
Energy Conservation in Wireless Sensor Networks via Domatic

Partitions ∗

Sriram V. Pemmaraju Imran A. Pirwani

March 28, 2006

Abstract

Using a dominating set as a coordinator in wireless networks has been proposed in many papers
as an energy conservation technique. Since the nodes in a dominating set have the extra burden of
coordination, energy resources in such nodes will drain out more quickly than in other nodes. To
maximize the lifetime of nodes in the network, it has been proposed that the role of coordinators be
rotated among the nodes in the network. One abstraction that has been considered for the problem
of picking a collection of coordinators and cycling through them, is the domatic partition problem.
This is the problem of partitioning the set of the nodes of the network into dominating sets with
the aim of maximizing the number of dominating sets. In this paper, we consider the k-domatic

partition problem. A k-dominating set is a subset D of nodes such that every node in the network is
at distance at most k from D. The k-domatic partition problem seeks to partition the network into
maximum number of k-dominating sets. We point out that from the point of view of saving energy,
it may be better to construct a k-domatic partition for k > 1.

We present three deterministic, distributed algorithms for finding large k-domatic partitions.
Each of our algorithms constructs a k-domatic partition of size at least a constant fraction of the
largest possible (k − 1)-domatic partition. Our first algorithm runs in constant time on unit ball
graphs (UBGs) in Euclidean space assuming that all nodes know their positions in a global coordinate
system. Our second algorithm drops knowledge of global coordinates and instead assumes that
pairwise distances between neighboring nodes are known. This algorithm runs in O(log∗ n) time on
unit ball graphs in a metric space with constant doubling dimension. Our third algorithm drops
all reliance on geometric information, using connectivity information only. This algorithm runs in
O(log ∆ · log∗ n) time on growth-bounded graphs. Eulidean UBGs, UBGs in metric spaces with
constant doubling dimension, and growth-bounded graphs are successively more general models of
wireless networks and all three models include the well-known, but somewhat simplistic wireless
network models such as unit disk graphs.

1 Introduction

A wireless sensor network consists of individual nodes that are able to sense their environment (sensor),
communicate with nearby nodes via radio broadcast (network), and perform local computations based
on information gathered from the surroundings. Once deployed, a sensor network may not permit regular
maintenance. This may be due to a variety of reasons: the network may consist of a very large number
of nodes or the nodes may be in an environment in which regular human intervention is either impossible
or undesirable [12, 7]. Nodes in a sensor network come equipped with battery and from the point of
deployment, this battery reserve becomes a valuable resource since it cannot be replenished. Hence,
maximizing the lifetime of the network by minimizing the energy consumption is an important challenge
in wireless sensor networks.

∗Department of Computer Science, The University of Iowa, Iowa City, IA 52242. E-mail[sriram,

pirwani]@cs.uiowa.edu.

1

A standard approach for reducing energy consumption is to carefully schedule node activity. As has
been observed in [2], whenever there are sufficiently many nodes in a region, only a small fraction of
nodes need be active for forwarding messages, etc. The rest of the nodes can enter a sleep mode, thereby
conserving energy. The problem of maximizing the number of nodes that are asleep at any given time
while maintaining sufficient activity in the network is usually modeled as the problem of finding a small
dominating set in the network. Once a small dominating set is found, the nodes in the dominating set
collectively act as “coordinators” for the network and the rest of the nodes go to sleep. To maximize
the lifetime of the network it is critical that the role of coordinators be rotated among the nodes in the
network, so that every node gets a chance to sleep. This issue has been considered in [2, 15]. In [2], a
distributed, randomized algorithm called span is presented, in which nodes make local decisions to sleep
or to join the set of coordinators and nodes in the network take turns at being coordinators. In [15],
the problem of rotating the responsibility of being a coordinator has been abstracted as the domatic
partition problem.

We model the network as a graph G = (V, E) where the vertex set represents the nodes and each
edge in the edge set represents two nodes that are within each other’s transmission range. A dominating
set D ⊆ V of G is a subset of vertices such that each v ∈ V is either in D or has a neighbor u ∈ D. A
domatic partition is a partition D = {D1, D2, . . . , Dt} of V such that each block Di of D is a dominating
set of G. Suppose that D = {D1, D2, . . . , Dt} is a domatic partition of G. Then a simple schedule for the
nodes would be for the nodes in D1 to be active for some fixed period of time T , during which the rest
of the nodes are asleep, followed by a period of time T in which nodes in D2 are active, while the rest of
the nodes are asleep, and so on. Such a schedule would imply that in the long run, each node is active
for roughly 1/t of the time. Therefore maximizing t leads to minimizing this fraction. The schedule
suggested above may be somewhat simplistic because it does not pay attention to possible differences in
the amount of energy available at different nodes. However, the more general problem in which nodes
start of with different battery supply does not seem much harder than the “uniform” version of the
problem in which nodes are assumed to be identical (see [15] for example). We only consider the uniform
version of the problem here.

