∈ X opens and provides services as a facility and
each node pi 6∈ X connects to the nearest open node. The goal is to guarantee
that FacLoc(X) ≤ α · OPT , where OPT is the cost of an optimal solution to
the given instance of facility location and α is some constant. We call this the
CliqueFacLoc problem. Of course, we also want our algorithm to be “super-
fast,” i.e., terminate in o(log n) rounds.

Our paper makes three main technical contributions. We summarize these as
follows.

– A new lower bound for metric facility location. For p ∈ P , let B(p, r)
denote the set of points q ∈ P satisfying D(p, q) ≤ r. For each pi, let ri be
the non-negative real number satisfying∑

q∈B(pi,ri)

(ri −D(pi, q)) = fi

As observed by Mettu and Plaxton [12], ri exists and is unique.
Bădoiu et al. proved in [2] that

∑n
i=1 ri is a constant-factor approximation

for OPT in the case of uniform facility opening costs. This fact plays a crit-
ical role in the design of the constant-round, constant-factor approximation
algorithm of Gehweiler et al. [6] for the special case of CliqueFacLoc in

which all facility opening costs are identical. Unfortunately, the sum
∑n
i=1 ri

can be arbitrarily large compared to OPT when the fi’s are allowed to vary.
Consider an example consisting of only two nodes, one of whose opening
costs is astronomical in comparison to the other and to the distance between
them. The optimal solution to this problem consists of opening only one
facility - the one with small opening cost. However, note that the r-value for
the facility with an astronomical opening cost is also astronomical.
Therefore, we apply the idempotent transformation

ri → r̄i = min
1≤j≤n

{D(pi, pj) + rj},

and use r̄i instead of ri to derive a lower bound. Note that for all i, r̄i ≤ ri.
We will show later in the paper that

∑n
i=1 r̄i does approximate the optimal

cost OPT to within a constant factor in the general case of non-uniform
facility opening costs. This turns out to be a key ingredient of our approach.

– Reduction to an O(1)-ruling set. Our next contribution is an O(1)-
round reduction of the distributed facility location problem on a clique to the
problem of computing anO(1)-ruling set. To be more specific let C ′ = (P,E′)
be a spanning subgraph of C. A subset Y ⊆ P is said to be independent if
no two nodes in Y are neighbors in C ′. An independent set Y is a maximal
independent set (MIS) if no superset Y ′ ⊃ Y is independent in C ′. An
independent set Y is β-ruling if every node in P is at most β hops along
edges in C ′ from some node in Y . Clearly, an MIS is a 1-ruling set.
We describe an algorithm that solves distributed facility location on a clique
by first computing a collection of subgraphs C1, C2, C3, . . . (such that

⋃
Ci =

C) in O(1) rounds and then a further collection of spanning subgraphs
C ′1, C

′
2, C

′
3, . . . (of C1, C2, C3, . . .), also in O(1) rounds. Then we show that a

solution to the facility location problem (i.e., a set of nodes to open) can be
obtained by computing a β-ruling set for each of the spanning subgraphs C ′j ,
j ≥ 1, and combining the solutions in a certain way. We show that combining
the β-ruling sets can also be done in O(1) rounds. The parameter β affects
the approximation factor of the computed solution and enforcing β = O(1)
ensures that the solution to facility location is an O(1)-approximation.

– An O(1)-ruling set via a combination of randomized and determin-
istic sparsification. We present an O(log log n · log∗ n)-round algorithm to
compute a 2-ruling set of a given spanning subgraph C ′ of C. We see this
as our main contribution and believe that our approach will be useful in
general for developing “super-fast” algorithms in low diameter settings. We
start by describing a deterministic “subroutine” that takes a subset Z ⊆ P
as input and computes an MIS of C ′[Z] (i.e., the subgraph of C ′ induced by
Z) in c rounds if C ′[Z] has at most c · n edges. This is achieved via a simple
load balancing scheme that communicates the entire subgraph C ′[Z] to all
nodes in c rounds. Then we show how to use randomization repeatedly to
peel off subgraphs with linearly many edges for processing by the aforemen-
tioned subroutine. We show that, in this manner, the entire graph C ′ can be
processed using O(log log n · log∗ n) calls to the deterministic subroutine.

2 Reduction to the O(1)-Ruling Set Problem

2.1 A New Lower Bound for Non-Uniform Metric Facility Location

In this subsection we show that
∑n
i=1 r̄i is a constant-factor lower bound to

the optimal cost OPT . To facilitate this, we recall a definition from Mettu and
Plaxton [12]. The charge of a node pi with respect to a collection of (open)
facilities X (also known as a configuration) is defined by

charge(pi, X) = D(pi, X) +
∑
pj∈X

max{0, rj −D(pj , pi)}

where D(pi, X) = minpj∈X D(pi, pj). Mettu and Plaxton showed that the cost
of a configuration X, FacLoc(X), is precisely equal to the sum of the charges
with respect to X, i.e.

