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Abstract

This paper presents a distributed algorithm that runs on an n-node unit ball graph (UBG)
G residing in a metric space of constant doubling dimension, and constructs, for any ε > 0, a
(1 + ε)-spanner H of G with maximum degree bounded above by a constant. In addition, we
show that H is “lightweight”, in the following sense. Let ∆ denote the aspect ratio of G, that
is, the ratio of the length of a longest edge in G to the length of a shortest edge in G. The
total weight of H is bounded above by O(log ∆) · wt(MST ), where MST denotes a minimum
spanning tree of the metric space. Finally, we show that H satisfies the so called leapfrog
property, an immediate implication being that, for the special case of Euclidean metric spaces
with fixed dimension, the weight of H is bounded above by O(wt(MST )). Thus, the current
result subsumes the results of the authors in PODC 2006 that apply to Euclidean metric spaces,
and extends these results to metric spaces with constant doubling dimension.

1 Introduction

A unit ball graph (UBG) is a graph whose vertices reside in some metric space and whose edges
connect pairs of vertices at distance at most one. The doubling dimension of a metric space is the
smallest ρ such that any ball in this metric space can be covered by 2ρ balls of half the radius. It
is easy to verify that the d-dimensional Euclidean space, equipped with any of the Lp norms, has
doubling dimension Θ(d). If ρ is a fixed constant (independent of the size of the UBG), then we
call the UBG a doubling UBG. In this paper we present a distributed algorithm for constructing a
constant-degree, low-weight spanner for doubling UBGs.

Precisely stated, our result is this: for any fixed ε > 0, our algorithm runs in O(log∗ n) com-
munication rounds on an n-node doubling UBG G, to construct a (1 + ε)-spanner H of G with
maximum degree bounded above by a constant. In addition, we show that H is “lightweight,”
in the following sense. Let ∆ denote the aspect ratio of G, that is, the ratio of the length of a
longest edge in G to the length of a shortest edge in G. We show that the total weight of H
is bounded above by O(log ∆) · wt(MST ), where MST denotes a minimum spanning tree of the
metric space. Since wt(MST ) is a lower bound on the weight of any spanner of G, we have an
O(log ∆)-approximation. Finally, we also show that H satisfies the so called leapfrog property [6],
an immediate implication being that, for the special case of Euclidean metric spaces with fixed
dimension, the weight of H is bounded above by O(wt(MST )). Thus, our current result subsumes
the results in [5] that apply to Euclidean metric spaces, and extends these results to metric spaces
with constant doubling dimension.

∗The first author is at the Department of Computer Science, Villanova University, Villanova, PA 19085. E-mail:
mirela.damian@villanova.edu. The other two authors are at the Department of Computer Science, The University
of Iowa, Iowa City, IA 52242-1419. E-mail: [spandit, sriram]@cs.uiowa.edu.
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1.1 Topology Control

Our result is motivated by the topology control problem in wireless ad-hoc networks. For an overview
of topology control, see the survey by Rajaraman [14]. Since an ad-hoc network does not come with
fixed infrastructure, there is no topology to start with and informally speaking, the topology control
problem is one of selecting neighbors for each node so that the resulting topology has a number of
useful properties such as sparseness, small weight, or maximum vertex degree bounded above by
a constant. Most topology control protocols that provide worst case guarantees on the quality of
the topology assume that the network is modeled by a unit disk graph (UDG) (see [12] for a recent
example). The results in this paper apply to the more general model of doubling unit ball graphs
(UBG). Doubling metric spaces have received a great deal of attention recently [3, 9, 10, 11, 15],
partly because they are thought to capture real-world phenomena such as latencies in peer-to-peer
networks and in the Internet. Also, doubling metrics are robust in the sense that the doubling
dimension is roughly preserved under distortion (see Proposition 3 in [15]). Thus distorted versions
of low dimensional Euclidean space also have small doubling dimension. Consequently, doubling
UBGs can model wireless networks in which nodes have non-uniform transmission ranges or have
erroneous perception of distances to other nodes. Finally, doubling metrics imply the following
“bounded growth” phenomenon that seems to be characteristic of large scale wireless ad-hoc and
sensor networks: the number of nodes that are far away from each other and yet are all in the
vicinity of a particular node, is small. In other words, no node can have an arbitrarily large
independent set in its neighborhood.

1.2 Net Trees

Let (V, d) be a metric space with |V | = n and doubling dimension ρ. In a recent paper, Chan,
Gupta, Maggs, and Zhou [1] show how to construct, via a sequential, polynomial-time algorithm,
a (1 + ε)-spanner of (V, d) with maximum degree bounded above by

(
1
ε

)O(ρ). We will refer to this
algorithm as the CGMZ algorithm. The problem of constructing a spanner for a metric space
can be thought of as a special case our problem, in which the given UBG is a complete graph.
Underlining the result in [1] is the notion of net trees, independently proposed by Har-Peled and
Mendel [8]. Let B(u, r) denote the ball of radius r centered at point u. A subset U ⊆ V is an r-net
of V if it satisfies two properties:

r-packing: For every u and v in U , d(u, v) > r.
r-covering: The union ∪u∈UB(u, r) covers V .