1.1 Results

In this paper we present fast, deterministic, distributed algorithms for finding large k-domatic partitions
in various graph models of wireless sensor networks. Let d(u, v) denote the length of a shortest uv-path
in G measured by counting the number of edges in the path. For any integer k ≥ 1, let Nk(v) = {u :
0 < d(u, v) ≤ k}. We call Nk(v) the k-neighborhood of v and any vertex u ∈ Nk(v) is called a k-neighbor
of v. A k–dominating set D(k) ⊆ V of G is a vertex set such that each v ∈ V is either in D(k), or has
a k-neighbor in D(k). A k-domatic partition is a partition D = {D1, D2, . . . , Dt} of V such that each
block Di of D is a k-dominating set of G. Note that a 1-domatic partition is just a domatic partition.

We consider k-domatic partitions rather than domatic partitions simply because as k increases, we
expect the size of a largest k-domatic partition to also increase. For example, this means that if we
use a 2-domatic partition instead of just a domatic partition to schedule nodes, then each node would
spend a much smaller fraction of the time being active. However, there is a problem with this assertion.
Suppose that D(2) is a 2-dominating set of G and further suppose that a node u ∈ V −D(2) needs to send
information to some node in D(2). However, there may be no node of D(2) in u’s neighborhood so what
is u supposed to do? One solution to this problem is to increase u’s transmission range so that some
node in D(2) is in its range. The fact that some node in D(2) is a 2-neighbor of u implies that u does
not have to increase its transmission range too much to reach D(2). So the advantage we gain by having
a 2-domatic partition of larger size is offset by the fact it costs each node more energy to communicate
with the set of coordinators. In some situations we can control the amount of extra energy needed by a
node to reach D(2). For example, one of the algorithms we present (Section 2.1) can be made to take an
additional parameter ε > 0 such that for each vertex v ∈ V and for each D(k) in the k-domatic partition
constructed by the algorithm, v can reach a node in D(k) by increasing its transmission range by at
most ε. We do not explore this trade-off any further in this paper, merely noting that results from our

2

experiments indicate that as k grows from 1 to 2 and from 2 to 3 the size of a k-domatic partition grows
substantially. preliminary results indicate that an optimal value of k may be some small value larger
than 1.

We present algorithms for computing, for any k ≥ 2, a k-domatic partition whose size is within a
constant fraction of the size of an optimal (k − 1)-domatic partition. To the best of our knowledge,
such size guarantees have never been provided for k-domatic partitions. To state this more precisely,
we need some definitions. Let δ denote the smallest vertex degree in a graph. More generally, for any
integer k ≥ 1, let δk = minv{|Nk(v)|}. For any k-domatic partition D of a graph, |D| ≤ δk + 1. This
is because for every vertex v, every block in D contains at least one vertex in {v} ∪ Nk(v). Thus, the
size of an optimal k-domatic partition is bounded above by δk + 1. We present three algorithms (on
different classes of graphs and with different running times) that compute a k-domatic partition of size
at least (δk−1 + 1)/αk for some constant αk. If we had shown that the size of the computed k-domatic
partition is at least (δk + 1)/αk, then that would have been a constant-factor approximation algorithm.
However, we do not show this and in fact, for the most general class of graphs we consider, there may not
be a k-domatic partition of size (δk + 1)/αk for any constant αk. Our result should be contrasted with
the current state of affairs, which is that even for the 1-domatic partition problem on UDGs, the best
known approximation algorithm [4, 15] returns a partition of size at least (δ + 1)/ logn. This algorithm
also solves the k-domatic partition problem and returns a partition of size at least (δk + 1)/ logn. In
general, this lower bound and the lower bound of (δk−1 +1)/αk are incomparable, but for certain classes
of graphs our lower bound is much better.

The most general class of graphs that our results apply to is the class of growth-bounded graphs [9]. A
graph G is f -growth-bounded if there is a function f on non-negative integers such that for every integer
r ≥ 1, every r-neighborhood in G contains an independent set of size at most f(r). The critical aspect of
this definition is that the size of a largest independent set in an r-neighborhood depends only on r and
not on any other graph parameters. This means that for any fixed r, the size of a largest independent set
in any r-neighborhood is bounded above by a constant. Well-known graph models of wireless networks
such as unit disk graphs (UDGs) and quasi unit disk graphs (qUDGs) are both subclasses of growth-
bounded graphs. Recall that a UDG is a graph G = (V, E) whose vertex set V can be placed in one-one
correspondence with a set of points in the Euclidean plane and whose edges connect exactly those pairs
of vertices u, v whose Euclidean distance |uv| is at most one. For any fixed α, 0 < α < 1, an α-qUDG
is a graph G = (V, E) whose vertex set V can be placed in one-one correspondence with a set of points
in the Euclidean plane and whose edge set E satisfies the constraint: if |uv| ≤ α then {u, v} ∈ E and if
|uv| > 1 then {u, v} 6∈ E. The qUDG model does not say whether a pair of vertices whose distance is
in the range (α, 1] are to be connected by an edge or not. This model takes into account transmission
errors that occur when a pair of nodes are almost at the boundary of each other’s transmission range. In
general, growth-bounded graphs capture in a simple way the fairly intuitive geometric property of wireless
networks that if many nodes are close to each other, they will tend to hear each others’ transmissions.