∑n
i=1 charge(pi, X) [12].

The Mettu-Plaxton configuration FMP , derived from the (sequential) Mettu-
Plaxton algorithm [12], was shown to have a cost at most three times OPT . So for

any configuration X, FacLoc(X) ≥ 1
3FacLoc(FMP) = 1

3

n∑
i=1

charge(pi, FMP).

We now present the following lemma, which relates FacLoc(X) (for any X)
to
∑n
i=1 r̄i. Due to space constraints, the proof of all lemmas and theorems are

included in Appendix A.

Lemma 1. FacLoc(X) ≥ (
∑n
i=1 r̄i)/6 for any configuration X.

2.2 Algorithm

We present our facility location algorithm in Algorithm 1. Our deterministic
distributed algorithm consists of three stages. We use the notations G[H] and
E[G] to refer to the subgraph induced by H and the edge set of G, respectively.

Stage 1 (Steps 1-2). Each node knows its own opening cost and the distance to
other nodes, so in Step 1 node pi computes ri and broadcasts that value to all
others. (We acknowledge the implicit assumption here that the number of bits
needed to represent a given distance or opening cost in the network does not
exceed O(log n).) Once this broadcast is complete, each node knows all of the
ri values. This enables every node to compute a partition of the network into
groups whose ri values vary by at most a factor of 3 (Step 2). More specifically,
define the special value r0 := min1≤j≤n{rj}. Define the class Hk to be the set of
nodes pi such that 3k · r0 ≤ ri < 3k+1 · r0. Every node computes the class into
which each node in the network, including itself, falls.

Stage 2 (Steps 3-5). Now that the nodes are divided into classes having compa-
rable ri’s, and every node knows who is in each class, we focus our attention on
class Hk. Suppose pi, pj ∈ Hk. Then 3k · r0 ≤ ri, rj < 3k+1 · r0, and we define
pi and pj to be adjacent in class Hk if D(pi, pj) ≤ ri + rj . Each node in class
Hk can determine its neighbors in Hk. Next, compute a sparse set Tk ⊆ Hk

with procedure RulingSet(). We describe a super-fast implementation of Rul-
ingSet() in Section 3. After a sparse set has been constructed for each class Hk,
each node broadcasts whether or not it has been included in the sparse set of its
own class, and so at the end of Stage 2, every node knows the members of the
sparse set in each class.

Stage 3 (Steps 6-7). Finally, a node pi in class Hk declares itself to be open if (i)
pi ∈ Tk, and (ii) there is no node pj ∈ B(pi, 2ri) of class Hk′ for which k′ < k.
Lastly, open facilities declare themselves as such in a broadcast, and every node
connects to the nearest open facility.

Algorithm 1 FacilityLocation

Input: A discrete metric space of nodes (P,D), with opening costs;
a sparsity parameter s

Assumption: Each node knows its own opening cost and the distances from
itself to other nodes

Output: A subset of nodes (a configuration) to be declared open, whose cost
is a constant-factor approximation to the optimal cost

1. Each node pi computes and broadcasts its value ri; r0 := mini ri
2. Each node computes a partition of the network into classes Hk with

3k · r0 ≤ rj < 3k+1 · r0 for pj ∈ Hk

3. Each node determines its neighbors within its own class;
for pi, pj ∈ Hk, (pi, pj) ∈ E[G[Hk]] iff D(pi, pj) ≤ ri + rj

4. For each Hk, facilities in class Hk use procedure RulingSet(G[Hk], s) to
determine a sparse set Tk ⊆ Hk

5. Each node broadcasts its membership status with respect to the sparse
set Tk of its own class

6. A node pi ∈ Hk declares itself to be open if both of the following
conditions hold:

(i) pi is a member of the sparse set Tk ⊆ Hk

(ii) There is no node pj belonging to a class Hk′ , with k′ < k,
such that D(pi, pj) ≤ 2ri

7. Each node broadcasts its status (open or not), and every node
connects to the nearest open node

2.3 Analysis

We show that our algorithm produces anO(s)-approximation to CliqueFacLoc
in O(T (n)) communication rounds, where T (n) is the running time (in rounds)
of procedure Ruling-Set().

Algorithm 2 RulingSet

Input: An undirected graph G = (V,E); a sparsity parameter s
Assumptions: Each node has knowledge of its neighbors in G;
each node can send a message to any other node (not just along edges of G)
Output: An independent s-ruling set T ⊆ G

Communication rounds. Stage 1 requires exactly one round of communication,
to broadcast ri values. Stage 2 requires O(T (n)) rounds to compute the s-sparse
subsets {Tk}k, and an additional round to broadcast membership status. Stage 3
requires one round, in order to inform others of a nodes decision to open or not.
Thus, the running time of our algorithm in communication rounds is O(T (n)).