Such nets always exist for any r > 0, and can be easily determined using a greedy algorithm.
Assume without loss of generality that the largest pairwise distance in V is exactly 1 (this can be
achieved by appropriate scaling). Let α, with

√
1 + ε ≤ α ≤ 1 + ε/2, and γ ≥ α

α−1 be constants.
Let h be the smallest positive integer such every pairwise distance is greater than 1

αh . Let r0 = 1
αh

and let ri = α · ri−1, for i > 0. A net tree is a sequence of subsets 〈V0, V1, V2, . . . , Vh〉, such that
V0 = V and Vi is an ri-net of Vi−1, for i > 0. Note that every Vi, including V0, is a ri-packing. Also
note that Vh, which is a 1-net of Vh−1, is a singleton, since the maximum separation between any
pair of points is one. To view the sequence 〈V0, V1, V2, . . . , Vh〉 as a tree, let i(v) = max{i | v ∈ Vi}
for each v ∈ V . Then, for each v ∈ V , i(v) + 1 copies of v appear as nodes in the tree. These
are denoted (0, v), (1, v), . . . , (i(v), v), where (i, v) represents the occurrence of v in Vi. For each
0 ≤ i < i(v), the parent of node (i, v) is (i + 1, v). Node (i(v), v) has no parent and is the root of
the net tree, if i(v) = h; otherwise, vertex v 6∈ Vi(v)+1 and there is some vertex u ∈ Vi(v)+1 such that
B(u, ri(v)+1) contains v. Arbitrarily, pick one such u and let (i(v) + 1, u) be the parent of (i(v), v).
Informally speaking, higher levels in the net tree (leaves are at level 0) represent the structure of
V at lower resolution. Figure 1 shows an example of a net tree with 6 levels.

2



V0

V1

V2

V3

V4

V5

Figure 1: A net tree with six levels.
The CGMZ Algorithm.

1. Build a net tree 〈V0, V1, . . . , Vh〉 of V .

2. Let λ = α
α−1 , γ = 2λ

(
1 + 4α

ε

)
. Construct the edge sets

E0 = {{u, v} ∈ V0 × V0 | d(u, v) ≤ γ · r0},
and

Ei = {{u, v} ∈ Vi × Vi | γ · ri−1 < d(u, v) ≤ γ · ri},
for each i = 1, . . . , h and let Ê = ∪iEi.

3. Replace some edges in Ê by other edges to obtain a new edge set Ẽ.

Chan and coauthors [1] work with the version of the algorithm for α = 2 and λ = 2. They show
that the graph H = (V, Ê) obtained after Step (2) is a (1 + ε)-spanner of the metric space and has
linear number of edges, but may not satisfy the bounded degree requirement. Short paths in H
can be obtained from the net tree in a natural manner. A uv-path in H whose length is at most
(1 + ε) · d(u, v) can be obtained by traveling up the net tree from the leaf u and from the leaf v
until some level i is reached, such that the ancestors of u and v at level i are connected by an edge.
In Step (3), a subset of the edges in Ê is considered and each edge in this subset is replaced by
at most one new edge. This step, which will be described in detail in Section 2.2, redistributes
the edges so that all vertex-degrees are bounded above by a constant. The techniques used by
Chan and coauthors for bounding vertex degrees play a critical role in this paper as well. In [5] we
also describe an algorithm for constructing a bounded-degree (1 + ε)-spanner for Euclidean UBGs,
but our results rely on purely geometric arguments to bound the vertex degree of the constructed
spanner. Chan and coauthors [1] obtain the following theorem.

Theorem 1 [Chan, Gupta, Maggs, Zhou] Let (V, d) be a finite metric with doubling dimension
bounded by ρ. For any ε > 0, the graph (V, Ẽ) is a (1+ ε)-spanner for (V, d), with maximum degree
bounded above by

(
1
ε

)O(ρ).

Our algorithm is a modification of the CGMZ algorithm [1] that takes into account the fact
that pairs of points separated by a distance greater than one are not connected by an edge and
therefore such edges cannot be used in our spanner. A high level view of our algorithm is that it
uses a slightly modified version of the CGMZ algorithm and constructs a graph H that may contain
some virtual edges, that is, edges of length more than one. H has all the desired properties with
respect to the input UBG G. Subsequently, we show how to replace each virtual edge in H by at
most one real edge, that is, an edge of length at most one. The resulting graph is a constant-degree
(1 + ε)-spanner of G.
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To obtain a distributed implementation of the above idea in O(log∗ n) rounds, we use an al-
gorithm due to Kuhn, Moscibroda, and Wattenhofer [11]. This algorithm computes a (1, O(1))-
decomposition of a given doubling n-node UBG in O(log∗ n) rounds, but can also be used to
compute a net tree. After computing the net tree, we require a constant number of additional
rounds to construct the spanner.

2 Spanners for Doubling UBGs

Let (V, d) be a metric space with doubling dimension ρ. Let G = (V, E) be the UBG induced by
this metric space. Thus, for all u, v ∈ V , u 6= v, {u, v} ∈ E iff d(u, v) ≤ 1. For a fixed ε > 0,
let the quantities h, ri and γ be defined as in Section 1.2. Run Steps (1) and (2) of the CGMZ
Algorithm to construct a set of edges Ê. Let H = (V, Ê). Note that Vh may not be a singleton since
V may contain points whose pairwise distance is more than one. So the sequence 〈V0, V1, . . . , Vh〉
should be viewed as a forest of net trees, rooted at points in Vh. Recall that Ê = ∪h

i=0Ei and
further recall that for i > 0, Ei consists of edges connecting all pairs of points u, v ∈ V such that
d(u, v) ∈ (γ · ri−1, γ · ri]. Note that there are values of i for which the right endpoint of the interval
(γ · ri−1, γ · ri] may be greater than one and for such values of i, Ei may contain edges that are
not in E. Thus H is not necessarily a subgraph of G. Let δ = dlogα γe. It is easy to verify that
for 0 ≤ i ≤ h − δ, Ei ⊆ E; for i = h − δ + 1, the edge-set Ei may contain some edges in E and
some edges not in E; and for i > h− δ + 1, all edges in Ei are outside E. We call edges in H that
also belong to E, real edges. Any edge in H that is not real is a virtual edge. Clearly, a spanner
for G may not contain virtual edges, however virtual edges in H do carry important proximity
information that will provide clues on how to replace them with real edges.