We provide faster algorithms for a certain subclass of growth-bounded graphs. A unit ball graph
(UBG) is a graph G = (V, E) whose vertices reside in some metric space and whose edges connect pairs
of vertices whose distance is at most one. The doubling dimension of a metric space is the smallest ρ
such that any ball in this metric space can be covered by 2ρ balls of half the radius. It is easy to see that
for any fixed d, the d-dimensional Euclidean space is a metric space with a constant doubling dimension.
We call a UBG, a doubling UBG if for some constant ρ, the UBG can be embedded in a metric space of
doubling dimension ρ. An arbitrary UBG need not be growth-bounded, but any doubling UBG is indeed
growth-bounded (Lemma 1 in [9]). It is also easy to see that a UDG is a special kind of a doubling
UBG, one that resides in 2-dimensional Euclidean space. Taking advantage of the geometry of a UBG
and the fact that pairwise distances are available, we provide algorithms for UBGs that run faster for
doubling UBGs than those that run on growth-bounded graphs. Our interest in doubling UBGs is due to
the fact that they significantly generalize UDGs and provide a more flexible model for wireless networks,
while retaining some geometric characteristics. The notion of doubling dimension has been introduced
in [5] and it has been proposed that latencies of peer-to-peer networks and the internet form a metric of
constant doubling dimension [5, 8].

3

We provide an even faster algorithm for UBGs that reside in a Euclidean space such that the coor-
dinates of the points are known.

In summary, we present the following three distributed algorithms.

1. An O(1) round algorithm that computes a k-domatic partition of size at least (δk−1 + 1)/αk, for
some constant αk, for UBGs that reside in Euclidean space and whose nodes are aware of their
global coordinates.

2. An O(log∗ n) round algorithm that computes a k–domatic partition of size at least (δk−1 + 1)/αk

for doubling UBGs, whose nodes are able to sense distances to neighbors.

3. An O(log ∆· log∗ n) round algorithm that computes a k–domatic partition of size at least (δk−1 +
1)/αk for growth-bounded graphs. Here ∆ is the largest degree of a vertex in the graph.

We also provide simulation results that give further insights into the quality of the domatic partitions
we produce.

1.2 Model and Notation

For our algorithms we assume the synchronous communication model in which time is divided into rounds.
In each round, a node can receive messages sent in the previous round, perform local computations, and
broadcast a message to its neighbors. The time complexity of an algorithm is the number of rounds
it needs to complete. Note that every synchronous message passing algorithm can be turned into an
asynchronous algorithm with the same time complexity, but with a possibly larger message complexity.

Here we describe some additional notation that we use in the rest of the paper. For any integer k ≥ 1
and vertex v, Nk[v] = Nk(v) ∪ {v} is the closed k-neighborhood of v. We will use N [v] to denote N1[v].
The notation |uv| will be used to denote the distance between vertices u and v in the underlying metric
space. In Section 2.1 this will denote a Euclidean distance and in Section 2.2 this will denote a distance
in a metric space of constant doubling dimension. For any vertex v in 2-dimensional Euclidean space
and any real α > 0 we will use Disk(v, α) to denote the closed disk of radius α with center v.

2 Algorithms for k-domatic partition

In this section we describe three algorithms for finding large k-domatic partitions. For simplicity of
exposition, we describe our algorithms for UDGs first and later point out why the algorithms work in
more general settings. We start with a simple constant-time algorithm that assumes that all nodes know
their positions in a global coordinate system. This algorithm works for UBGs that reside in Euclidean
space. Our second algorithm drops knowledge of global coordinates and instead assumes that pairwise
distances between neighboring nodes are known. In particular, we assume that each node u ∈ V (G)
knows |uv| for all v ∈ N(u). This algorithm runs in O(log∗ n) time. We do not in any way rely on the
fact that our graph resides in 2-dimensional Euclidean space and it will be clear that our algorithm works
for UBGs in a metric space with constant doubling dimension. Our third algorithm drops all reliance on
geometric information, using connectivity information only. This algorithm works for bounded growth
graphs and runs in O(log ∆ · log∗ n) time. All our algorithms are deterministic.

2.1 Using a global coordinate system

Suppose that the input graph is a UDG G and assume that each node knows its position in a global
coordinate system. Our algorithm can be described informally as follows. Place on the plane, an infinite
grid of square cells of dimensions 1√

2
× 1√

2
. This induces a partition V = {V1, V2, . . . , Vt} of V (G) such

that each block Vi corresponds to a non-empty cell and contains all the vertices in that cell. Note that
due to the dimensions of each cell, each Vi is a clique. Consider each block Vi and assign a distinct color

4

r ∈ {1, 2, . . . , |Vi|} to each vertex in Vi. In Theorem 1 we will show that for many colors r, the set of all
vertices colored r form a k-dominating set. Below, we describe the algorithm in more detail.

Algorithm: k-DP1

1. Let the coordinates of vertex v be (xv, yv). Each node v determines the ordered pair (i, j) of integers
such that

i√
2
≤ xv <

i + 1√
2

and
j√
2
≤ yv <

j + 1√
2

.

2. Denote the 4-tuple (xv, yv, i, j) by IDv. Each node v broadcasts IDv to all neighbors.

3. Each node v receives IDu from each neighbor u ∈ N(v).

4. Each node v constructs the set

Sv = {(xv, yv)} ∪ {(xu, yu) | u ∈ N(v) and IDu = (xu, yu, i, j)}.