Cost approximation. Let F be the set of nodes opened by our algorithm. We ana-
lyze FacLoc(F) by bounding charge(pi, F) for each pi. Recall that FacLoc(F) =∑n
i=1 charge(pi, F). Since charge(pi, F) is the sum of two terms, D(pi, F) and∑
pj∈F max{0, rj −D(pj , pi)}, we bound each separately by a O(s)-multiple of

r̄i.
The sparse subset Tk ⊆ Hk has the property that for any node pi ∈ Hk,

D(pi, Tk) ≤ 2 · 3k+1r0 · s, where s is the sparsity parameter passed to procedure
RulingSet(). Also, for no two members of Tk is the distance between them less
than 2 ·3kr0. Note that here we are using distances from the metric D of (P,D).

Now, in our cost analysis, we consider a node pi ∈ Hk. To bound D(pi, F),
observe that either pi ∈ Tk, or else there exists a node pj ∈ Tk such that
D(pi, pj) ≤ 2·3k+1r0 ·s ≤ 6ri ·s. Also, if a node pj ∈ Tk does not open, then there
exists another node pj′ in a class Hk′ , with k′ < k, such that D(pj , pj′) ≤ 2rj .

We are now ready to bound the components of charge(pi, F).

Lemma 2. D(pi, F) ≤ (81s+ 81) · r̄i

Lemma 3.
∑
pj∈F max{0, rj −D(pj , pi)} ≤ 9r̄i

Combining the two previous lemmas gives

FacLoc(F) =
n∑
i=1

charge(pi, F) =
n∑
i=1

D(pi, F) +
∑
pj∈F

max{0, rj −D(pj , pi)}

≤

n∑
i=1

[(81s+ 81) · r̄i + 9r̄i] ≤ (81s+ 90) ·
n∑
i=1

r̄i

Theorem 1. Algorithm 1 (FacilityLocation) computes an O(s)-factor ap-
proximation to CliqueFacLoc in O(T (n)) rounds, where T (n) is the running
time of the RulingSet() procedure called with argument s.

3 Computing a 2-Ruling Set

The facility location algorithm in Section 2 depends on being able to efficiently
compute an independent β-ruling set, for small β, of an arbitrary spanning sub-
graph C ′ of the clique C. This section describes how to compute an independent
2-ruling set of C ′ in O(log log n · log∗ n) rounds.

3.1 A Useful Subroutine

We first present an extremely useful deterministic subroutine for efficiently com-
puting an MIS of a sparse, induced subgraph of C ′. For a subset M ⊆ P , we
use C ′[M] to denote the subgraph of C ′ induced by M and E[M] and e[M] to
denote the set and number (respectively) of edges in C ′[M]. The subroutine we
present below computes an MIS of C ′[M] in e[M]/n rounds. Later, we use this
repeatedly in situations where e[M] is linear in n.

We assume that nodes in P have unique identifiers and can therefore be
totally ordered according to these. Let ρi ∈ {0, 1, . . . , n − 1} denote the rank
of node pi in this total ordering. Imagine (temporarily) that edges are oriented
from lower rank nodes to higher rank nodes and let E(pi) denote the set of
outgoing edges incident on pi. Let di denote |E(pi)|, the outdegree of pi, and let
Di =

∑
j:ρj<ρi

dj denote the outdegree sum of lower ranked nodes.
The subroutine works by sharing the entire topology of C ′[M] with all nodes

in the network. To do this efficiently, we “map” each edge e ∈ E[M] to a node
in P . Information about e will be sent to the node to which e is mapped and
then that node is responsible for broadcasting information about all edges that
have been mapped onto it. If the mapping is such that the “load” at each node
is balanced, then we have an efficient algorithm. Our subroutine is given below
in Algorithm 3.

Algorithm 3 Deterministic MIS for Sparse Graphs
Input: A subset of nodes M ⊆ P
Output: An MIS L of C ′[M]
Algorithm executed by node pi

1. Broadcast ID.
2. Calculate di and broadcast it.
3. Assign a distinct label `(e) from {Di, Di + 1, . . . , Di + di − 1} to

each incident outgoing edge e.
4. Send each outgoing edge e to a node pj with rank ρj = `(e)(mod n).
5. Broadcast all edges received in previous step, one per round.
6. Compute C ′[M] from received edges and use a deterministic algorithm to

locally compute MIS L.

Theorem 2. Algorithm 3 computes an MIS L of C ′[M] in e[M]
n +O(1) rounds.

3.2 Algorithm

We are now ready to present a “super-fast” algorithm for computing a 2-ruling
set of C ′. We will show that this algorithm terminates in O(log log n · log∗ n)
rounds. The algorithm proceeds in Stages and in Stage i, i = 1, 2, . . . we process
nodes whose degrees (in graph C ′) lie in the range [n1/2i

, n1/2i−1
). At the end of

Stage i all nodes in the graph have degree less than n1/2i

, implying the algorithm
consists of O(log log n) Stages.

