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Abstract

This paper presents a distributed algorithm on wireless ad-hoc networks that runs in

polylogarithmic number of rounds in the size of the network and constructs a linear size,

lightweight, (1 + ε)-spanner for any given ε > 0. A wireless network is modeled by a

d-dimensional α-quasi unit ball graph (α-qUBG), which is a higher dimensional general-

ization of the standard unit disk graph (UDG) model. The d-dimensional α-qUBG model

goes beyond the unrealistic “flat world” assumption of UDGs and also takes into account

transmission errors, fading signal strength, and physical obstructions. The main result in

the paper is this: for any fixed ε > 0, 0 < α ≤ 1, and d ≥ 2 there is a distributed algorithm

running in O(log n · log∗ n) communication rounds on an n-node, d-dimensional α-qUBG

G that computes a (1+ ε)-spanner G′ of G with maximum degree ∆(G′) = O(1) and total

weight w(G′) = O(w(MST (G)). This result is motivated by the topology control problem

in wireless ad-hoc networks and improves on existing topology control algorithms along

several dimensions. The technical contributions of the paper include a new, sequential,

greedy algorithm with relaxed edge ordering and lazy updating, and clustering techniques

for filtering out unnecessary edges.
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1 Introduction

Let G = (V, E) be a graph with edge weights w : E → R+. For t ≥ 1, a t-spanner of G

is a spanning subgraph G′ of G such that for all pairs of vertices u, v ∈ V , the length of a

shortest uv-path in G′ is at most t times the length of a shortest uv-path in G. The problem

of constructing a sparse t-spanner, for small t, of a given graph G has been extensively studied

by researchers in distributed computing and computational geometry and more recently by

researchers in ad-hoc wireless networks. In this paper we present a fast distributed algorithm

for constructing a linear size, lightweight t-spanner of bounded degree for any given t > 1, on

wireless networks. Below, we describe our result more precisely.

Network model. In this paper we model wireless networks using d-dimensional quasi unit

ball graphs. For any fixed α, 0 < α ≤ 1 and integer d ≥ 2, a d-dimensional α-quasi unit ball

graph (α-qUBG, in short) is a graph G = (V, E) whose vertex set V can be placed in one-one

correspondence with a set of points in the d-dimensional Euclidean space and whose edge set

E satisfies the constraint: if |uv| ≤ α then {u, v} ∈ E and if |uv| > 1 then {u, v} 6∈ E. Here we

use |uv| to denote the Euclidean distance between the points corresponding to vertices u and

v. The α-qUBG model does not prescribe whether a pair of vertices whose distance is in the

range (α, 1] are to be connected by an edge or not. This is an attempt to take into account

transmission errors, fading signal strength, and physical obstructions. The α-qUBG model is

a higher dimensional generalization of the somewhat simplistic unit disk graph (UDG) model

of wireless networks that is popular in literature. Specifically, when α = 1 and d = 2, a d-

dimensional α-qUBG is just a UDG. UDGs are attractive due to their mathematical simplicity,

but have been deservedly criticized for being unrealistic models of wireless networks [10]. In

our view, d-dimensional α-qUBGs are a significant step towards a more realistic model of

wireless networks. Two-dimensional α-qUBGs were proposed in [1] as a model of wireless ad-

hoc networks with unstable transmission ranges and the difficulty of doing geometric routing

in such networks was shown.
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Our result. For any edge weighted graph J , we use w(J) to denote the sum of the weights

of all the edges in J and MST (J) to denote a minimum weight spanning tree of J . For any

fixed ε > 0, 0 < α ≤ 1, and d ≥ 2 our algorithm runs in O(log n · log∗ n) communication

rounds on an n-node, d-dimensional α-qUBG and computes a (1 + ε)-spanner G′ of G whose

maximum degree ∆(G′) = O(1) and whose total weight w(G′) = O(w(MST (G)). Since any

spanner of G has weight bounded below by w(MST (G)), the weight of the output produced

by the algorithm is within a constant times the optimal weight. Our algorithm does not need

to know the locations of nodes of the α-qUBG in d-dimensional Euclidean space; just the

pairwise Euclidean distances. As far as we know, our result significantly improves all known

results of a similar kind along several dimensions. More on this further below.

Topology control. Our result is motivated by the topology control problem in wireless ad-

hoc networks. For an overview of topology control, see the survey by Rajaraman [17]. Since

an ad-hoc network does not come with fixed infrastructure, there is no topology to start with

and informally speaking, the topology control problem is one of selecting neighbors for each

node so that the resulting topology has a number of useful properties. More precisely, let

V be a set of nodes that can communicate via wireless radios and for each v ∈ V , let N(v)

denote the set of all nodes that v can reach when transmitting at maximum power. The

induced digraph G = (V, E), where E = {{u, v} | v ∈ N(u)}, represents the network in

which every node has chosen to transmit at maximum power and has designated every node

it can reach as its neighbor. The topology control problem is the problem of devising an

efficient and local protocol P for selecting a set of neighbors NP (v) ⊆ N(v) for each node

v ∈ V . The induced digraph GP = (V, EP ), where EP = {{u, v} | v ∈ NP (u)} is typically

required the satisfy properties such as symmetry (if v ∈ NP (u) then u ∈ NP (v)), sparseness

(|EP | = O(|V |)) or bounded degree (|NP (v)| ≤ c for all nodes v and some constant c), and the

spanner property. Sometimes stronger versions of connectivity such as k-vertex connectivity or

k-edge connectivity (for k > 1) are desired, both for providing fault-tolerance and for improving

throughput [6, 7]. If the input graph consists of nodes in the plane, it is quite common to

require that the output graph be planar [13, 14, 15, 18, 19]. This requirement is motivated

by the existence of simple, memory-less, geometric routing algorithms that guarantee message
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delivery only when the underlying graph is planar [9].

Though the topology control problem is recent, there is already an extensive body of

literature on the problem to which the above sample of citations do not do justice. However,

many of the topology control protocols that provide worst case guarantees on the quality of

the topology, assume that the network is modeled by a UDG. A recent example [15] presents

a distributed algorithm that requires a linear number of communication rounds in the worst

case to compute a planar t-spanner of a given UDG with t ≈ 6.2 and in which each node has

degree at most 25. These two constants can be slightly tuned – t can be brought down to about

3.8 with a significant increase in the degree bound. We improve on the result in [15] along

several dimensions. As is generally known among practitioners in ad-hoc wireless networks, the

“flat world” assumption and the identical transmission range assumption of UDGs is unrealistic

[10]. By using an α-qUBG we significantly generalize our model of wireless networks, hopefully

moving much closer to reality. For any ε > 0, our algorithm returns a (1 + ε)-spanner; as far

as we know, this is the first distributed algorithm that produces an arbitrarily good spanner

for any model of wireless networks. We also guarantee that the total weight of the output

is within constant times optimal – a guarantee that is not provided in [15]. Finally, using

algorithmic techniques and distributed data structures that might be of independent interest,

we ensure that our protocol runs in O(log n · log∗ n) communication rounds. We are not aware

of any topology control algorithm that runs in poly-logarithmic number of rounds and provides

anywhere close to the guarantees provided by our algorithm.