2.1 Properties of H

We will now prove some important properties of H. Let dH be the distance metric induced by
shortest paths in H. Specifically, we will show that H satisfies the following three properties:

1. For every {u, v} ∈ E, dH(u, v) ≤ (1 + ε) · d(u, v) (Lemma 6).

2. Edges of H can be oriented in such a way that the out-degree of H is bounded by
(

1
ε

)O(ρ)

(Lemma 7).

3. The weight of H is wt(H) = O(log ∆) · (1
ε

)O(ρ) · wt(MST ) (Lemma 8).

Property (1) implies that H is connected, since G is assumed to be connected. Property (2) implies
that H has a linear number of edges, though it does not imply that H has bounded maximum
degree. In Section 2.2 we describe a method to alter H so as to bound the in-degree of H as well,
while maintaining all the properties listed above. The proofs of these properties are based on some
intermediate results, that we now establish. Proofs of Lemma 6 and Lemma 7 are similar to those
in [2]. The next observation follows immediately from the definition of the doubling dimension of
a metric space.

Proposition 2 If (X, d) is a metric with doubling dimension ρ and Y ⊆ X is a subset of points
with aspect ratio ∆, then |Y | ≤ 2ρ·dlog2 ∆e.

For any point u ∈ Vi, let Ni(u) = {v ∈ Vi | {u, v} ∈ Ei} denote the set of points connected to u by
edges in Ei. We now show an upper bound on the size of Ni(u).

Lemma 3 For each u ∈ Vi, |Ni(u)| ≤ (
1
ε

)O(ρ).
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Proof: That the aspect ratio of Ni(u) is bounded by 2γ follows from two observations: (1) any
two points in Ni(u) are more than distance ri apart, and (2) any point in Ni(u) is at distance at
most γ · ri from u and therefore, by using the triangle inequality, any two points in Ni(u) are at
most 2γ · ri apart. Then Proposition 2 implies the lemma.

Lemma 4 Suppose u, v ∈ Vi and d(u, v) ≤ γ · ri. Then {u, v} ∈ Ê.

Proof: If γ · ri−1 < d(u, v) ≤ γ · ri, then {u, v} ∈ Ei. Otherwise, (a) d(u, v) ≤ γ · r0 or (b) for some
j < i, γ · rj−1 < d(u, v) ≤ γ · rj . Since Vi ⊆ Vj for all 0 ≤ j ≤ i, in case (a), {u, v} ∈ E0 and in case
(b), {u, v} ∈ Ej .

Lemma 5 For each u ∈ V and for each i, there exists v ∈ Vi such that dH(u, v) ≤ λ · ri.

Proof: The proof is by induction on i. For i = 0, u ∈ V0 = V and dH(u, u) = 0 < λ · r0, proving
this case true. For i > 0, apply the inductive hypothesis to infer that there exists w ∈ Vi−1 such
that dH(u,w) ≤ λ · ri−1. Furthermore, since Vi is an ri-net of Vi−1, there exists v ∈ Vi ⊆ Vi−1 such
that d(w, v) ≤ ri ≤ γ ·ri−1. Therefore, by Lemma 4, {w, v} ∈ Ê and hence dH(w, v) = d(w, v) ≤ ri.
By the triangle inequality we have that dH(u, v) ≤ dH(u,w) + dH(w, v) ≤ λ · ri−1 + ri = λ · ri.

In addition to proving the existence of a vertex v at each level i, Lemma 5 implies a certain path
from vertex u to v ∈ Vi. Start from node (0, u) in the tree (that is, the copy of u corresponding to
a leaf) and follow the path through a sequence of parents, until node (i, v) is reached. Lemma 5
shows that the distance in H along this path is at most λ · ri.

Lemma 6 [Property 1] For any edge {u, v} ∈ E, dH(u, v) ≤ (1 + ε) · d(u, v).

Proof: Let q be the smallest integer such that 4λ
αq ≤ ε < 8λ

αq . Thus q = dlogα
4λ
ε e. Let i be such that

ri ≤ d(u, v) ≤ ri+1, and assume first that i ≤ q−1. Then d(u, v) ≤ αq ·r0 ≤ 8λ
ε ·r0 ≤ γr0. Since both

u and v belong to V0, by Lemma 4, we have that {u, v} ∈ Ê. This implies that dH(u, v) = d(u, v),
proving the lemma true for this case. Assume now that i ≥ q and let s = i − q ≥ 0. Note that
ri = αq · rs. By Lemma 5, there exist x, y ∈ Vs such that dH(u, x) ≤ λ · rs and dH(v, y) ≤ λ · rs.
By the triangle inequality,

d(x, y) ≤ d(x, u) + d(u, v) + d(v, y)
≤ λ · rs + α · ri + λ · rs

= rs(2λ + α · αq)
≤ rs(2λ + α8λ

ε )
= γ · rs

Hence, by Lemma 4, dH(x, y) = d(x, y). Using the triangle inequality again, we get

dH(u, v) ≤ dH(u, x) + dH(x, y) + dH(y, v)
≤ 2λ · rs + d(x, y)
≤ 4λ · rs + d(u, v)
≤ (1 + 4λ

αq ) · d(u, v)
≤ (1 + ε) · d(u, v)

This completes the proof.
Lemma 6 also identifies a short uv-path in H. Simply follow the sequence of parents, starting

at the node (0, u) in the tree and similarly, starting at the node (0, v). At a certain level (denoted
s in the proof), the ancestor of u and the ancestor of v at that level are connected by an edge.