Each Stage consists of a number of Phases. Suppose that we are in a Stage
where we are processing the set S(d) of nodes whose degrees are in the range
[d, d2). In each Phase of this Stage, the size of S(d) decreases. To understand
the rate at which this happens, consider the function t(k) defined recursively as
t(0) = 1, and t(k + 1) = e

√
t(k), for all k > 0. As we will show later, this is

a rapidly-growing function that reaches n in O(log∗ n) steps. The size of S(d)
at the beginning of Phase k is at most n/t(k) and as the Phase proceeds, S(d)
shrinks and Phase k ends when |S(d)| ≤ n

t(k+1) (while-loop starting in Line 6).
Because of the rate at which t(k) grows, each Stage consists of O(log∗ n) Phases.

Each Phase consists of a number of Iterations. Consider a Stage in which
nodes whose degrees are in [d, d2) are being processed and then consider Phase
k in this Stage. Finally, consider an arbitrary Iteration in this Phase. In this
Iteration, nodes in S(d) join a setM independently with probability q =

√
t(k)/d

(Line 8). Nodes not in S(d) join M with probability 1/
√
d (Line 9) (note that

this probability is independent of k and is therefore fixed for the entire Stage).
The function t(k) was designed to yield probabilities q such that the expected
number of edges in C ′[M] is bounded above by 2n. Once the set M is picked,
we call the subroutine in Algorithm 3 to process C ′[M] in O(1) rounds and then
delete M and its neighborhood N(M) (Lines 10-12). This ends an Iteration. We
will show that in expectation, only a constant number of Iterations are needed to
complete a Phase. Since the size of S(d) has diminished in a phase, we can afford
to raise the probability q (Line 15) and still ensure that the expected number of
edges in C ′[M] is bounded above by 2n. Within a Stage the probability q rises
until it gets to 1/

√
d. Recall that this is the probability with which the nodes

not in S(d) include themselves in M . We will show below that by the time q
reaches 1/

√
d, the size of S(d) will have decreased so that the subgraph induced

by S(d) contains only O(n) edges. We can separately process this subgraph in
O(1) time (Lines 18-20) to finish the Stage. The full algorithm can be found in
Algorithm 4.

3.3 Analysis

We start by stating the following lemma concerning the behavior of t(k).

Lemma 4. For any d ≥ 0, the smallest k for which t(k) ≥ d is O(log∗ d).

Algorithm 4 Super-Fast 2-Ruling Set
Input: A spanning subgraph C ′ of the clique C.
Output: A 2-ruling set T ⊆ P of C ′

1. i = 1; d :=
√
n (= n1/2i

); T := ∅
2. while d > 10 do

Start of Stage i:

3. k := 0; q := 1
d (=

√
t(k)/d);

4. S(d) := {p ∈ P : deg(p) ≥ d}; lastPhase := false;
5. while (true) do

Start of Phase k:
6. while (|S(d)| > n

t(k+1) and ¬lastPhase)
or (|S(d)| > n

e
√

d
and lastPhase) do

Start of Iteration
7. M := ∅
8. Add each p ∈ S(d) to M with probability q
9. Add each p ∈ P \ S(d) to M with probability 1√

d

10. Compute an MIS L on M using Algorithm 3
11. T := T ∪ L
12. Remove (M ∪N(M)) from C ′

13. S(d) := {p ∈ P : deg(p) ≥ d}
End of Iteration

14. if lastPhase then break;

15. q :=
√
t(k+1)

d ; k := k + 1;
16. if q > 1√

d
then

17. q := 1√
d
; lastPhase := true;

End of Phase
18. M := S(d); Compute an MIS L on M using Algorithm 3
19. T := T ∪ L
20. Remove (M ∪N(M)) from C ′

21. d := n1/2i+1
; i := i+ 1

End of Stage
22. M := C ′; Compute an MIS L on M using Algorithm 3
23. T := T ∪ L
24. Output T

Lemma 5. Consider an Iteration in Phase k, Stage i. Let d = n1/2i

. The max-
imum degree of a node during this Iteration is d2. Furthermore, the size of S(d)
is at most n/t(k).

Lemma 6. Algorithm 4 computes a 2-ruling set of C ′.

Lemma 7. In any Iteration, the expected number of edges in the subgraph in-
duced by M is bounded above by 2n.

Lemma 8. Fix a Stage i, and suppose that t(k + 1) ≤ d. Then the expected
number of Iterations (Lines 7-13) in Phase k before |S(d)| ≤ n

t(k+1) is O(1).

Lemma 9. Fix a Stage i, and suppose t(k) ≤ d < t(k+ 1). At the end of Phase
k + 1, there are at most O(n) edges in C ′[S(d)].

Theorem 3. Algorithm 4 computes a 2-ruling set on C ′ in O(log log n · log∗ n)
rounds.

4 Wrapping Things Up

Using Algorithm 4 as a specific instance of the procedure RulingSet() for s = 2
and combining Theorems 1 and 3 leads us to the main result of the paper.

Theorem 4. The CliqueFacLoc problem can be solved in O(log log n · log∗ n)
rounds.