Spanners in computational geometry. Starting in the early 1990’s, researchers in compu-

tational geometry have attempted to find sparse, lightweight spanners for complete Euclidean

graphs. Given a set P of n points in Rd, the tuple (P, E), where E is the set of line segments

{{p, p′} | p, p′ ∈ P}, is called the complete Euclidean graph on P . For any subset E ′ ⊆ E,

(P, E′) is called a Euclidean graph on P . The specific problem that researchers in computa-

tional geometry have considered, is this. Given a set P of n points in Rd and t > 1, compute

a Euclidean graph on P that is a t-spanner of the complete Euclidean graph on P , whose

maximum degree is bounded by O(1) and whose weight is bounded by the weight of a mini-

mum spanning tree on P . For an early example, see [12] in which the authors show that there
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are “planar graphs almost as good as the complete graphs and almost as cheap as minimum

spanning trees.” This was followed by a series of improvements [2, 3, 4, 5], with the most

recent paper [2] presenting algorithms for constructing Euclidean subgraphs that provide the

additional property of k-fault tolerance. Most of the papers mentioned above start with the

following simple, greedy algorithm.

Algorithm SEQUENTIAL-GREEDY (G = (V, E), t)

1. Order the edges in E in non-decreasing order of length.

2. E′ ← φ, G′ ← (V, E′)

3. For each edge e = {u, v} ∈ E if there is no uv-path in G′ of length at most t · |uv|

(a) E′ ← E′ ∪ {e}

(b) G′ ← (V, E′)

Output G′.

It is well-known [4] that if the input graph G = (V, E) is the complete Euclidean graph,

then the output graph G′ = (V, E′) produced by SEQUENTIAL-GREEDY has the following useful

properties: (i) G′ is a t-spanner of G, (ii) ∆(G′) = O(1), and (iii) w(G′) = O(w(MST (G))).

A naive implementation of SEQUENTIAL-GREEDY takes O(n3 log n) time because a quadratic

number of shortest path queries need to be answered on a dynamic graph with O(n) edges.

Consequentially, papers in this area [4, 5] focus on trying to implement SEQUENTIAL-GREEDY

efficiently. For example, Das and Narasimhan [4] show how to use certain kind of graph

clustering to answer shortest path queries efficiently, thereby reducing the running time of

SEQUENTIAL-GREEDY to O(n log2 n). One of the contributions of this paper is to show how

a variant of the Das-Narasimhan clustering scheme can be implemented and maintained effi-

ciently, in a distributed setting.

Summary of our contributions. In obtaining the main result, our paper makes the fol-

lowing contributions.

1. We first show that sparse, lightweight, t-spanners for arbitrarily small t > 1, not only ex-
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ist for d-dimensional α-qUBGs, but such spanners can be computed using SEQUENTIAL-GREEDY.

Note that sparse t-spanners for arbitrarily small values of t ≥ 1 do not exist for general

graphs. For example, there is a classical graph-theoretic result that shows that for any

t ≥ 1, there exist (infinitely many) unweighted n-vertex graphs for which every t-spanner

needs Ω(n1+1/(t+2)) edges (see Page 179 in [16]).

2. We then consider a version of SEQUENTIAL-GREEDY in which the requirement that edges

be considered in increasing order of length is relaxed. More precisely, the edges are

distributed into O(log n) bins B0, B1, B2, . . . such that edges in Bi are all shorter than

edges in Bi+1. It is then shown that any ordering of the edges in which edges in B0 come

first, followed by edges in B1, followed by the edges in B2, etc., is good enough for the

correctness of SEQUENTIAL-GREEDY, even for d-dimensional α-qUBGs. More importantly,

we show that the update step in SEQUENTIAL-GREEDY (Step 3(a)) need not be performed

after each edge is queried. Instead, a more lazy update may be performed, after each bin

is completely processed. Being able to perform a lazy update is critical for a distributed

implementation; roughly speaking, we want the nodes to query all edges in a bin in

parallel and not to have to rely on answers to queries on other edges in a bin.

3. We also use a novel clustering technique as a way to reduce the number of edges to be

queried per node. Reducing the number of query edges per node, is critical to being able

to guarantee that the output of our distributed version of SEQUENTIAL-GREEDY does not

have too many edges incident on a node.

4. We then show that this relaxed version of SEQUENTIAL-GREEDY can be implemented

in a distributed setting in O(log n) phases — one phase corresponding to each bin —

such that each phase requires O(log∗ n) communication rounds. Each phase requires the

computation of maximal independent sets (MIS) on some derived graphs. We show that

the derived graphs are unit ball graphs of constant doubling dimension [11] and use the

O(log∗ n)-round MIS algorithm of Kuhn, Moscibroda, and Wattenhofer [11].
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1.1 Extensions to our Main Result

Here we briefly report on extensions to our main result that we have obtained. They do not

appear in this paper due to lack of space.

1. Let G = (V, E) be an edge-weighted graph. For any t > 1 and positive integer k, a

k-vertex fault-tolerant t-spanner of G is a spanning subgraph G′ if for each subset S of

vertices of size at most k, G′ − S is a t-spanner of G[V − S]. A k-edge fault-tolerant t-

spanner is defined in a similar manner. Using ideas from [2] we can extend our algorithm

to produce a k-vertex (or a k-edge) fault-tolerant t-spanner in polylogarithmic number

of communication rounds.

2. In this paper, we use Euclidean distances as edge weights for the edges of the input graph

G. However, if the metric c · |uv|γ , for positive constant c and γ ≥ 1, is used in place of

Euclidean distances |uv|, we can show that our algorithm still produces a spanner with

all three desired properties. Relative Euclidean distances, such as the function mentioned

above, may be used to produce energy spanners.

3. Let G = (V, E) be an edge-weighted graph. The power cost of a vertex u ∈ V , denoted

power(u), is max{w(u, v) | v is a neighbor of u}. In other words, the power cost of a

vertex u is proportional to the cost of u transmitting to a farthest neighbor. The power

cost of G is
∑

u∈V power(u) [8]. We can show that the output of our algorithm is not

only lightweight with respect to the usual weight measure (sum of the weights of all

edges) but also with respect to the power cost measure.

2 Sequential Relaxed Greedy Algorithm

In this section, we show that a “relaxed version” of SEQUENTIAL-GREEDY produces an output G′

with all three desired properties, even when the input is not a complete Euclidean graph, but is

a d-dimensional, α-qUBG for fixed d and α. Relaxing the requirement in SEQUENTIAL-GREEDY

that the edges be totally ordered by length and allowing for the output to be updated lazily are

critical to obtaining a distributed algorithm that runs in polylogarithmic number of rounds.
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Let r > 1 be a constant to be fixed later and let Wi = riα/n for each i = 0, 1, 2, . . .. Let

I0 = (0, α/n] and for each i = 1, 2, . . . let Ii = (Wi−1, Wi]. Let m = dlogr
n
αe. Then, since

there is no edge of length greater than 1, the length of any edge in E lies in one of the intervals

I0, I1, . . . , Im. Let Ei = {{u, v} ∈ E : |uv| ∈ Ii}.