We now prove Property (2) of H. For each point u, define i(u) = max{i | u ∈ Vi}, and for
each edge {u, v} ∈ Ê, direct {u, v} from u to v, if i(u) < i(v). If i(u) = i(v), pick an arbitrary
orientation. This edge orientation is identical to the one used in [1]. Call the resulting digraph −→H .

5



Lemma 7 [Property 2] The out-degree of −→H is bounded above by (1
ε )

O(ρ).

Proof: Let {u, v} ∈ Ê be an arbitrary edge directed from u to v, and let i be such that {u, v} ∈ Ei.
Then d(u, v) ≤ γ · ri. Now note that ri+δ = αδ · ri ≥ γ · ri (recall that δ = dlogα γe). This, along
with the fact that Vi+δ is an ri+δ-net, implies that it is not possible for both u and v to exist in
Vi+δ. Since i(u) ≤ i(v) (by our assumption), it follows that i(u) ≤ i+ δ. On the other hand, u ∈ Vi

and so i(u) ≥ i.
Summarizing, we have that i(u) − δ ≤ i ≤ i(u). This tells us that there are at most δ + 1 =

O(logα γ) values of i for which Ei may contain an edge outgoing from u. For each such i, by
Lemma 3 there are at most |Ni(u)| ≤ (

1
ε

)O(ρ) edges in Ei outgoing from u. It follows that the total

number of edges in Ê outgoing from u is
(

1
ε

)O(ρ) ·O(log(1/ε)) =
(

1
ε

)O(ρ).

We now prove Property (3) of H, showing that H has bounded weight.

Lemma 8 [Property 3] The total weight of H is wt(H) = O(log ∆) · (1
ε

)O(ρ) · wt(MST ), where
MST is a minimum spanning tree of V , and ∆ is the aspect ratio of G.

Proof: We show that, for each i, wt(Ei) =
(

1
ε

)O(ρ) ·wt(MST ). This along with the fact that there
are h + 1 = logα

1
r0

+ 1 = O(logα ∆) levels i, proves the claim of the lemma.
Let Ui ⊆ Vi be the points in Vi incident to edges in Ei, and let t = |Ui|. Recall that any edge

{u, v} ∈ Ei satisfies ri < d(u, v) ≤ γ · ri. Thus, any spanning tree of a set of points containing Ui

has weight at least (t− 1) · ri, implying that wt(MST ) ≥ (t− 1) · ri. Also note that the weight of
Ei is bounded by Σu∈Ui |Ni(u)| · γ · ri ≤

(
1
ε

)O(ρ) · t · γ · ri, using the upper bound on |Ni(u)| given
by Lemma 3. This completes the proof.

2.2 Altering H for Bounded Degree

In this section we show how to modify H so as to bound the degree of each vertex by a constant.
Lemma 7 shows that an oriented version of H, namely−→H , has bounded out-degree. Next we describe
a method that carefully replaces some directed edges in −→H by others so as to guarantee constant
bound on the in-degree as well, without increasing the out-degree. The replacement procedure
is similar to the one used in [1], slightly adjusted to work with UDGs. Assume without loss of
generality that ε ≤ 1

2 ; otherwise, if ε > 1
2 , we proceed with ε = 1

2 . We use the fact that ε ≤ 1
2 in the

proof of Lemma 11. Let ` be the smallest positive integer such that 1
α`−1 ≤ ε. Thus ` = O(logα

1
ε ).

Edge Replacement Procedure. Let u be an arbitrary point in V and let M(u, i) be the set of
all vertices v ∈ Vi such that {v, u} is an edge in Ei directed from v to u in −→H . Let I(u) = 〈i1, i2, . . .〉
be the increasing sequence of all indices ik for which M(u, ik) is nonempty. For 1 ≤ k ≤ `, we do
not disturb any of the edges from points in M(u, ik) to u. For each k > ` such that ik ≤ h− δ− 2,
edges {v, u} connecting v ∈ M(u, ik) to u are replaced by other edges. Specifically, an edge {v, u},
v ∈ M(u, ik) is replaced by an edge {v, w}, where w is an arbitrary vertex in M(u, ik−`). The
replacement can be equivalently viewed as happening in H or its oriented version −→H . In −→H , we
replace the directed edge (v, u) by the directed edge (v, w). In the next two lemmas, our arguments
will use −→H or H, as convenient.

Let Ẽ be the resulting set of edges. By our construction, |Ẽ| ≤ |Ê|. An important observation
here is that the replacement procedure above is carried out only for edges in Ei, with i ≤ h− δ− 2
(that is, only edges of length no greater than 1/α2). This is to ensure that only real edges get
replaced and no virtual edges get added, a guarantee that is shown in the following lemma.