5. Each node v sorts Sv in lexicographic order and assigns to itself the color r, where r is the rank of
(xv, yv) in the sorted list Sv.

Correctness. In Step (1), each node v determines the south-west corner of the square cell that it
belongs to. Then, in Steps (2)-(3), nodes exchange with neighbors, their coordinates and identities of
the cells they belong to. For each node v, this information is bundled into the 4-tuple IDv. In Step (4),
each node v gathers into a set Sv the coordinates of all neighbors that lie in the same cell as it does.
Note that for any two vertices u and u′ that lie in a cell, Su = Su′ . Therefore, the set {Sv | v ∈ V (G)}
is the clique partition V induced by the cells. Finally, in Step (5), each node v in each block Vi, assigns
itself a distinct color r ∈ {1, 2, . . . , |Vi|}.

Algorithm k-DP1 consists of one local broadcast by each node and therefore runs in a constant number
of communication rounds. Let Dr be the set of vertices colored r by k-DP1. We will now investigate the
quality of the partition {Dr | r = 1, 2, . . .}. Let ck denote the maximum number of 1√

2
× 1√

2
square cells

that can intersect a disk of radius k. It is easy to see that ck = Θ(k2) and specifically c1 = 16.

Theorem 1 For any r, 1 ≤ r ≤ (δk−1 + 1)/ck−1, the set Dr computed by k-DP1 is a k-dominating set
of G.

Proof: To obtain a contradiction, suppose that for some v ∈ V (G), Dr does not k-dominate v, that
is, Dr ∩ Nk[v] = ∅. This, of course means that Dr ∩ Nk−1[v] = ∅ as well. Every vertex u ∈ Nk−1[v] lies
in a disk of radius k − 1 centered at v. Since at most ck−1 grid cells intersect this disk, at most ck−1

blocks of the partition V = {V1, V2, . . . , Vt} induced by the grid cells, intersect Nk−1[v]. Thus, at most
ck−1 vertices in Nk−1[v] are in Dj , for any j < r. Thus at most ck−1 · (r − 1) vertices in Nk−1[v] are in
D1 ∪ D2 ∪ · · · ∪ Dr−1. Since r ≤ (δk−1 + 1)/ck−1, we have that ck−1 · (r − 1) < δk−1 + 1. Thus there is
at least one vertex w ∈ Nk−1[v] that is not in D1 ∪ D2 ∪ · · · ∪ Dr−1.

Suppose that w ∈ V`. Since w has a color ≥ r, there must be a w′ ∈ V` colored r. Since V` is a clique,
d(w, w′) ≤ 1. This along with the fact that w ∈ Nk−1[v], implies that w′ ∈ Nk[v], thereby contradicting
the fact that Dr does not k-dominate v.

Implications of Theorem 1. Theorem 1 guarantees that for any fixed k, the size of the k-domatic
partition computed by k-DP1 is within a constant factor of the optimal (k − 1)-domatic partition. For
example, we don’t know how to compute a constant approximation of an optimal 1-domatic partition,
but we know how to compute a 2-domatic partition whose size is at least 1/16th the size of an optimal
1-domatic partition. Experiments show that this is quite conservative and in general, our algorithm
returns 2-domatic partitions that are much larger than the largest possible 1-domatic partion. In the
following table, we show results obtained by running k-DP1 on randomly generated UDGs. The last row
of the table shows the size of the 2-domatic partition returned by the algorithm. Note that in all cases,

5

this size is much larger than the maximum possible size of a 1-domatic partition (given by δ1 + 1). In
fact, the size of the 2-domatic partition computed by the algorithm is typically close to the size of an
optimal 2-domatic as seen by comparing the last two rows of the table.

n 50 60 100 125 150 175 200 225 250 275
δ1 7 9.2 15.5 19.2 22.7 30.1 30.8 35.2 40.6 41.6
δ2 15.9 18.1 32.7 42.1 52.8 62.1 71.0 78.5 86.4 97
size 14.8 16.6 29.6 36.3 41.3 49.7 60.5 70.6 72.3 80.1

Let D(k) be a k-dominating set of the network that is a member of the k-domatic partition returned
by Algorithm k-DP1. As mentioned in the introduction, a node v may not have any node from D(k) in
its transmission range and so v has to increase its transmission range to reach some node in D(k). From
the proof of Theorem 1, it can be observed that there is always some node in D(k) that lies in one of the
grid cells that intersects Disk(v, 1). Thus, in order to reach D(k), v just has to increase its transmission
range to completely contain all of these grid cells. For any fixed ε > 0, we can make the grid cells have
dimensions ε × ε, thereby requiring v to increase its transmission range by some function of ε.

2.2 Using pairwise distances only

Now we assume that nodes are not aware of coordinates, but can sense distances to neighbors. Recall
that in Algorithm k-DP1 we placed a grid of small enough square cells on the plane and constructed a
clique-partition V = {V1, V2, . . . , Vt} of V (G). Given a partition V = {V1, V2, . . . , Vt} of V (G) and an
arbitrary subset S ⊆ V (G), the density of S with respect to V is the size of the set {i | Vi ∩ S 6= ∅}. In
other words, the density of S with respect to V is the number of blocks in V that intersect S. The key
property of the clique-partition V computed by k-DP1 is this:

Bounded Density Property.