We now eliminate the restriction that edges within a set Ei be processed in increasing

order by length. We run SEQUENTIAL-GREEDY in m + 1 phases: in phase i, the algorithm

processes edges in Ei in arbitrary order and adds a subset of edges in Ei to the spanner.

For 0 ≤ i ≤ m + 1, we use Gi to denote the spanning subgraph of G consisting of edges

E0 ∪E1 ∪ · · · ∪Ei. Thus Gi is the portion of the input graph that the algorithm has processed

in phase i and earlier. We use G′

i to denote the output of the algorithm at the end of phase i.

In other words, G′

i is the spanning subgraph of G consisting of edges of G that the algorithm

has decided to retain in phases 0, 1, . . . , i. The final output of the algorithm is G′ = Gm+1.

The way E0 is processed is different from the way Ei, i > 0 is processed. We now separately

describe these two parts.

2.1 Processing Edges in E0

We start by stating a property of G0 that follows easily from the fact that all edges in G0 are

small.

Lemma 1 Every connected component of G0 induces a clique in G.

The algorithm PROCESS-SHORT-EDGES for processing edges in E0 consists of three steps (i)

determine the connected components of G0, (ii) use SEQUENTIAL-GREEDY to compute a t-

spanner for each connected component (that is, a clique), and (iii) let G′

0 be the union of the

t-spanners computed in Step (2) and output G′

0. The following theorem states the correct-

ness of the PROCESS-SHORT-EDGES algorithm. Its proof follows easily from the correctness of

SEQUENTIAL-GREEDY.

Theorem 2 G′

0 satisfies the following properties. (i) For every edge {u, v} ∈ E0, G′

0 contains

a uv-path of length at most t · |uv|, (ii) ∆(G′

0) = O(1), and (iii) w(G′

0) = O(w(MST (G))).
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2.2 Processing Long Edges

We now describe how edges in Ei are processed, for i > 0. The algorithm PROCESS-LONG-EDGES

has five steps: (i) computing a cluster cover for G′

i−1, (ii) selecting query edges in Ei, (iii)

computing a cluster graph Hi−1 for G′

i−1, (iv) answering shortest path queries for the query

edges selected in Step (ii), and (v) removing redundant edges. These steps are described in

the next five subsections.

For any graph J , let V (J) denote the vertex set for J . For any pair of vertices u, v ∈ V (J)

let spJ(u, v) denote the length of a shortest uv-path in J . Define a cluster of J with center

u ∈ V (J) and radius r to be a set of vertices Cu ⊆ V (J) such that, for each v ∈ Cu,

spJ(u, v) ≤ r. A set of clusters {Cu1
, Cu2

, . . .} of J is a cluster cover of J of radius r if every

cluster in the set has radius r, every vertex in V (J) belongs to at least one cluster, and for

any pair of cluster centers ui and uj , spJ(ui, uj) > r.

2.2.1 Computing a Cluster Cover for G′

i−1

At the beginning of phase i we compute a cluster cover of radius δWi−1, where δ < 1 is a

constant that will be fixed later. We start with an arbitrary vertex u ∈ V and run Dijkstra’s

shortest path algorithm with source u on G′

i−1, in order to identify nodes v ∈ V with the

property that spG′

i−1

(u, v) ≤ δWi−1; each such node v gets included in the cluster Cu. Once

Cu has been identified, recurse on V \ Cu until all nodes belong to some cluster and we have

a cluster cover of G′

i−1 of radius δWi−1.

2.2.2 Selecting Query Edges in Ei

As defined earlier, edges in Ei have weights in the interval Ii = (Wi−1, Wi], while the cluster

cover for Gi−1 has radius δWi−1. This implies that each edge in Ei has endpoints in different

clusters. Our goal is to select a unique query edge per pair of clusters. This will guarantee

that there are a constant number of query edges incident on any node (see Lemma 4) and this

fact will be critically used by the distributed version of our algorithm to guarantee the degree

bound on the spanner that is constructed.

Let θ be a quantity that satisfies 0 < θ < π
4 and t ≥ 1

cos θ−sin θ . Define an edge e =
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{x, y} ∈ Ei to be a covered edge if there is a z ∈ V such that (i) {x, z} ∈ G′

i−1, |yz| ≤ α and

∠yxz ≤ θ or (ii) {y, z} ∈ G′

i−1, |xz| ≤ α and ∠xyz ≤ θ. Any edge in Ei that is not covered is a

candidate query edge. The motivation for these definitions is the following geometric lemma,

due to Czumaj and Zhao [2]. Using this lemma, it is easy to see that for any covered edge

{x, y} ∈ Ei, G′

i−1 already contains an xy-path of length at most t · |xy| and hence covered

edges need not be queried. Therefore, we take the complement of the set of covered edges and

start with these as candidate query edges.

u

v

z

θ

Figure 1: (a) Edge {u, v} is covered: {u, z} followed by a t-spanner zv-path is a t-spanner
uv-path.

Lemma 3 (Czumaj and Zhao [2]) Let 0 < θ < π
4 and t ≥ 1

cos θ−sin θ . Let u, v, z be three

points in Rd with ∠vuz ≤ θ. Suppose further that |uz| ≤ |uv|. Then the edge {u, z} followed

by a t-spanner path from z to v is a t-spanner path from u to v (see Figure 1).

For each pair of clusters Ca and Cb, let Ei[Ca, Cb] denote the subset of candidate query

edges in Ei with one endpoint in Ca and the other endpoint in Cb. Our algorithm selects a

unique query edge {x, y} from each nonempty subset Ei[Ca, Cb]. Assuming that x ∈ Ca and

y ∈ Cb, the edge {x, y} is selected so as to minimize

t · |xy| − spG′

i−1

(a, x)− spG′

i−1

(b, y) (1)

In Section 2.3 we show that it suffices to answer shortest path queries on the selected query

edges to ensure that G′

i is a t-spanner of Gi at the end of phase i.

The following lemma shows that selecting query edges as described above filters all but a

constant number of edges per cluster. The proof follows from two observations: (i) if a pair of

cluster centers are connected by an edge, then the clusters are not too far from each other in

Euclidean space and (ii) the Euclidean distance between any pair of cluster centers is bounded
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from below, because they would otherwise be part of the same cluster.

Lemma 4 The number of query edges in Ei that are incident on any cluster is O(1).