Lemma 9 Ẽ \ Ê contains no virtual edges.
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Proof: Let {v, u} be an edge that gets replaced by {v, w}, with v ∈ M(u, ik) and w ∈ M(u, ik−`).
Recall that k > ` and ik ≤ h − δ − 2. Using the definitions of Eik and Eik−`

and the fact that
1

α`−1 ≤ ε, it follows that d(w, u) ≤ ε·d(v, u). By the triangle inequality, d(v, w) ≤ d(w, u)+d(v, u) ≤
(1 + ε)d(v, u). Now note that d(v, u) ≤ 1/α2. This is because edges in Eik have length no greater
than γ · rik ≤ 1/α2, for any ik ≤ h− δ−2. Therefore d(v, w) ≤ (1+ε)/α2 ≤ 1, for any α2 ≥ (1+ε).

Let J = (V, Ẽ). First we show that J indeed has bounded degree (Lemma 10). Second we show that
the metric distance dJ induced by shortest paths in J is a good approximation of dH (Lemma 11).
A consequence of this is that J remains connected, and maintains spanner paths between endpoints
of real edges.

Lemma 10 Every vertex in J = (V, Ẽ) has degree bounded by (1
ε )

O(ρ).

Proof: Let A be the maximum out-degree of a vertex of −→H . By Lemma 7, A ≤ (1
ε )

O(ρ). Let B be
the largest of |Ni(u)|, for all i and all u. Then, by Lemma 3, B ≤ (1

ε )
O(ρ). The edge-replacement

procedure replaces a directed edge (v, u) by a directed edge (v, w). So the out-degrees of vertices
remains unchanged by the edge-replacement procedure, and continue to be bounded above by
(1

ε )
O(ρ). Thus, we can simply focus on the in-degrees of vertices. We bound these by accounting

for the in-degree of an arbitrary vertex x with respect to old edges (in Ẽ ∩ Ê) and with respect to
new edges (in Ẽ \ Ê); we show that both in-degrees are bounded above by (1

ε )
O(ρ).

In-degree of x w.r.t. Ẽ ∩ Ê. Out of the edges in −→H that come into x, at most B(` + δ + 2) remain
in Ẽ. More specifically, at most B edges at each of the first ` levels i1, i2, . . . , i` in I(x), plus at
most B edges in each of Ei, i = h− δ− 1, h− δ, . . . , h, remain in Ẽ. Any other edge directed into x
gets replaced by an edge not incident to x. We end this case by noting that B(`+ δ +2) = (1

ε )
O(ρ).

In-degree of x w.r.t. Ẽ \ Ê. Vertex x has a new in-coming edge whenever it plays the role of w in
the edge-replacement procedure. For each edge (w, u), there are at most B qualifying edges (v, u)
directed into u. Furthermore, there are A edges (w, u) outgoing from w. This gives an upper bound
of AB = (1

ε )
O(ρ) on the in-degree of x.

It remains to show that dJ is a good approximation of dH . Intuition for this is provided by the
proof of Lemma 3. In that proof, it is shown that when {v, w} replaces {v, u}, d(w, u) ≤ ε · d(v, u)
and d(v, w) ≤ (1 + ε) · d(v, u). Thus, if the path 〈v, w, u〉 existed in Ẽ, this path would have length
at most (1 + 2ε) · d(v, u). However, edge {w, u} may not exist in Ẽ, since it may itself have been
replaced. Thus a shortest path from w to u in Ẽ may be longer than d(w, u). However, since
d(w, u) ≤ ε · d(v, u), the extra cost of replacing {w, u} is marginal and the eventual sum of all of
these lengths is still bounded above by (1 + 2ε) · d(v, u). Thus we have the following lemma, whose
proof appears in the appendix (due to space restrictions).

Lemma 11 dJ ≤ (1 + 2ε)dH .

2.3 Eliminating Virtual Edges

The only impediment in having J = (V, Ẽ) serve as a spanner for the input UDG G is the presence
of virtual edges in J . Recall that these are edges of length greater than one and clearly do not
exist in G. In this section we show that there exist real edges that can take over the role of virtual
edges in J , without violating the properties J is expected to have.

Let {u, v} ∈ E be an arbitrary edge and let i be such that ri ≤ d(u, v) < ri+1. Let q be as in
the proof of Lemma 6: the smallest integer such that 4λ

αq ≤ ε < 8λ
αq . As mentioned before, the proof
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of Lemma 6 implies a certain uv-path of length at most (1 + ε) · d(u, v) in H = (V, Ê). If i ≤ q− 1,
this path is just the edge {u, v}, because {u, v} is guaranteed to exist in Ê. The Edge Replacement
Procedure (Section 2.2) ensures that only real edges are replaced and each real edge is replaced by
a path consisting only of real edges. This ensures that even in Ẽ there is a uv-path of length at
most (1+2ε) · d(u, v), consisting of real edges only. If i ≥ q, the uv-path in H implied by Lemma 6
may have more than one edge. Let s = i−q and (s, u∗) (respectively, (s, v∗)) be the level-s ancestor
of the leaf (0, u) (respectively, the leaf (0, v)) in the net tree 〈V0, V1, . . . , Vh〉. Then edge {u∗, v∗}
is guaranteed to be present in Ê and the uv-path implied by Lemma 6 starts at (0, u), goes up to
the net tree via parents to (s, u∗), goes to (s, v∗), and then follows the unique path down the tree
from (s, v∗) to (0, v). It is easy to check that of all the edges in this path, only {u∗, v∗} may be
virtual. Specifically, when the edge {u, v} is long enough to guarantee that i ≥ h− δ + 1 + q, then
s = i− q ≥ h− δ +1 and the edge {u∗, v∗} may belong to Es. Recall that for j ≥ h− δ +1, edges in
Ej may not be real and in particular {u∗, v∗} may be a virtual edge. Since the uv-path implied by
Lemma 6 passes through edge {u∗, v∗}, one has to be careful in replacing {u∗, v∗} by a real edge.
Our virtual edge replacement procedure is given below.