We also note that under special circumstances an O(1)-ruling set of a spanning
subgraph of a clique can be computed even more speedily. For example, if the
subgraph of C induced by the nodes in class Hk is growth-bounded for each k,
then we can use the Schneider-Wattenhofer [18] result to compute an MIS for
C[Hk] in O(log∗ n) rounds (in the CONGEST model). Recall that edges in Hk

connect pairs of nodes whose distances in the metric space (P,D) are roughly
the same (i.e. within a factor of 3). It is easy to see that if the metric space (P,D)
is Euclidean with constant dimension or even has constant doubling dimension,
Hk would be growth-bounded for each k. This discussion is summarized in the
following theorem.

Theorem 5. The CliqueFacLoc problem can be solved in O(log∗ n) rounds
on a metric space of constant doubling dimension.

References

1. Balinski, M.L.: On finding integer solutions to linear programs. In: Proceedings of
IBM Scientific Computing Symposium on Combinatorial Problems. pp. 225–248
(1966)

2. Bădoiu, M., Czumaj, A., Indyk, P., Sohler, C.: Facility location in sublinear time.
In: ICALP. pp. 866–877 (2005)

3. Cornuejols, G., Nemhouser, G., Wolsey, L.: Discrete Location Theory. Wiley (1990)

4. Frank, C.: Algorithms for Sensor and Ad Hoc Networks. Springer (2007)
5. Gehweiler, J., Lammersen, C., Sohler, C.: A distributed o(1)-approximation algo-

rithm for the uniform facility location problem. In: SPAA ’06: Proceedings of the
eighteenth annual ACM symposium on Parallelism in algorithms and architectures.
pp. 237–243 (2006)

6. Gehweiler, J., Lammersen, C., Sohler, C.: A distributed o(1)-approximation algo-
rithm for the uniform facility location problem. In: Proceedings of the eighteenth
annual ACM symposium on Parallelism in algorithms and architectures. pp. 237–
243. SPAA ’06, ACM, New York, NY, USA (2006), http://doi.acm.org/10.1145/
1148109.1148152

7. Guha, S., Khuller, S.: Greedy strikes back: improved facility location algorithms.
In: SODA ’98: Proceedings of the ninth annual ACM-SIAM symposium on Discrete
algorithms. pp. 649–657 (1998)

8. Kaufman, L., Eede, M.V., Hansen, P.: A plant and warehouse location problem.
Operational Research Quarterly 28(3), 547–554 (1977)

9. Kuehn, A.A., Hamburger, M.J.: A heuristic program for locating warehouses. Man-
agement Science 9(4), 643–666 (1963)

10. Kuhn, F., Moscibroda, T., Wattenhofer, R.: Local computation: Lower and upper
bounds. CoRR abs/1011.5470 (2010)

11. Li, S.: A 1.488 approximation algorithm for the uncapacitated facility loca-
tion problem. In: Proceedings of the 38th international conference on Au-
tomata, languages and programming - Volume Part II. pp. 77–88. ICALP’11,
Springer-Verlag, Berlin, Heidelberg (2011), http://dl.acm.org/citation.cfm?

id=2027223.2027230

12. Mettu, R.R., Plaxton, C.G.: The online median problem. SIAM J. Comput. 32(3),
816–832 (2003)

13. Moscibroda, T., Wattenhofer, R.: Facility location: distributed approximation. In:
PODC ’05: Proceedings of the Twenty-Fourth Annual ACM Symposium on Prin-
ciples of Distributed Computing. pp. 108–117 (2005)

14. Pandit, S., Pemmaraju, S.V.: Rapid randomized pruning for fast greedy distributed
algorithms. In: ACM Symp. on Principles of Distributed Computing (PODC). pp.
325–334 (2010)

15. Pandit, S., Pemmaraju, S.: Return of the primal-dual: distributed metric facil-
itylocation. In: Proceedings of the 28th ACM symposium on Principles of dis-
tributed computing. pp. 180–189. PODC ’09, ACM, New York, NY, USA (2009),
http://doi.acm.org/10.1145/1582716.1582747

16. Pandit, S., Pemmaraju, S.V.: Finding facilities fast. In: ICDCN. pp. 11–24 (2009)
17. Peleg, D.: Distributed computing: a locality-sensitive approach. Society for Indus-

trial and Applied Mathematics (2000)
18. Schneider, J., Wattenhofer, R.: A log-star distributed maximal independent set

algorithm for growth-bounded graphs. In: PODC. pp. 35–44 (2008)
19. Stollsteimer, J.F.: A working model for plant numbers and locations. Management

Science 45(3), 631–645 (1963)

http://doi.acm.org/10.1145/1148109.1148152
http://doi.acm.org/10.1145/1148109.1148152
http://dl.acm.org/citation.cfm?id=2027223.2027230
http://dl.acm.org/citation.cfm?id=2027223.2027230
http://doi.acm.org/10.1145/1582716.1582747

A Proofs

Lemma 1. FacLoc(X) ≥ (
∑n
i=1 r̄i)/6 for any configuration X.