For each integer j ≥ 1, there is a constant cj such that the density of each neighborhood
Nj [u] with respect to V is bounded above by cj .

Given just the pairwise distances how do we compute a clique-partition with the bounded density
property? We first describe the algorithm informally. Let G1/2 be the spanning subgraph of G with
edge set {{u, v} | |uv| ≤ 1/2}. Since each node u knows the distances |uv| to all neighbors v ∈ N(u),
node u can identify who its neighbors in G1/2 are. First a maximal independent set (MIS) I in G1/2 is
computed. Then each node u ∈ V (G) − I “attaches” itself to a node v ∈ I that is its neighbor in G1/2.
Since I is maximal such a node u is guaranteed to exist. Each block in the partition we seek, consists
of a vertex v ∈ I along with all the nodes in V (G) − I that have attached themselves to v. Note that
since the distance between u and a vertex that attaches itself to u is at most 1/2, the distance between
any pair of vertices in a block is at most 1 and therefore each block induces a clique in G. Later we will
show that this clique-partition has the bounded density property.

6

Algorithm: k-DP2

1. Compute a proper vertex coloring χ of G.

2. Let G1/2 = (V (G), E1/2), where E1/2 = {{u, v} | |uv| ≤ 1/2}. Compute an MIS I of G1/2.

3. Each node v ∈ I broadcasts χ(v) to its neighbors.

4. Each node u ∈ V (G)− I receives at least one color and possibly several. Node u then picks a color c
from among those it receives such that c is sent by a neighbor at distance at most 1/2 from u. Denote
by Lu, the color picked by u. Node u broadcasts the ordered pair (χ(u), Lu) to its neighbors.

5. Each node v ∈ I receives ordered pairs of colors from neighbors and constructs the set:

Sv = {χ(v)} ∪ {c | (c, χ(v)) is received from a neighbor at distance at most 1/2 from v}.

6. Each node v ∈ I broadcasts (χ(v), Sv) to its neighbors.

7. Each node u ∈ V (G)−I, on receiving a tuple (Lu, S) from a neighbor at distance ≤ 1/2, sets Su ← S.

8. Each node v ∈ V (G) colors itself r, where r is the rank of χ(v) in the sorted set Sv. Let the new
coloring be denoted by χ′. Note that this new coloring is not necessarily proper.

Correctness. In Step (1) of Algorithm k-DP2 a proper (∆(G) + 1)-vertex coloring of G is computed.
This coloring provides locally distinct identifiers to nodes and will become useful when cliques are formed
in later steps in the algorithm. In Step (2), an MIS I of G1/2 is computed. We assume that whenever a
node u receives a message from node v, it can sense the distance |uv| between itself and v. To construct
G1/2, each node starts by broadcasting a message. Following this, each node u can identify the subset of
neighbors in G that are at distance ≤ 1/2 from it. In Step (3), the vertices in I , announce their colors
to all neighbors. In Step (4) of Algorithm k-DP2 each node u may receive several colors from neighbors.
However, it is not the case that u has two neighbors w, w′ in G1/2 such that u receives the same color
from both w and w′. This is because |ww′| ≤ 1 and therefore w and w′ are neighbors in G and cannot
have the same color. Thus, when u chooses a color c in Step (4), it is choosing a unique neighbor in G1/2

to attach to. We denote u’s choice of a color by Lu to indicate that this amounts to choosing a leader to
attach to. For any v ∈ I , we say that v’s group consists of v along with all neighbors u of v in G1/2 for
which Lu = χ(v). More precisely, let

group(v) = {v} ∪ {u | Lu = χ(v) and u is a neighbor of v in G1/2}.

Note that for all v ∈ I , group(v) induces a clique in G and therefore no two vertices in group(v) are
assigned the same color by χ. When u broadcasts (χ(u), Lu) in Step (4), it is announcing its intention
to join Lu’s group. In Step (5), each node v ∈ I constructs a set Sv containing the colors of the nodes
in group(v). In Step (6), node v tells all members in its group what the set Sv is and in Step (7) all
members in group(v) receive this information. The situation after Step (7) can be summarized as follows.

Lemma 1 For each node v ∈ I, group(v) induces a clique. Each node v ∈ I constructs a set Sv =
{χ(u) | u ∈ group(v)}. For each node u ∈ group(v), Su = Sv.

After Step (7), members in group(v) already have distinct colors and the only thing left to do is
“palette reduction,” that is, a recoloring so that members in group(v) are assigned distinct colors from
the set {1, 2, . . . , |Sv |}. This happens in Step (8).

As before, for each r = 1, 2, . . . let Dr = {v ∈ V (G) | χ′(v) = r}. To obtain the same result as in
Theorem 1 for Algorithm k-DP2, we need to show that the partition {group(v) | v ∈ I} has the bounded
density property.

Lemma 2 For each integer j ≥ 1, there is a constant cj such that the density of each neighborhood Nj [u]
with respect to {group(v) | v ∈ I} is bounded above by cj .