For any node (i, v) in the net tree, let T (i, v) denote the set of all vertices u ∈ V , such that the
subtree of the net tree rooted at (i, v) contains a copy of u. In other words, T (i, v) = {u ∈ V |
(i, v) is an ancestor of (j, u) for some j ≤ i}.
Virtual Edge Replacement Procedure. For each virtual edge {u, v} ∈ Ei, if there is a real
edge {x, y} already in the spanner H, with x ∈ T (i, u) and y ∈ T (i, v), then there is nothing to
do. Similarly, if there is no such real edge {x, y} in the input graph G, then there is nothing to do.
Otherwise, find a real edge {x, y} ∈ E, x ∈ T (i, u) and y ∈ T (i, v), and replace {u, v} by {x, y}.

x y

a
b

u v

T(i, u) T(i, v)

real edge

virtual edge

Figure 2: A short ab-path passes through virtual edge {u, v}. After replacing virtual edge {u, v}
by real edge {x, y}, there is a short ab-path through {x, y}.

The reason why this replacement procedure works can be intuitively explained as follows. A
virtual edge {u, v} ∈ Ei is important for pairs of vertices {a, b}, with a ∈ T (i, u) and b ∈ T (i, v),
for which all ab-paths of length at most (1 + ε) · d(a, b) pass through {u, v}. Replacing {u, v} by
{x, y} provides the following alternate ab-path that is short enough: starting at the leaf a, go up
the tree rooted at (i, u) via parents until an ancestor common to a and x is reached, then come
down to x, take edge {x, y}, go up the tree rooted at (i, v) until an ancestor common to b and y
is reached, and finally go down to b. See Figure 2 for an illustration. Note that this entire path
consists only of real edges.

We finally state our main result. Let G′ be the graph obtained from J by replacing virtual
edges using the Virtual Edge Replacement Procedure. Let dG′ be the distance metric induced by
shortest paths in G′ = (V,E′).

Theorem 12 G′ = (V, E′) is a (1 + ε)-spanner of G with degree bounded by (1
ε )O(ρ) and weight

bounded by O(log ∆) · (1
ε )O(ρ) · wt(MST ).
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A proof similar to that of Lemma 6 can be used the show the spanner property of G′. This high
level ideas are also discussed earlier in this section. The fact that G′ is lightweight simply follows
from the fact that a virtual edge of length greater than one in J , either gets eliminated, or gets
replaced by at most one real edge of length at most one in G′. The constant degree bound follows
from the observation that, for a vertex x to acquire a new incident edge, there is an ancestor of
x in the net tree at level h − δ + 1 or higher, that loses an incident edge at that level. There are
a constant number of such ancestors and from Lemma 3, we know that any vertex has a constant
number of incident edges at any particular level.

We conclude this section with a summary of our algorithm.

Algorithm SPANNER((V, d), ε)

Let
√

1 + ε < α ≤ 1 + ε/2 be a constant, λ = α
α−1 , γ = 2λ

(
1 + 4α

ε

)
, and δ = dlogα γe.

Let h be the smallest integer such that 1
αh is smaller than the minimum inter-point distance.

Let r0 = 1
αh and let ri = α · ri−1, for all i > 0.

Constructing a linear size (1 + ε)-spanner H = (V, Ê).
1. Construct the net tree 〈V0, V1, . . . , Vh〉.

[Let i(u) = max{i | u ∈ Vi}.]
2. Construct the sets

E0 = {{u, v} ∈ V0 × V0 | d(u, v) ≤ γ · r0},
Ei = {{u, v} ∈ Vi × Vi | γ · ri−1 < d(u, v) ≤ γ · ri}

for 1 ≤ i ≤ h.
[Let Ê = ∪iEi and H = (V, Ê).]

Replacing edges to obtain a constant degree bound.
3. Orient each edge {u, v} ∈ Ê from u to v if i(u) ≤ i(v), breaking ties arbitrarily.

[Let M(u, i) denote the set of vertices v ∈ Vi such that there is an edge from v to u.]
4. For each u ∈ V , construct the increasing sequence I(u) = 〈i1, i2, . . . , 〉 of all ik with M(u, ik) 6= ∅

[Let ` be the smallest integer with 1
2`−1 ≤ ε.]

5. For each u ∈ V and each ik ∈ I(u), with k > ` and ik ≤ h− δ − 2 do
6. Replace directed edge (v, u), v ∈ M(u, ik) by edge (v, w) for arbitrary w ∈ M(u, ik−`).

[Let J = (V, Ẽ) be the resulting graph, with distance metric dJ .]

Replacing virtual edges by real ones.
7. For each i ≥ h− δ + 1 and each virtual edge {u, v} ∈ Ei do
8. If there is a real edge {x, y} ∈ Ẽ, x ∈ T (i, u) and y ∈ T (i, v), then do nothing.
9. Otherwise, if there is a real edge {x, y} ∈ E, with x ∈ T (i, u) and y ∈ T (i, v), replace {u, v} by {x, y}.

[Let E′ be the set of resulting edges. Output is G′ = (V, E′).]