2.2.3 Computing a Cluster Graph

For each selected query edge {x, y} ∈ Ei, we need to know if G′

i−1 contains an xy-path of length

at most t · |xy|. In general, the number of hops in a shortest xy-path in G′

i−1 can be quite large

and having to traverse such a path would mean that the shortest path query corresponding

to edge {x, y} could not be answered quickly enough. To get around this problem, we use an

idea from [4] in which the authors construct an approximation to G′

i−1, called a cluster graph,

and show that for any edge {x, y} ∈ Ei, the shortest path query for {x, y} can be answered

approximately on Hi−1 in a constant number of steps. The goal of Das and Narasimhan [4]

was to improve the running time of SEQUENTIAL-GREEDY on complete Euclidean graphs, but

we show that the Das-Narasimhan data structure can be constructed and maintained in a

distributed fashion for efficiently answering shortest path queries for edges belonging to a α-

qUBG. In the following, we describe a sequential algorithm that starts with a cluster cover of

G′

i−1 of radius δWi−1, and builds a cluster graph Hi−1 of G′

i−1. This algorithm is identical to

the one in Das and Narasimhan [4] and is included mainly for completeness.

The vertex set of Hi−1 is V and the edge set of Hi−1 contains two types of edges: intra-

cluster edges and inter-cluster edges. An edge {a, x} is an intra-cluster edge if a is a cluster

center and x is node in Ca. Inter-cluster edges are between cluster centers. An edge {a, b}

is an inter-cluster edge if a and b are cluster centers, and at least one of the following two

conditions holds: (i) spG′

i−1

(a, b) ≤ Wi−1, or (ii) there is an edge in G′

i−1 with one endpoint

in Ca and the other endpoint in Cb. See Figure 2.

Regardless of the type of a cluster edge e = {a, b} (inter- or intra-), the weight of e is the

value of spG′

i−1
(a, b). The following lemma follows easily from the definition of inter-cluster

edges.

Lemma 5 For any inter-cluster edge {a, b} in Hi−1, spG′

i−1

(a, b) ≤ (2δ + 1)Wi−1.

The above upper bound also implies that |ab| ≤ (2δ + 1)Wi−1. Using this and arguments
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a
b

s
t

bC

cC

c

u

aC

v

Figure 2: Edges interior to disks are intra-cluster edges. Edge {a, b} is an inter-cluster edge
because spG′

i−1

(a, b) ≤ Wi−1, and {b, c} is an inter-cluster edge because {u, v} is in G′

i−1. An

st-path in G′

i−1, shown by the dashed curve may be approximated by the path s, a, b, t in Hi−1.

similar to those used for Lemma 4, we obtain the following lemma.

Lemma 6 Each cluster center is incident on a constant number of inter-cluster edges in Hi−1.

The main reason for constructing the cluster graph Hi−1 is that lengths of paths in Hi−1

are close to lengths of corresponding paths in G′

i−1 and shortest path queries for edges in

Ei can be answered quickly in Hi−1. The following lemma (whose proof appears in Das and

Narasimhan [4]) shows that we can construct Hi−1 such that path lengths in Hi−1 approximate

path lengths in G′

i−1 to any desired extent, depending on the choice of δ.

Lemma 7 For any edge {x, y} ∈ Ei, if there is a path between x and y in G′

i−1 of length L1,

then there is a path between x and y in Hi−1 of length L2 such that L1 ≤ L2 ≤
1+6δ
1−2δL1.

2.2.4 Answering Shortest Path Queries

For query edges {x, y} ∈ Ei, we are interested in knowing whether G′

i−1 has an xy-path of

length at most t · |xy|. We ask this question on the cluster graph Hi−1. If Hi−1 contains

an xy-path of length at most t · |xy|, we do not add {x, y} to G′

i; otherwise we do. If Hi−1

contains an xy-path of length at most t · |xy|, then so does G′

i−1 (by Lemma 7, since L1 ≤ L2).

Therefore, not adding {x, y} to the spanner is not a dangerous choice. On the other hand,

even if Hi−1 does not contain an xy-path of length at most t · |xy|, G′

i−1 might contain such

a path and in this case adding edge {x, y} is unnecessary. Adding extra edges is of course not

problematic for the t-spanner property. It will turn out that this is not a problem even for the
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requirement that the spanner should have bounded degree and small weight, given that paths

in Hi−1 can approximate paths in G′

i−1 to an arbitrary degree.

Given the structure of the cluster graph, all but at most 2 edges in any simple xy-path are

inter-cluster edges. Since the radius of each cluster is δWi−1, each inter-cluster edge has weight

greater than δWi−1. We are looking for a path of length at most t·|xy|. Since |xy| ∈ (Wi−1, Wi],

we are looking for a path of length at most t ·Wi = t · r ·Wi−1. Any simple path in Hi−1 of

length at most t · r ·Wi−1 has at most 2 + tr/δ hops, which is a constant. This yields the

following lemma.

Lemma 8 For any edge {x, y} ∈ Ei, if spHi−1
(x, y) ≤ t · |xy|, then Hi−1 contains a shortest

xy-path with a constant number of hops.

One issue we need to deal with, especially when attempting to construct and answer queries

in Hi−1 in a distributed setting, is that edges in Hi−1 need not be present in the underlying

network G. Specifically, for an intra-cluster edge {u, a}, where Ca is a cluster and u ∈ Ca, it

may be the case that |ua| > α and {u, a} may be absent from G. Similarly, an inter-cluster

edge {a, b} in Hi−1 may be absent in G. However, for any edge {x, y} in Hi−1 (intra- or

inter-cluster edge), we have the bound spG′

i−1

(x, y) ≤ (2δ +1)Wi−1. This follows from Lemma

5 and the fact that the radius of each cluster is δWi−1. Thus a shortest xy-path in G′

i−1 lies

entirely in a ball of radius (2δ + 1)Wi−1 centered at x. Since G′

i−1 is a spanning subgraph of

G, this implies that there is a shortest xy-path P in G that lies entirely in the d-dimensional

ball of radius (2δ + 1)Wi−1 centered at x. Since any two vertices in P that are two hops away

from each other are at least α apart (in the d-dimensional Euclidean space), P contains at

most 2(2δ + 1)Wi−1/α < 2(2δ + 1)/α hops. This argument along with Lemma 8 yields the

following theorem.

Theorem 9 For any edge {x, y} ∈ Ei, if spHi−1
(x, y) ≤ t · |xy|, then G contains a shortest

xy-path with a constant number of hops.

This theorem implies that brute force search initiated from one of the endpoints, say x,

will be able to answer the shortest path query on edge {x, y} in O(1) rounds in a distributed

setting.
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2.2.5 Removing Redundant Edges

Recall that shortest path queries for edges in Ei are answered on Hi−1, and so updates to G′

i

in phase i do not influence subsequent shortest path queries in phase i. Thus it is possible

that in phase i two edges {u, v} and {u′, v′} get added to Gi, yet both of the following hold:

(i) spHi−1
(v, u′) + |u′v′|+ spHi−1

(v′, u) ≤ t · |uv|

(ii) spHi−1
(v′, u) + |uv|+ spHi−1

(v, u′) ≤ t · |u′v′|

Note that, since spG′

i−1

(x, y) ≤ spHi−1
(x, y) holds for any pair of nodes x and y, conditions

(i) and (ii) above imply that G′

i contains t-spanner paths from u to v and from u′ to v′. We

call two edges {u, v} and {u′, v′} satisfying conditions (i) and (ii) above mutually redundant:

one of them could potentially be eliminated from Gi, without compromising the t-spanner

property of Gi. In fact, such mutually redundant pairs of edges need to be eliminated from

G′

i because our proof that G′ has small weight (Theorem 12) depends on the absence of such

pairs of edges.