7

Proof: Fix an integer j ≥ 1 and a vertex u ∈ V (G). All vertices in Nj [u] lie in Disk(u, j). Therefore
the density of Nj [u] with respect to {group(v) | v ∈ I} is bounded above by number of vertices in I that
lie in Disk(u, j +1/2). Since any two vertices in I are separated by a distance > 1/2, disks of radius 1/4
centered at vertices in I are pairwise disjoint. Therefore, if a vertex v ∈ I lies in Disk(u, j + 1/2) then
Disk(v, 1/4) is completely contained in Disk(v, j +3/4). The total number of disjoint disks of radius 1/4
completely contained in Disk(u, j + 3/4) is bounded above by 16(j + 1)2. Therefore, there is a constant
cj ≤ 16(j + 1)2 such that the density of Nj [u] with respect to {group(v) | v ∈ I} is bounded above by
cj .

Together, the two lemmas above and the proof of Theorem 1 gives us the following result.

Theorem 2 For any r, 1 ≤ r ≤ (δk−1 + 1)/ck−1, the set Dr computed by k-DP2 is a k-dominating set
of G.

Running time. Steps (1)-(2) of Algorithm k-DP2 takes O(log∗ n) rounds each via the results in [10]. In
that paper, a deterministic algorithm running in O(log∗ n) rounds is given for the problem of computing
an MIS and for the problem of computing a (∆ + 1)-coloring on a doubling UBG. The rest of the steps
in the algorithm involve three broadcasts and some local computations. Thus the entire algorithm runs
in O(log∗ n) rounds.

Algorithm k-DP2 is well defined for UBGs in which nodes can sense distances to neighbors. For Lemma
1, it is required that the pairwise distances form a metric, since we use the fact that two neighbors of
a node u at distance at most 1/2 from u, are at distance at most 1 from each other. The proof of
Lemma 2 relied on the fact that the number of disjoint disks of radius 1/4 that can be packed into a
disk of radius j + 3/4 is bounded above by a quantity that depends only on j. This fact is true not
just for 2-dimensional Euclidean space, but is in general true for any metric space of constant doubling
dimension. In summary, we have the following result.

Theorem 3 For any k ≥ 2, Algorithm k-DP2 computes a k-domatic partition of size at least (δk−1 +
1)/ck−1 in a given UBG in a metric space of constant doubling dimension in O(log∗ n) rounds.

2.3 Using connectivity information only

Algorithm k-DP2 relied critically on the ability of nodes to sense distances. It also relied on the fact
that these distances formed a metric of constant doubling dimension. We now generalize our results
further by assuming that no distance information is available. We first describe how to compute a large
2-domatic partition and later point out the extension to k-domatic partitions. Using only connectivity
information, it is not clear how to quickly compute a clique-partition that has the bounded density
property. So we modify our approach and compute a partition that we call a uniform partition. A
partition V = {V1, V2, . . . , Vt} of V (G) is called a uniform partition if the following two conditions are
satisfied:

(i) Each Vi induces a subgraph of G of diameter at most 2.

(ii) There is a constant C such that for each i, 1 ≤ i ≤ t, |Vi| ≥ (δ1 + 1)/C.

The following lemma shows that it is a small step from a uniform partition to a 2-domatic partition.

Lemma 3 Let V = {V1, V2, . . . , Vt} be a uniform partition of G. For each i, 1 ≤ i ≤ t, arbitrarily color
the vertices in Vi with distinct colors chosen from {1, 2, . . . , |Vi|}. For each integer r ≥ 1, let Dr be the
set of vertices colored r. Then, for each integer r, 1 ≤ r ≤ d(δ1 + 1)/Ce, Dr is a 2-dominating set of G.

Proof: Consider an arbitrary vertex v ∈ V (G) and an arbitrary color r, 1 ≤ r ≤ d(δ1 +1)/Ce. Suppose
that v belongs to block Vi. Since Vi is large enough, that is, |Vi| ≥ (δ1 + 1)/C, there is a vertex in Vi

colored r. Since the diameter of G[Vi] is at most 2, there is a vertex colored r at distance at most 2 from
v. Hence, Dr is a 2-dominating set.

8

We now informally describe an algorithm to quickly compute a uniform partition. Suppose that I is
an MIS in G. One way to get a partition of V (G) into components of diameter at most 2 is to simply
allow each vertex u ∈ V (G)−I to attach itself to some neighbor that belongs to I . However, blocks in the
resulting partition need not be large enough. To guarantee a lower bound on the size of each block, we first
form the graph H = (I, EH), where EH = {{v, v′} | v, v′ ∈ I and v and v′ have a common neighbor}.
Thus a pair of vertices in I are connected in H if the distance between them in G is at most 2. Note that
since G is a UDG, for any v ∈ I , the number of vertices v′ ∈ I ∩ N2[v] is bounded above by a constant.
Therefore, ∆(H) is bounded above by a constant, say L. We then compute an (L + 1)-coloring of this
graph using colors from {1, 2, . . . , L+1}. Then for each color r = 1, 2, . . . , L+1, all of the vertices in I of
color r try to acquire “followers.” Each vertex v ∈ I of color r, has a budget of how many followers it can
acquire, thereby leaving enough followers available for vertices in I of color larger than r. Specifically,
each vertex v ∈ I of color r acquires bδ1/(L + 1)c followers during its turn. Only the vertices in I of
the same color will try to acquire followers at the same time. Since a pair of vertices in I of the same
color do not have a common neighbor, there is no contention for followers. Furthermore, by imposing a
constraint on the number of followers that a node in I can acquire in each round, we ensure that there
are enough followers for all vertices in I . We now describe this algorithm (called 2-DP3) in detail.