3 Leapfrog Property

In Lemma 8, we showed that H = (V, Ê) has total weight bounded above by O(log ∆) · (1
ε

)O(ρ) ·
wt(MST ), where ∆ is the aspect ratio of G. Thus, for fixed ε and constant doubling dimension ρ,
the upper bound is within O(log ∆) times the optimal value. In an attempt to show a bound that is
within O(1) times the optimal value, we use a tool that is widely used in the computational geometry
literature [6, 4, 7]. In the context of building lightweight (1+ε)-spanners for Euclidean spaces, Das
and Narasimhan [6] have shown that if the set of edges in the spanner satisfy a property known
as the leapfrog property, then the total weight of the spanner is bounded above by O(wt(MST )).
Below we state the leapfrog property precisely.
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Leapfrog Property. For any t ≥ t′ > 1, a set F of edges has the (t′, t)-leapfrog property if, for
every subset S = {{u1, v1}, {u2, v2}, . . . , {us, vs}} of F ,

t′ · d(u1, v1) <
s∑

i=2

d(ui, vi) + t ·
( s−1∑

i=1

d(vi, ui+1) + d(vs, u1)
)
. (1)

Informally, this definition says that, if there exists an edge between u1 and v1, then any u1v1-path
not including {u1, v1} must have length greater than t′ · d(u1, v1). Das and Narasimhan [6] show
the following connection between the leapfrog property and the weight of the spanner.

Lemma 13 Let t ≥ t′ > 1. If the line segments F in d-dimensional space satisfy the (t′, t)-leapfrog
property, then wt(F ) = O(wt(MST )), where MST is a minimum spanning tree connecting the
endpoints of line segments in F . The constant in the asymptotic notation depends on t, t′ and d.

It is well known that if a spanner is built “greedily”, then the set of edges in the spanner
satisfies the leapfrog property [6, 4, 7]. In [5] we showed that even a “relaxed” version of the greedy
algorithm would ensure that the spanner edges have the leapfrog property. This was critical to
showing that the spanner constructed in a distributed manner for UBGs in Euclidean spaces [5]
had total weight bounded above by O(wt(MST )). Here we ask if it is possible to do the same for
UBGs in metric spaces with constant doubling dimension. In an attempt to answer this question
we show that, using a variant of the SPANNER algorithm (end of Section 2), we can build, for a given
doubling UBG G, a (1 + ε)-spanner with constant degree and with the (t, t′)-leapfrog property, for
some constants t ≥ t′ > 1. Note that this does not give us the desired O(wt(MST )) bound on
the weight of the constructed spanner because we do know if the equivalent of Lemma 13 holds
for non-Euclidean metric spaces. The proof of this lemma in [6] is quite geometric and does not
suggest an approach to its generalization to metric spaces of constant doubling dimension.

To guarantee that the output spanner satisfies the (t′, t)-leapfrog property, we need to make
two modifications to the SPANNER algorithm. Let Hi denote the spanning subgraph of G induced
by E0 ∪ E1 ∪ · · · ∪ Ei.

1. We modify Step (2) of the algorithm and place an edge {u, v} into Ei only if {u, v} ∈ Vi×Vi,
γ · ri−1 < d(u, v) ≤ γ · ri, and there is not already a uv-path of length at most (1 + ε) · d(u, v)
in Hi−1.

2. Two edges {u, v} and {u′, v′} in Ei are said to be mutually redundant if both of the following
conditions hold:

(a) dHi−1(v, u′) + d(u′, v′) + dHi−1(v
′, u) ≤ (1 + ε) · d(u, v)

(b) dHi−1(v
′, u) + d(u, v) + dHi−1(v, u′) ≤ (1 + ε) · d(u′, v′)

Note that these conditions imply that Hi \ {u, v} contains a uv-path of length at most (1 +
ε) · d(u, v) and Hi \ {u′, v′} contains a u′v′-path of length at most (1 + ε) · d(u′, v′). Thus, one
of these can potentially be eliminated from Hi, without compromising the (1 + ε)-spanner
property of Hi. In fact, such mutually redundant pairs of edges need to be eliminated from
Hi in order to show that H satisfies the leapfrog property.

These ideas and how they lead to a spanner that has the leapfrog property are discussed in detail
in [5].
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4 Distributed Implementation

In this section, we show that the SPANNER algorithm (end of Section 2) and its variant that ensures
the leapfrog property (Section 3), both have distributed implementations that run in O(log∗ n)
rounds of communication. Here we focus on the SPANNER algorithm. It turns on that Step (1) of
this algorithm takes O(log∗ n) rounds, whereas the remaining steps take O(1) additional rounds.
We first examine Steps (2)-(9) of the algorithm.

It is easy to verify that in Steps (2)-(9), a node u needs to communicate only with other nodes
that are either neighbors of u in G, or to which u is connected by a virtual edge. The main difficulty
here is that the endpoints of a virtual edge {u, v} may not be neighbors in the network. Consider
a virtual edge {u, v} ∈ Ei. By definition of Ei, d(u, v) ≤ γ · ri ≤ γ. Even though the distance
between u and v in the underlying metric space is bounded above by a constant, it is not necessary
that the hop distance between u and v in G be similarly bounded above. Let us call a virtual edge
{u, v} ∈ Ei, useful , if there exist x ∈ T (i, u) and y ∈ T (i, v) such that {x, y} ∈ E. Notice that only
useful virtual edges need to be considered by our algorithm. If a virtual edge {u, v} is not useful,
then even though it is added in Step (2), it is eliminated in Steps (7)-(9). In the following lemma
we show that the hop distance between endpoints of useful virtual edges is small.

Lemma 14 The hop distance in G between the endpoints of any useful virtual edge {u, v} ∈ Ei is
at most 2(2λ + 1).