To do this, we build a graph J that has a node for each edge in a mutually redundant

pair and an edge between every pair of nodes that correspond to a mutually redundant pair

of edges in G′

i. We construct an MIS I of J and eliminate from G′

i all edges associated with

nodes in J that do not appear in I.

2.3 The Three Desired Properties

Let G′ = G′

m+1 be the spanner at the end of phase m + 1. We now prove that G′ satisfies the

three properties that the output of SEQUENTIAL-GREEDY was guaranteed to have. The proofs of

these theorems form the technical core of the paper. Unfortunately, due to space restrictions,

the proofs do not appear in the main body of the paper. However, they do appear in full detail

in the Appendix.

Theorem 10 For any 0 < δ ≤ t−1
4 , the output G′ is a t-spanner.

Theorem 11 G′ has O(1) degree.
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Theorem 12 Let 0 < δ < (t − 1)/(6 + 2t). Let tδ denote t · (1 − 2δ)/(1 + 6δ). Let 1 < r <

(tδ + 1)/2. When the relaxed greedy algorithm is run with these values of δ and r, the output

G′ satisfies w(G′) = O(wt(MST (G))).

3 Distributed Relaxed Greedy Algorithm

We now describe a distributed version of the relaxed greedy algorithm from Section 2. Like

the sequential relaxed greedy algorithm, this algorithm also runs in O(log n) phases — with

edges in Ei being processed in phase i. We will show that edges in E0 can be processed in O(1)

rounds. Recall that each subsequent phase consists of the following five steps: (i) computing

a cluster cover of G′

i−1, (ii) selecting query edges in Ei, (iii) computing a cluster graph Hi−1

of G′

i−1, (iv) answering shortest path queries for selected query edges, and (v) deleting some

redundant edges. We will show that Steps (ii), (iii), and (iv) can be completed in O(1) rounds

and Steps (i) and (v) take O(log∗ n) rounds. Step (i) and Step (v) will each involve computing

an MIS in a certain derived graph and in both cases, we will show that the derived graph is a

UBG that resides in a metric space of constant doubling dimension. Putting this all together,

we will show that the algorithm runs in O(log n · log∗ n) communication rounds.

3.1 Distributed Processing of Short Edges

Lemma 1 implies that vertices in the same component of G0 = G[E0] induce a clique and

therefore can communicate in one hop with each other. In the distributed version of the

algorithm, each vertex u obtains the topology of its closed neighborhood along with pairwise

distances between neighbors in one hop. Using this information, u determines the connected

component C of G0 that it belongs to. Then u simply runs SEQUENTIAL-GREEDY on C and

computes a t-spanner of C. Finally, u identifies the edges of the t-spanner incident on itself

and informs all its neighbors of this.

Theorem 13 The edges in E0 can be processed in O(1) rounds of communication.
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3.2 Distributed Processing of Long Edges

In this section, we show how long edges, that is, edges in Ei, i > 0, can be processed in a

distributed setting. The first step of this process is the computation of a cluster cover for the

spanner at the end of the previous phase, G′

i−1.

3.2.1 Distributed Cluster Cover for G′

i−1

Recall that in this step our goal is to compute a cluster cover {Cu1
, Cu2

, . . .} of G′

i−1 of radius

δWi−1. To do this, each node u first identifies all nodes v in G satisfying spG′

i−1

(u, v) ≤ δWi−1.

Using arguments similar to those in Section 2.2.4, it is easy to see that any node v satisfying

spG′

i−1

(u, v) ≤ δWi−1 must be at most 2δWi−1/α hops from u. So each node u constructs the

subgraph of G′

i−1 induced by nodes that are at most 2δWi−1/α hops away from it in G. Node

u then runs a (sequential) single source shortest path algorithm with source u on the local

view of G′

i−1 it has obtained and identifies all nodes v satisfying spG′

i

(u, v) ≤ δWi−1.

At the end of the above process, every node u in the network is a cluster center. We now

force some nodes to cease being cluster centers, so that all pairs of cluster centers are far enough

from each other. Let J be the graph with vertex set V and whose edges {x, y} are such that

x ∈ Cy (and by symmetry, y ∈ Cx). If {x, y} is an edge in J , it is the case that spG′

i−1

(x, y) ≤

δWi−1. Now assign to every pair of nodes {x, y} in V a weight w(x, y) = spG′

i−1

(x, y). The

weights w form a metric simply because shortest path distances in any graph form a metric.

Thus J is a graph whose nodes reside in a metric space and whose edges connect pairs of nodes

separated by distance of at most δWi−1 (in the metric space). By scaling the quantity δWi−1

up to one, we see that J is a UBG in the underlying metric space defined by the weights w.

Recall from [11] that the doubling dimension of a metric space is the smallest ρ such that every

ball can be covered by at most 2ρ balls of half the radius. To see that the metric space induced

by the weights w has constant doubling dimension, start with a ball of radius R centered at an

arbitrary vertex u. Every vertex v in this ball satisfies spJ(u, v) ≤ R. Now cover the vertices

in this ball using balls of radius R/2 as follows: repeatedly pick an uncovered vertex v in the

radius-R ball and grow a radius R/2 ball centered at v. It is easy to see that the number of

radius R/2 balls is bounded because any pair of centers of these balls are far apart.
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Lemma 14 J is a UBG that resides in a metric space of constant doubling dimension.

Let I be an MIS of J constructed using the MIS algorithm in [11]. This algorithm runs in

O(log∗ n) communication rounds on a UBG that resides in a metric space of constant doubling

dimension. Then each node in V \I has one or more neighbors in I. Each node u ∈ I is declared

a cluster center, and each node v ∈ V \ I attaches itself to the neighbor in I with the highest

identifier. This gives us the desired cluster cover of radius δWi−1.

Theorem 15 A cluster cover of G′

i−1 of radius δWi−1 can be computed in O(log∗n) rounds

of communication.

3.2.2 Distributed Query Edge Selection

Only nodes that are cluster heads need to participate in the process of selecting query edges.

Each cluster head a seeks to gather information on all edges in Ei between the cluster Ca and

any other cluster Cb. Using the argument in Section 2.2.4, we know that every node in Ca is

at most 2δWi−1/α hops away from a in G. Therefore, if there is an edge {u, v} ∈ Ei, u ∈ Ca

and v ∈ Cb, then v is at most 1 + 2δWi−1/α hops away from a. So a gets information from

nodes that are at most 1+2δWi−1/α hops away from it and it identifies all edges in Ei[Ca, Cb].