Proof. Notice FMP has the property that no two facilities pi, pj ∈ FMP can be
close enough that D(pi, pj) ≤ ri + rj [12]. Therefore, if pδ(i) denotes a closest
open facility (i.e. an open facility satisfying D(pi, pδ(i)) = D(pi, FMP)), then

FacLoc(FMP) =
n∑
i=1

charge(pi, FMP)

=
∑

pj∈FMP

charge(pj , FMP) +
∑

pi /∈FMP

charge(pi, FMP)

≥
∑

pj∈FMP

rj +
∑

pi /∈FMP

[
D(pi, pδ(i)) + max{0, rδ(i) −D(pδ(i), pi)}

]
=

∑
pj∈FMP

rj +
∑

pi /∈FMP

max{rδ(i), D(pi, pδ(i))}

Note that the inequality in the above calculation follows from observing that
charge(pj , FMP) ≥ rj for pj ∈ FMP , and from throwing away some terms of the
sum in the definition of charge(pi, FMP) for pi /∈ FMP .

Now, recall the definition r̄i = min1≤x≤n{D(pi, px) + rx}. Therefore, r̄i ≤ ri,
and r̄i ≤ D(pi, pδ(i)) + rδ(i) ≤ 2 ·max{rδ(i), D(pi, pδ(i))}. It follows that

FacLoc(FMP) ≥
∑

pj∈FMP

r̄j +
∑

pi /∈FMP

r̄i
2

≥
∑

pj∈FMP

r̄j
2

+
∑

pi /∈FMP

r̄i
2

=
1
2
·
n∑
i=1

r̄i

Therefore FacLoc(X) ≥ FacLoc(FMP)/3 ≥ (
∑n
i=1 r̄i)/6, for any configuration

X.

Lemma 2. D(pi, F) ≤ (81s+ 81) · r̄i

Proof. We use induction on k. For k = 0, first note that if pi ∈ H0, then
ri ≤ 3r̄i, as ri < 3r0. Secondly, observe that every member of T0 must open, and
so D(pi, F) ≤ 2 · 3r0 · s ≤ 6ri · s ≤ 18r̄i · s.

For the induction step, first suppose that ri > 3r̄i. Let pi′ be a minimizer for
D(pi, px) + rx, so that r̄i = D(pi, pi′) + ri′ . Then pi′ must be in a class of index

strictly less than k. Therefore, we may apply the induction assumption to pi′ ,
and so using the triangle inequality we see that

D(pi, F) ≤ D(pi, pi′) +D(pi′ , F)
= r̄i − ri′ +D(pi′ , F)
≤ r̄i − r̄i′ + (81s+ 81) · r̄i′
≤ r̄i + (81s+ 80) · r̄i′
≤ (81s+ 81) · r̄i

If ri ≤ 3r̄i, then a more careful accounting is necessary. We know that, pi is
within distance 6ri ·s of a node pj ∈ Tk (which may be pi itself). Then, pj either
opens, or there exists a node pj′ of a lower class such that D(pj , pj′) ≤ 2rj .
In the former case D(pi, F) ≤ 6ri · s; in the latter case we have D(pi, pj′) ≤
D(pi, pj) +D(pj , pj′) ≤ 6ris+ 2rj ≤ (6s+ 6) · ri since rj ≤ 3ri (owing to pi and
pj being in the same class Hk).

So, within a distance (6s + 6) · ri of pi, there exists either an open node or
a node of a lower class. In the latter case (in which there is a node pj′ of a
lower class), we repeat the above calculation for pj′ . Note that we do not know
that rj′ ≤ 3r̄j′ , but we did not use that assumption about pi in the preceding
calculation.

We conclude then that within a distance (6s+6) ·rj′ of pj′ , there exists either
an open node or a node of a class Hk′′ , where k′′ ≤ k− 2. Since pj′ is in a lower
class than pi, rj′ < ri, and so it follows that, within a distance (12s + 12) · ri
of pi, there exists either an open node or a node of a class of index less than or
equal to k − 2.

Next, we repeat this analysis a third time and conclude that within a distance
(18s+ 18) · ri of pi, there exists either an open node or a node of a class of index
less than or equal to k − 3.

Suppose now that there is no open node within distance (18s+ 18) · ri of pi.
Then there must exist a pj′′′ ∈ Hk′′′ , where k′′′ ≤ k − 3. Because class indices
k′′′ and k are separated by at least two other classes, 9rj′′′ ≤ ri. We now apply
the induction assumption.

D(pj′′′ , F) ≤ (81s+ 81) · r̄j′′′ ≤ (81s+ 81) · rj′′′ ≤ (9s+ 9) · ri

Putting the two cases together gives

D(pi, F) ≤ max {(18s+ 18) · ri, (18s+ 18) · ri +D(pj′′′ , F)}
≤ (18s+ 18) · ri + (9s+ 9) · ri
= (27s+ 27) · ri

Since ri was assumed to be less than or equal to 3r̄i, we see that D(pi, F) ≤
(27s+ 27) · ri ≤ (81s+ 81) · r̄i, which completes the induction step.