Proof: By definition of a useful virtual edge, there are points x ∈ T (i, u) and y ∈ T (i, v) such that
{x, y} is an edge in G. Thus a path in G between u and v is the following: start at node (i, u)
in the net tree and travel down to a copy of x, follow the edge {x, y}, and then travel up to node
(i, v). Note that the edge {x, y} ∈ E, but it may not belong to Ẽ. The length of this path is at
most

2(1 +
1
α

+
1
α2

+ . . .) + 1,

implying that dG(u, v) ≤ 2λ + 1. Now consider a shortest uv-path in G, say 〈w0 = u,w1, . . . , wk =
v〉. Because G is a UBG and due to the triangle inequality, d(wi, wi+2) > 1 for all 0 ≤ i ≤ k − 2.
This yields a lower bound of k/2 on dG(u, v). Combining this with the upper bound of 2λ + 1, we
obtain that k ≤ 2(2λ + 1).

Thus, in Steps (2)-(9), a node only needs to communicate with nodes that at most O(λ) hops
away. This suggests a simply way of implementing Steps (2)-(9): after Step (1) is completed, each
node u gathers neighborhood information and the values of i(v) from all nodes v that are O(λ)
hops away. After this, node u can do all of its computation with no further communication.

The fact that Step (1) can be implemented in O(log∗ n) rounds of communication follows from
a clever argument in [11]. Suppose that we have computed the set Vi−1. The computation of the
set Vi, which is an ri-net of Vi−1, reduces to an maximal independent set (MIS) computation on a
degree-bounded graph. To see this, create a graph, say Gi, whose vertex set is Vi−1 and whose edges
connect any pair of vertices u, v ∈ Vi−1, if d(u, v) ≤ ri. Then it is easy to see that an MIS in Gi

is an ri-net of Vi−1. Furthermore, the fact that Gi has bounded degree follows from the fact that
the underlying metric space has bounded doubling dimension. There is a well-known algorithm
due to Linial [13] for computing an MIS, that runs in O(log∗ n) communication rounds on graphs
with bounded degree. Using this algorithm, one can compute the ri-net Vi of Vi−1 in O(log∗ n)
rounds. Since there are h + 1 = O(log ∆) such sets to compute, it seems like this approach will
take O(log ∆ · log∗ n) rounds. However, in [11] it is shown that in this algorithm, each node uses
information only from nodes that are at most O(log∗ n) hops away in G. Therefore, this algorithm
has a O(log∗ n)-round implementation in which each node u first gathers information from nodes
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that are at most O(log∗ n) hops away and then performs all steps of the SPANNER algorithm locally,
using the collected information.
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Appendix
Lemma 11. Proof: It suffices to show that, for each edge {v, u} ∈ Ê that gets replaced, dJ(v, u) ≤
(1 + 2ε) · dH(v, u). Assume without loss of generality that edge {v, u} directs into u, and let k be
such that v ∈ M(u, ik). Then it must be that k > ` and ik < h− δ, otherwise {v, u} would stay in
Ẽ.

Let w0 = v, and assume that {w0, u} gets replaced by {w0, w1}. By construction, w1 ∈
M(u, ik−`). To avoid double-subscripts, through the remaining of this proof we use the index
pair 〈i, k〉 to denote ik. We now show that d(w1, u) ≤ ε · d(w0, u) and d(w0, w1) ≤ (1 + ε) · d(w0, u).
This claim follows from the following observations:

1. 〈i, k − `〉 ≤ 〈i, k〉 − `, since increasing indices in I(u) are not necessarily incremental. This
implies that r〈i,k−`〉 ≤ r〈i,k〉−`, which in turn implies that d(w1, u) ≤ γ · r〈i,k〉−` = γ · r〈i,k〉/α`.

2. d(w0, u) ≥ γ ·r〈i,k〉−1 = γ ·r〈i,k〉/α (by definition). This along with the first observation implies
that d(w1, u) ≤ d(w0, u)/2`−1 = ε · d(w0, u).

3. By the triangle inequality, d(w0, w1) ≤ d(w1, u) + d(w0, u) ≤ (1 + ε) · d(w0, u).

So if {w1, u} ∈ Ẽ, then the claim of the lemma follows immediately from the observations above and
the triangle inequality: dJ(w0, u) ≤ dJ(w0, w1)+dJ(w1, u) = d(w0, w1)+d(w1, u) ≤ (1+2ε)·d(w0, u).
Otherwise, {w1, u} ∈ Ê in turn gets replaced by {w1, w2} ∈ Ẽ, and the process repeats itself. Let
w0, w1, . . . , wr be a shortest path in J that leads to an edge {wr, u} ∈ Ẽ ∩ Ê. It is not difficult to
see that such a path always exists. This means that {w0, w1}, {w1, w2}, . . . , {wr−1, wr} are all new
edges in Ẽ∩Ê. The three observations above translated to lower levels yield, for each j = 1, 2, . . . , r,
the following two inequalities: (i) d(wj , u) ≤ ε ·d(wj−1, u), and (ii) d(wj−1, wj) ≤ (1+ε) ·d(wj−1, u).
Repeated application of the first inequality yields d(wj , u) ≤ εj · d(w0, u). Finally, we have:

dJ(v, u) ≤
r∑

j=1

d(wj−1, wj) + d(wr, u)

≤ (1 + ε)
r∑

j=1

εj−1d(w0, u) + εrd(w0, u)

≤ d(w0, u) · (1 + ε)/(1− ε)
≤ (1 + 2ε) · d(v, u)

This latter inequality follows from the fact that, for 0 < ε < 1/2, (1 + ε)(1− ε) ≤ 1 + 2ε.
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