Recall that this is the set of edges in Ei which connect a node in Ca and a node in Cb. Node

a then discards all covered edges from Ei[Ca, Cb], leaving only candidate query edges in Ei

between Ca and Cb. Finally, from among the candidate query edges, node a selects an edge

{u, v} that minimizes t · |uv| − spG′

i−1

(a, u)− spG′

i−1

(b, v).

Theorem 16 Query edges from Ei can be selected in O(1) rounds of communication.

3.2.3 Distributed Construction of the Cluster Graph

As in the query edge selection step, only the cluster heads need to perform actions to compute

the cluster graph. Any member u of a cluster Ca lies at most 2δWi−1/α hops away from a in

G. Thus a can identify intra-cluster edges incident on it by gathering information from at most

2δWi−1/α hops away. If Cb is a cluster with spG′

i−1

(a, b) ≤Wi−1, then node a can identify the

inter-cluster edge {a, b} by gathering information from at most 2Wi−1/α hops away. If Cb is
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a cluster such that there is an edge {u, v} in G′

i−1 with u ∈ Ca and v ∈ Cb, then node a can

identify the inter-cluster edge {a, b} by gathering information from at most 2(2δ + 1)Wi−1/α

hops away. Note that the information that a gathers contains a local view of G′

i−1 along with

all pairwise distances. Using this information, node a is able to run a single source shortest

path algorithm with source a and determine the weights of all inter-cluster and intra-cluster

edges incident on a.

Theorem 17 Computing the cluster graph Hi−1 of G′

i−1 takes O(1) communication rounds.

3.2.4 Answering Shortest Path Queries

Each node u knows all the query edges incident on it. As proved in Section 2.2.4, node u only

needs to gather information from nodes that are at most a constant number of hops away, to be

able to determine locally, for all incident query edges {u, v} ∈ Ei, whether spHi−1
(u, v) ≤ t·|uv|.

Thus, after constant number of communication rounds, u knows the subset of incident query

edges {u, v} for which spHi−1
(u, v) > t · |uv| and u identifies these as the incident edges to be

added to G′

i.

Theorem 18 Answering shortest path queries takes O(1) communication rounds.

3.2.5 Distributed Removal of Redundant Edges

Two edges {u, v} and {u′, v′} in G′

i are mutually redundant if (i) spHi−1
(v, u′) + |u′v′| +

spHi−1
(v′, u) ≤ t · |uv| and (ii) spHi−1

(v′, u)+ |uv|+spHi−1
(v, u′) ≤ t · |u′v′|. Each node u takes

charge of all edges {u, v} added to Gi in phase i and for which the identifier of u is higher

than the identifier of v. For each such edge {u, v} that u is in charge of, u determines all edges

{u′, v′} such that {u, v} and {u′, v′} form a mutually redundant pair. Note that the nodes u

and v′ are a constant number of hops away from each other in G. Similarly, nodes v and u′.

Node u then contributes to the construction of the graph J by adding to V (J) a vertex for

each redundant edge u is in charge of, and to E(J) an edge connecting nodes in V (J) that

correspond to mutually redundant edges in Gi. Using an argument similar to the one used in

Lemma 14, we can show the following property of J :
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Lemma 19 J is a UBG that resides in a metric space of constant doubling dimension.

Let I be an MIS of J constructed using the MIS algorithm in [11] that takes O(log∗ n) com-

munication rounds on a UBG that resides in a metric space of constant doubling dimension.

Each node u then removes from Gi all incident edges in V (J) \ I.

Theorem 20 Removing redundant edges takes O(log∗ n) communication rounds.
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Appendix

Let G′ = G′
m+1 be the spanner at the end of phase m+1. We now prove that G′ satisfies the three

properties that the output of SEQUENTIAL-GREEDY was guaranteed to have.

Theorem 21 For any 0 < δ ≤ t−1

4
, the output G′ is a t-spanner.

Proof: We first prove that the theorem holds for all query edges in E, then we extend the argument

to non-query edges as well. Let {x, y} be an arbitrary query edge and let i be such that {x, y} ∈ Ei.

Then either (i) {x, y} is added to the spanner in phase i, or (ii) spHi−1
(x, y) ≤ t · |xy|. If the former

is true and {x, y} is not a redundant edge, then the theorem holds. If {x, y} is a redundant edge but

does not get removed from Gi, then again the theorem holds. If {x, y} is a redundant edge that gets

removed from Gi, then at least one mutually redundant counterpart edge must remain in Gi (since

removed edges form an independent set), ensuring a t-spanner xy-path in Gi. If (ii) is true, then from

Lemma 7, spG′

i−1

(x, y) ≤ spHi−1
(x, y) (first part of the inequality) and therefore spG′

i−1

(x, y) ≤ t · |xy|.

For non-query edges, the proof is by induction on the length of edges in G. The base case corresponds

to edges in E0, for which SEQUENTIAL-GREEDY ensures that the theorem holds.

Assume that the theorem is true for any edge in E of length no greater than some value s, and

consider a smallest non-query edge {x, y} in G of length greater than s. We prove that spG′(x, y) ≤

t · |xy|. Let i be such that {x, y} ∈ Ei. We now consider two cases, depending on whether {x, y} is a

candidate query edge in phase i or not. If {x, y} is not a candidate query edge, then it is a covered

edge. That is, there exists an edge {x, z} in G′
i−1 such that |yz| ≤ α and ∠yxz ≤ θ or an edge {y, z} in

G′
i−1 such that |xz| ≤ α and ∠xyz ≤ θ. The two cases are symmetric and so without loss of generality,

assume that the former is true. Here θ satisfies the hypothesis of the Czumaj-Zhao lemma (Lemma 3),

that is, 0 < θ < π
4

and t ≥ 1

cos θ−sin θ
. Since |yz| ≤ α and G is an α-qUBG, this implies that {y, z} is

an edge is E. Furthermore, since 0 < θ < π
4
, we have |yz| < |xy|. Refer to Figure 3a. If {y, z} is a

query edge, then by the argument above we have that G′ contains a t-spanner yz-path p. Otherwise, if

{y, z} is not a query edge, since its length is less than the length of {x, y}, by the inductive hypothesis

we get that there is a t-spanner yz-path p. In either case, Lemma 3 tells us that {x, z} followed by p

is a t-spanner path from x to y, completing this case.

We now consider the case when {x, y} is a candidate query edge in phase i, but not a query edge.

Let a and b be such that x ∈ Ca and y ∈ Cb, and let {u, v} be the query edge selected in phase i

between Ca and Cb, with u ∈ Ca and v ∈ Cb. Refer to Figure 3b. Due to the criteria for selecting

{u, v}, we have

t · |uv| − spG′

i−1

(a, u)− spG′

i−1

(b, v) ≤ t · |xy| − spG′

i−1

(a, x)− spG′

i−1

(b, y). (2)
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Figure 3: (a) {x, y} is a covered edge (b) {u, v} is a query edge: if Gi contains a t-spanner
uv-path, then Gi contains a t-spanner xy-path.