Lemma 3.
∑
pj∈F max{0, rj −D(pj , pi)} ≤ 9r̄i

Proof. We begin by observing that we cannot simultaneously have D(pj , pi) ≤ rj
and D(pl, pi) ≤ rl for pj , pl ∈ F and j 6= l. Indeed, if this were the case, then
D(pj , pl) ≤ rj + rl. If pj and pl were in the same class Hx, then they would be
adjacent in G[Hx]; this is impossible, for then they could not both be members of
Tx (for a node in Hx, membership in Tx is necessary to join F). If pj and pl were
in different classes, assume WLOG that rj < rl. Then D(pj , pl) ≤ rj + rl ≤ 2rl,
and pl should not have opened. These contradictions imply that there is at most
one open node pj for which D(pj , pi) ≤ rj .

For the rest of this lemma, then, assume that pj ∈ F is the unique open
node such that D(pj , pi) ≤ rj (if such a pj does not exist, there is nothing to
prove). Note that pi cannot be of a lower class than pj (for else pj would not
have opened). Consequently, rj < 3ri.

Now, suppose ri ≤ 3r̄i. Then we have rj < 3ri ≤ 9r̄i, and so the second
component of charge(pi, F) is bounded by 9r̄i, as desired.

If ri > 3r̄i, then as in the previous lemma let pi′ be a minimizer for D(pi, px)+
rx, so that r̄i = D(pi, pi′) + ri′ . As before, pi′ must be in a class of index strictly
less than k. If it were true that rj ≤ 9r̄i, then we would be finished, so suppose
this is not the case. We are thus in a case where 9r̄i < rj < 3ri. Since ri′ < r̄i,
we have 9ri′ < rj , and so we know that pi′ must be in a lower class than
pj . Therefore, since pj ∈ F , it must be true that D(pj , pi′) ≥ 2rj ≥ rj . So
rj ≤ D(pj , pi) +D(pi, pi′), and

rj −D(pj , pi) ≤ D(pi, pi′) ≤ r̄i ≤ 9r̄i

which completes the proof of the lemma in the case that ri > 3r̄i.

Theorem 2. Algorithm 3 computes an MIS L of C ′[M] in e[M]
n +O(1) rounds.

Proof. Each node pi reserves a distinct range {Di, Di+1, . . . , Di+di−1} of size
di for labeling the di outgoing edges incident on it (Steps 1-3). This implies that
the edges in E[M] get unique labels in the range {0, 1, . . . , e[M] − 1}. Sending
each edge e to a node pj with rank `(e)(mod n) means that each node receives
at most e[M]/n+ 1 edges (Step 4). Note that Steps 1-4 take at most one round
each. Step 5 takes e[M]/n+ 1 rounds, as this is the maximum number of edges
received by a node in Step 4.

Lemma 4. For any d ≥ 0, the smallest k for which t(k) ≥ d is O(log∗ d).

Proof. We introduce two functions. Let tower(c, k) be defined recursively as
tower(c, 0) = 1, and tower(c, k) = ctower(c,k−1) for k > 0. For k ≥ 2, let

g(k) = ee
tower((e/2),k−2)

Notice that for any d > 0, the smallest k for which g(k) ≥ d is O(log∗ d). We
prove Lemma 4 by comparing t(k) and g(k). Specifically, we will show for any
k ≥ 6, t(k) ≥ g(k).

To prove this, we use induction on k. First, consider the base case where
k = 6. Here,

t(6) = ee
(1/2)e(1/2)e(1/2)e(1/2)e(1/2)

> 53883

Also,
g(6) = ee

tower((e/2),4)
< 166

Therefore the claim holds for k = 6.
For the induction step, notice that

t(k + 1) = e
√
t(k) ≥ e

√
g(k) (by induction hypothesis)

= ee
(1/2)etower((e/2),k−2)

≥ ee
(e/2)tower((e/2),k−2)

= g(k + 1)

Therefore, our claim holds.

Lemma 5. Consider an Iteration in Phase k, Stage i. Let d = n1/2i

. The max-
imum degree of a node during this Iteration is d2. Furthermore, the size of S(d)
is at most n/t(k).

Proof. Stage i does not begin until Stage i − 1 has ended and all nodes in the
graph have degree less than n1/2i−1

= d2. Phase k does not begin until Phase
k − 1 has ended and |S(d)| ≤ n

t(k−1+1) = n
t(k) .

Lemma 6. Algorithm 4 computes a 2-ruling set of C ′.