Algorithm: 2-DP3

1. Let G2 denote the square of the graph G. So G2 has vertex set V (G) and edge set E2 = {{u, v} |
u, v ∈ V (G) and d(u, v) ≤ 2}. Compute a proper vertex coloring of G2. Denote this coloring by χ.

2. Compute an MIS I of G.

3. Let H = G2[I]. This is the subgraph of G2 induced by I. Let L = ∆(H). Compute a proper
(L + 1)-vertex coloring of H. Denote this coloring by χ′.

4. Each node u ∈ V (G) − I sets a variable statusu ← available. Each node v ∈ I sets a variable
statusv ← unavailable.

5. For each color r = 1, 2, . . . , L + 1 used by χ′, repeat the following steps.

(a) Each node u ∈ V (G)− I whose status is available, broadcasts its color, χ(u), to neighbors.

(b) Each node v ∈ I colored r by χ′ receives a color from each available neighbor and constructs the
set Cv = {χ(u) | u ∈ N(v) and statusu = available}.

(c) Each node v ∈ I colored r by χ′ picks the smallest bδ1/(L + 1)c colors from Cv and places these
in Sv. Node v then broadcasts {χ(v)} ∪ Sv to neighbors. It is not necessary that node v know
δ1. It is sufficient for v to instead use the smallest vertex degree in its neighborhood instead of
δ1.

(d) Each node u ∈ V (G)− I, whose status is available, may receive a set S of colors from a neighbor
in I. Node u then checks if χ(u) ∈ S and if so u sets statusu ← unavailable and Su ← S.

6. Each unavailable node v computes the rank r of χ(v) in Sv and colors itself r. Each available node
colors itself 1. Let the latest coloring of vertices be denoted χ′′. Note that this vertex coloring need
not be proper.

Correctness. In Step (1) of 2-DP3 a proper vertex coloring χ of G2 is computed. For any vertex
v ∈ V (G), no two vertices in N [v] are assigned the same color by χ. This property will be used in later
steps of the algorithm. In Step (2), an MIS I of G is computed. In Step (3), the subgraph H of G2

induced by I is formed and a proper (∆(H) + 1)-vertex coloring χ′ of H is computed. Thus each vertex
v ∈ I has two colors, χ(v) and χ′(v). The following lemma shows that the number of colors used by χ′

is bounded above by a constant. It is true that χ restricted to I is also a proper vertex coloring of H ,
however there is no reason to believe that χ uses a constant number of colors for H .

Lemma 4 Let H = G2[I]. Then ∆(H) ≤ 25.

9

Proof: If v, v′ ∈ I are neighbors in H then |vv′| ≤ 2. Therefore, for any v ∈ I , all neighbors of v
in H are in Disk(v, 2). Since I is an independent set in G, |vv′| > 1 for any pair of vertices v, v′ ∈ I .
Therefore, the disks in J = {Disk(v′, 1/2) | v′ is a neighbor of v in H} are pairwise disjoint and are all

contained in Disk(v, 5/2). Therefore, |J | < π(5/2)2

π(1/2)2 = 25.

After Step (3), each node u ∈ V (G) − I is available for attaching itself to a neighbor v ∈ I . This
is indicated in Step (4) by setting statusu to available for all nodes u ∈ V (G) − I . For notational
convenience, nodes in I also have a status variable and that is initialized to unavailable. The coloring
χ′ of I is used to schedule the nodes in I in Step (5). In particular, for each r = 1, 2, . . . , L + 1, all
nodes in I colored r execute Steps 5(b)-(c) in parallel. In Step 5(a) all available nodes announce their
availability to neighbors by broadcasting their colors. In Step 5(b) each node v ∈ I colored r receives
colors from available nodes and places these in a set Cv . Note that no two colors received by v are the
same and therefore there is a bijection between Cv and available neighbors of v. In Step 5(c), each node
v ∈ I colored r picks bδ1/(L + 1)c colors from Cv. For this step to be well-defined, it must be the case
that |Cv| ≥ bδ1/(L + 1)c, as shown in the following lemma.

Lemma 5 For any node v ∈ I, the set Cv constructed in Step 5(b) has size ≥ bδ1/(L + 1)c.

Proof: Suppose that the degree of v in H is α. The total number of neighbors of v, available in Step
5(a) is at least degree(v) − α · bδ1/(L + 1)c. This is because if a neighbor u of v is unavailable, it is
because u has attached itself to some v′ ∈ I , v′ 6= v. The maximum number of vertices u that can be
attached to v′ is bδ1/(L + 1)c and the maximum number of candidates for v′ is α. Since degree(v) ≥ δ1

and α ≤ L, we get that at least

δ1 − L · b
δ1

L + 1
c ≥

δ1

L + 1

neighbors of v are available.

After bδ1/(L + 1)c colors in Cv are picked by v, these are placed in a set Sv and the set {χ(v)} ∪ Sv

is broadcast by v to all neighbors. In Step 5(d) all neighbors of v, whose colors are in Sv, on receiving
notification of their membership in Sv, set their status to unavailable and take note of {χ(v)} ∪ Sv . The
following lemma summarizes the situation immediately after Step (5).