Recall that G′
i is the partial spanner at the end of phase i. We show that spG′

i

(x, y) ≤ t · |xy|. We

discuss two cases, depending on whether {u, v} was added to G′
i or not.

Assume first that {u, v} was not added to G′
i. This means that spHi−1

(u, v) ≤ t · |uv|. Note however

that

spHi−1
(u, v) = spG′

i−1

(u, a) + spHi−1
(a, b) + spG′

i−1

(b, v) ≤ t · |uv|. (3)

We now evaluate

spG′

i−1

(x, y) ≤ spG′

i−1

(x, a) + spG′

i−1

(a, b) + spG′

i−1

(b, y)

≤ spG′

i−1

(x, a) + spHi−1
(a, b) + spG′

i−1

(b, y)

≤ t · |xy|.

This latter inequality involves simple substitutions that use inequalities (2) and (3).

Assume now that {u, v} was added to G′
i. Since u ∈ Ca and Ca has radius δWi−1, we have that

spG′

i−1

(a, u) ≤ δWi−1. Similarly, spG′

i−1

(b, v) ≤ δWi−1. These together with (2) yield

t · |uv| − 2δWi−1 ≤ t · |xy| − spG′

i−1

(a, x)− spG′

i−1

(b, y). (4)

The existence of {u, v} in G′
i enables us to construct in G′

i a path from a to b of weight

spG′

i

(a, b) ≤ spG′

i

(a, u) + |uv|+ spG′

i

(v, b)

≤ 2δWi−1 + |uv|, (5)

since spG′

i

(a, u) ≤ spG′

i−1

(a, u) ≤ δWi−1, and same for spG′

i

(v, b). We can now construct a path in G′
i

from x to y of weight
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spG′

i

(x, y) ≤ spG′

i

(a, x) + spG′

i

(b, y) + spG′

i

(a, b)

≤ t · |xy|+ 2δWi−1 − t · |uv|+ spG′

i

(a, b) (substitute (4))

≤ t · |xy|+ 4δWi−1 − (t− 1) · |uv| (substitute (5))

< t · |xy|+ 4δWi−1 − (t− 1)Wi−1 (since |uv| > Wi−1)

Note that for any δ ≤ t−1

4
, the quantity 4δWi−1− (t−1) ·Wi−1 above is negative, yielding spGi

(x, y) <

t · |xy|. This completes the proof.
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Figure 4: (a) Region χ contains two neighbors v and z of u. (b) Definition of the t-leapfrog
property with S = {{u1, v1}, {u2, v2}, {u3, v3}}.

Theorem 22 G′ has O(1) degree.

Proof: Let θ be a quantity satisfying the conditions of Lemma 3. Fix a vertex u and consider the

d-dimensional unit radius ball centered at u. For some T that depends only on θ and d, this ball can be

partitioned into T cones, each with apex u, such that for any x, y in a cone, ∠xuy ≤ θ. Place an infinite

axis-parallel grid of d-dimensional cubes, each of dimension α√
d
× α√

d
× · · · × α√

d
, on the plane. See

Figure 4(c) for a 2-dimensional version of this picture. There are O(1/αd) cells that intersect the unit

ball centered at u, and therefore there are O(1/αd) cells that intersect each cone in the cone partition

of this unit ball. Thus the cones and the square cells together partition the unit ball centered at u into

O(T/αd) regions. We show that in G′, u has a constant number of neighbors in each region.

Let v1, v2, . . . , vk be neighbors of u in G′ that lie in a region χ. Without loss of generality, assume

that |uv1| ≥ |uvj |, for j = 2, . . . , k, and let i be such that {u, v1} ∈ Ei. Since |uvj | ≤ |uv1|, we have

that for all j = 2, . . . , k, {u, vj} ∈ E`, with ` ≤ i.

We now prove that {u, vj} is in fact in Ei for all j. To derive a contradiction, assume that there

is a j > 1 such that {u, vj} ∈ E`, with ` < i. This means that just before edge {u, v1} is processed,

G′ contains edge {u, vj}. Also note that since v1 and vj lie in the same region, |v1vj | ≤ α. But, this
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means that {u, v1} is a covered edge in phase i and will not be queried. This contradicts the presence

of edge {u, v1} in G′.

We have shown that {u, vj} ∈ Ei for all j. Recall that our algorithm picks a unique query edge per

pair of clusters. This along with Lemma 4 proves that k is constant.

In the next theorem, we show that the spanner produced by the algorithm has small weight. The proof

relies on the line segments in the spanner satisfying a property known as the leapfrog property [5, 2].

For any t ≥ t′ > 1, a set of line segments, denoted F , has the (t′, t)-leapfrog property if for every subset

S = {{u1, v1}, {u2, v2}, . . . , {us, vs}} of F

t′ · |u1v1| <
s
∑

i=2

|uivi|+ t ·
(

s−1
∑

i=1

|viui+1|+ |vsu1|
)

. (6)

Informally, this definition says that if there exists an edge between u1 and v1, then any path not including

{u1, v1} must have length greater than t′|u1v1| (see Figure 4(c) for an illustration of this definition).

The following implication of the (t′, t)-leapfrog property was shown by Das and Narasimhan [4].

Lemma 23 (Das and Narasimhan [4]) Let t ≥ t′ > 1. If the line segments F in d-dimensional

space satisfy the (t′, t)-leapfrog property, then wt(F ) = O(wt(MST )), where MST is a minimum

spanning tree connecting the endpoints of line segments in F . The constant in the asymptotic notation

depends on t, t′ and d.

Theorem 24 Let 0 < δ < (t− 1)/(6 + 2t). Let tδ denote t · (1− 2δ)/(1 + 6δ). Let 1 < r < (tδ + 1)/2.

When the relaxed greedy algorithm is run with these values of δ and r, the output G′ satisfies w(G′) =

O(wt(MST (G))).

Proof: Let β > 1 be a constant picked as follows. When tα < 1, pick β satisfying 1 < β < min{2, 1/(1−

tα)}. Otherwise, pick β satisfying 1 < β < 2. Partition the edges of G′ into subsets F0, F1, . . . such

that F0 = {{u, v} ∈ G′ | |uv| ≤ α} and for each j > 0, Fj = {{u, v} ∈ G′ | αβj−1 < |uv| ≤ αβj}. Let

` = dlogβ
1

α
e. Then every edge in G′ is in some subset Fj , 0 ≤ j ≤ `. We will now show that each Fj

satisfies the (t′, t)-leapfrog property, for any t′ satisfying:

1 ≤ t′ < min{
tδ + 1

r
− 1,

2

r
,
t

r
,
2

β
, tα +

1

β
}. (7)

It is easy to check that our choice for δ, r, and β guarantee that each quantity inside the min operator

is strictly greater than 1. Showing the (t′, t)-leapfrog property for Fj would imply that This would
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imply that w(Fj) = O(w(MST (G))) and since the edges of G′ are partitioned into a constant number

of subsets Fj , w(G′) = O(w(MST (G))). We consider F0 separately from Fj , j > 0.