Proof. At any point, the only nodes removed from P are those in M ∪ N(M).
Since we compute an MIS L of C ′[M] and include only these nodes in the final
output T , every node in M is at distance at most one from a node in T and
every node in N(M) is at distance at most 2 from some node in T . Furthermore,
no node left in P is a neighbor of any node in M and therefore no node that will
be added to T in the future will cause any adjacencies with nodes added thus
far to T . Thus T remains an independent set. When the algorithm terminates,
all nodes in C ′ were either in M or in N(M) at some point in the algorithm,
and therefore T is a 2-ruling set of C ′.

Lemma 7. In any Iteration, the expected number of edges in the subgraph in-
duced by M is bounded above by 2n.

Proof. Suppose that the Iteration under consideration is in Phase k, Stage i, with
d = n1/2i

. We will consider two types of edges: (i) edges between nodes in S(d),
and (ii) all other edges. By Lemma 5, |S(d)| ≤ n

t(k) , and maxp∈S(d) deg(p) ≤ d2.

Therefore, there are at most nd2

t(k) edges between nodes in S(d), each of which

is included in C ′[M] with probability at most
√
t(k)

d ·
√
t(k)

d = t(k)
d2 . Thus, the

expected number of edges in C ′[M] between nodes in S(d) is at most nd2

t(k) ·
t(k)
d2 =

n.
Next, consider edges incident upon nodes outside S(d). There are at most

n such nodes, each of which has degree at most d, and therefore there are at
most nd edges incident upon nodes not in S(d). Now consider an edge {pi, pj},
with pi 6∈ S(d). Node pi is included in M with probability 1/

√
d and pj is

included in M with probability at most 1/
√
d (note that here we use the fact

that the probability q of a node pj ∈ S(d) being included in M is at most
1/
√
d). Therefore, each edge {pi, pj} is included in C ′[M] with probability at

most 1√
d
· 1√

d
= 1

d . This implies that the expected number of edges in C ′[M]
incident upon nodes in P \ S(d) is at most nd · 1

d = n.
Thus, in any Iteration the expected number of edges in the subgraph induced

by M is bounded by 2n.

Lemma 8. Fix a Stage i, and suppose that t(k + 1) ≤ d. Then the expected
number of Iterations (Lines 7-13) in Phase k before |S(d)| ≤ n

t(k+1) is O(1).

Proof. The probability that a node p ∈ S(d) is deleted from S(d) after one
Iteration is at least

Pr [N(p)∩M 6= ∅] = 1−
∏

p′∈N(p)

Pr [p′ /∈M] ≥ 1−

(
1−

√
t(k)
d

)d
≥ 1− e−

√
t(k)

Thus the probability that p remains in S(d) after an Iteration (in Phase k) is at
most e−

√
t(k) = 1

t(k+1) . Therefore the expected size of S(d) after one Iteration is
at most n

t(k) ·
1

t(k+1) ≤
n

t(k+1) . This implies that the expected number of Iterations
before |S(d)| ≤ n

t(k+1) is a constant.

Lemma 9. Fix a Stage i, and suppose t(k) ≤ d < t(k+ 1). At the end of Phase
k + 1, there are at most O(n) edges in C ′[S(d)].

Proof. Since t(k) ≤ d, at the end of Phase k we have |S(d)| ≤ n/t(k + 1). Also,
prior to exiting Phase k, we set q =

√
t(k + 1)/d. However, since this value of

q is greater than 1/
√
d, q is truncated at 1/

√
d and lastPhase is set. One more

Phase, Phase k + 1, is then executed, during which q = 1/
√
d.

With q = 1/
√
d, the probability of a node in S(d) remaining in S(d) after

one Iteration is at most e−
√
d. Therefore, the expected number of Iterations

necessary before Phase k + 1 terminates is O(1). When Phase k + 1 does exit,
we must have |S(d)| ≤ n · e−

√
d. Now since the maximum degree of S(d) is less

than d2, the number of edges in C ′[S(d)] is bounded by n

e
√

d
· d2 = O(n).

Theorem 3. Algorithm 4 computes a 2-ruling set on C ′ in O(log log n · log∗ n)
rounds.

Proof. In Lemma 6 we have shown that the output T is a 2-ruling set of C ′.

To see the bound on the running time, first note that there are 3 calls to Al-
gorithm 3 in Algorithm 4, namely at Lines 10, 18, and 22. The call to Algorithm
3 in Line 10 takes expected O(1) rounds because Lemma 7 shows that C ′[M] has
at most 2n edges in expectation and by Theorem 2, Algorithm 3 takes 2 rounds
to complete. The call to Algorithm 3 in Line 18 takes O(1) rounds because
Lemma 9 establishes that C ′[M] has O(n) edges. Finally, the call to Algorithm
3 in Line 22 takes at most 10 rounds because every node in C ′ has degree at
most 10 at this point in the algorithm. Thus every call to Algorithm 3 completes
in O(1) rounds.

The upper bound on the running time now follows from the fact that there
are O(log log n) Stages in the algorithm, with each Stage consisting of O(log∗ n)
Phases, and each Phase consisting of O(1) Iterations in expectation.

	Super-Fast Distributed Algorithms for Metric Facility Location