The F0 case. Consider an arbitrary subset S = {{u1, v1}, {u2, v2}, . . . , {us, vs}} ⊆ F0 . To prove

inequality (6) for S, it suffices to consider the case when {u1, v1} is a longest edge in S. If for any

1 ≤ k < s, |vkuk+1| > |u1v1| or |vs, u1| > |u1v1|, then the leapfrog property holds. So we assume that

for all 1 ≤ k < s, |vkuk+1| ≤ |u1v1| and |vsu1| ≤ |u1v1|. Let i be the phase in which {u1, v1} gets

processed, i.e., {u1, v1} ∈ Ei. Since |u1v1| ≤ α, it is the case that for all 1 ≤ k < s, |vkuk+1| ≤ α and

|vsu1| ≤ α. Hence, {{vs, u1}} ∪ {{vk, uk+1} | 1 ≤ k < s} is a subset of edges of G and each edge in this

set gets processed in phase i or earlier.

Assume first that at least one edge in {{vs, u1}} ∪ {{vk, uk+1} | 1 ≤ k < s} gets processed in phase

i. Then the right hand side of inequality (6) is at least tWi−1, since edges in Ei have weights in the

interval Ii = (Wi−1, rWi−1]. Also since t′|u1v1| ≤ t′rWi−1, and since the inequality t′rWi−1 < tWi−1

is guaranteed by the values of r and t′ in (7), the leapfrog property holds for this case.

Assume now that all edges in {{vs, u1}} ∪ {{vk, uk+1} | 1 ≤ k < s} have been processed in phase

i−1 or earlier, meaning that t-spanner paths between their endpoints exist in G′
i−1 at the time {u1, v1}

gets processed. For 1 ≤ k < s, let Pk be a shortest vkuk+1-path in G′
i−1, and let Ps be a shortest

vsu1-path in G′
i−1. Let P be the following u1v1-path in G′

i: P = P1⊕{u2, v2}⊕P2⊕{u3, v3}⊕· · ·⊕Ps.

Here, we use ⊕ to denote concatenation. We distinguish two cases, depending on the size of the subset

S ∩ Ei.

(i) |S ∩ Ei| > 2. Then, w(P ) ≥ 2Wi−1. We also have that |u1v1| ≤ rWi−1, since {u1, v1} ∈ Ei. It

follows that w(P ) > t′|u1, v1| for any t′ < 2

r
. Furthermore, w(P ) is no greater than the right

hand side of the (t′, t)-leapfrog inequality (6), so lemma holds for this case as well.

(ii) |S ∩ Ei| = 2. In addition to {u1, v1}, assume that {uk, vk} ∈ Ei for some k, 1 < k ≤ s. It the

(t′, t)-leapfrog inequality (6) holds, we are done and so let us assume the opposite of that:

t′ · |u1v1| ≥

s
∑

i=2

|uivi|+ t ·
(

s−1
∑

i=1

|viui+1|+ |vsu1|
)

. (8)

Since all edges {uj , vj}, 1 ≤ j ≤ s, except for {u1, v1} and {uk, vk} are in G′
i−1, and since G′

i−1

contains t-spanner vjuj+1-paths for all j, 1 ≤ j < s, and a t-spannner vsu1-path, the above

inequality yields

t′ · |u1v1| ≥ spG′

i−1

(v1, uk) + |ukvk|+ spG′

i−1

(vk, u1).

Multiplying both sides by (1 + 6δ)/(1− 2δ) and using t′ < tδ (which is implied by our choice of
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t′) and Lemma 7, we get

t · |u1v1| ≥ spHi−1
(v1, uk) + |ukvk|+ spHi−1

(vk, u1). (9)

We now observe that the inequality

tδ · |ukvk| <
k−1
∑

i=1

|uivi|+
s
∑

i=k+1

|uivi|+ t ·
(

s−1
∑

i=1

|viui+1|+ |vsu1|
)

(10)

implies the (t′, t)-leapfrog property. To see this use the fact that both {u1, v1} and {uk, vk}

belong to Ei and therefore |u1v1| < r · |ukvk|, which substituted in (10) yields:

tδ · |ukvk| − (r − 1) · |ukvk| <

s
∑

i=2

|uivi|+ t ·
(

s−1
∑

i=1

|viui+1|+ |vsu1|
)

.

We get the lower bound t′ · |u1, v1| on the lefthand side of the above inequality by using |ukvk| >

|u1v1|/r again and our choice of t′ < (tδ + 1)/r − 1. This yields the (t′, t)-leapfrog property. So

we assume that inequality (10) does not hold, that is,

tδ · |ukvk| ≥
k−1
∑

i=1

|uivi|+
s
∑

i=k+1

|uivi|+ t ·
(

s−1
∑

i=1

|viui+1|+ |vsu1|
)

.

Since all edges {uj , vj}, 1 ≤ j ≤ s, except for {u1, v1} and {uk, vk} are in G′
i−1, and since G′

i−1

contains t-spanner vjuj+1-paths for all j, 1 ≤ j < s, and a t-spannner vsu1-path, the above

inequality yields

tδ · |ukvk| ≥ spG′

i−1

(v1, uk) + |u1v1|+ spG′

i−1

(vk, u1).

Multiplying both sides by (1 + 6δ)/(1− 2δ) and using Lemma 7, we get

t · |ukvk| ≥ spHi−1
(v1, uk) + |u1v1|+ spHi−1

(vk, u1). (11)

Inequalities (9) and (11) imply that edges {u1, v1} and {u2, v2} are mutually redundant and

therefore cannot both exist in the spanner — a contradiction.

Now consider a subset S = {{u1, v1}, {u2, v2}, . . . , {us, vs}} ⊆ Fi, with {u1, v1} a longest edge in S.

Note that |ukvk| > |u1v1|/β for all k = 2, 3, . . . , s. If |S| ≥ 3, then the right hand side of the (t′, t)-

leapfrog inequality (6) is at least 2 · |u1v1|/β and therefore the (t′, t)-leapfrog inequality goes through for

any 1 < t′ < 2/β. Otherwise, if |S| = 2, then we need to show that t′ ·|u1v1| < |u2v2|+t·(|u1v2|+|u2v1|).
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If each of |u1v2| and |u2v1| is at most α, then using the same argument as in the F0-case with |S∩Ei| = 2,

we can show that {u1, v1} and {u2, v2} are mutually redundant and will not both exist in the spanner.

Otherwise, if one of |u1v2| or |u2v1| is greater than α, then the right hand side of the (t′, t)-leapfrog

inequality (6) is greater than |u1v1|/β + tα. To ensure that the inequality goes through, we require that

t′ ·|u1v1| ≤
|u1v1|

β
+t·α. Since |u1v1| is at most 1, the above inequality is satisfied for any 1 < t′ ≤ tα+ 1

β
,

which holds true cf. (7).

27