Lemma 6 For any v ∈ I, define group(v) = {v}∪{u ∈ N(v) | χ(u) ∈ Sv}. Then for all v ∈ I, group(v)
induces a subgraph of G of diameter ≤ 2 and |group(v)| ≥ (δ1 + 1)/(L + 1).

Proof: Let v be an arbitrary vertex in I . The fact that group(v) induces a subgraph of G of diameter
≤ 2 is obvious. Since |Sv | = bδ1/(L + 1)c and since χ assigns distinct colors to N [v],

|group(v)| ≥ 1 + bδ1/(L + 1)c ≥
δ1 + 1

L + 1
.

Note that even though {group(v) | v ∈ I} is a collection of disjoint subsets of vertices, it is not
necessarily a partition of G because after Step (5) there may still be some vertices u ∈ V (G) − I with
statusu = available. However, we still get a large enough 2-domatic partition, as the following lemma
shows.

Lemma 7 For any integer r, 1 ≤ r ≤ d(δ1 + 1)/(L + 1)e, let Dr be the set of vertices in V (G) that are
colored r by χ′′ (in Step (6) of 2-DP3). Then Dr is a 2-dominating set of G.

Proof: First consider an arbitrary vertex v ∈ I . Since, |group(v)| ≥ (δ1 + 1)/(L + 1), since every
vertex in group(v) gets a distinct color in {1, 2, . . . , |group(v)|}, and since every vertex in group(v) is at
a distance at most 1 from v, it follows that for any r, 1 ≤ r ≤ d(δ1 + 1)/(L + 1)e, v is dominated (and
hence 2-dominated) by Dr. Now consider a vertex u ∈ V (G)− I . Since u has a neighbor v ∈ I , using the
same argument as above with respect to group(v), we obtain that for any r, 1 ≤ r ≤ d(δ1 + 1)/(L + 1)e,
v is dominated (and hence 2-dominated) by Dr.

10

Running time. Step (1) requires the construction of a proper vertex coloring of G2. There are several
deterministic distributed algorithms that return a proper vertex coloring of an arbitrary n-vertex graph
in O(log∗ n) time [11, 14], using a number of colors that is polynomial in ∆. Any of these can be used for
Step (1). Using the result in [9] we can compute an MIS of the given UDG G, even without any location
or distance information, in O(log ∆ · log∗ n) time. The rest of the algorithm consists of 2 local broadcasts
and some local computations. Therefore the overall running time of the algorithm if O(log ∆ · log∗ n).

The algorithm 2-DP3 is well-defined for arbitrary graphs. In the proof of correctness of the algorithm,
Lemma 5 used the fact that G is a UDG. However, the same result (but with a possibly different constant)
holds even if G is not a UDG, but is a bounded growth graph. In fact, the definition of a bounded growth
graph tells us that for any vertex v ∈ V (G), the number of vertices v′ ∈ I that are in the 2-neighborhood
of v is bounded above by the constant f(2). The other two lemmas in the proof of correctness of 2-DP3
follow from Lemma 5 and therefore hold for bounded growth graphs as well. The algorithm 2-DP3 also
runs in O(log ∆ · log∗ n) time for bounded growth graphs. This is because the result in [9] that shows
how to compute an MIS in O(log ∆ · log∗ n) time, holds for bounded growth graphs. This discussion
implies the following theorem.

Theorem 4 For any given growth bounded graph G, the algorithm 2-DP3 computes a 2-domatic partition
of size at least d(δ1 + 1)/Ce for some constant C, in O(log ∆ · log∗ n) rounds.

The extension of 2-DP3 to k-domatic partitions is straightforward. Define a k-uniform partition of G
as a partition V = {V1, V2, . . . , Vt} of V (G) such that for each i, 1 ≤ i ≤ t, the diameter of G[Vi] is at
most k and |Vi| ≥ (δk−1 + 1)/αk for some constant αk. Going from a uniform partition to a 2-domatic
partition is a small step, as described in Lemma 3. As in that lemma, coloring the vertices in each Vi

with distinct colors from {1, 2, . . . , |Vi|} yields a k-domatic partition of size at least d(δk−1 + 1)/αke.
Constructing a k-uniform partition can be done in a manner very similar to what is described in 2-DP3.
We end this section with the following theorem.

Theorem 5 For any given growth bounded graph G and for any fixed integer k ≥ 2, there is a distributed
algorithm that computes a k-domatic partition of size at least d(δk−1 + 1)/αke for some constant αk, in
O(log ∆ · log∗ n) rounds.

References

[1] M A Bonucelli. Dominating sets and domatic number of circular arc graphs. Discrete Appl. Math.,
12:203–213, 1985.

[2] B Chen, K Jamieson, H Balakrishnan, and R Morris. Span: An energy-efficient coordination al-
gorithm for topology maintenance in ad hoc wireless networks. ACM Wireless Networks Journal,
8(5), 2002.

[3] M Farber. Domination, independent domination, and duality in strongly chordal graphs. Discrete
Appl. Math., 7:115–130, 1984.

[4] U Feige, M M Halldorsson, G Kortsarz, and A Srinivasan. Approximating the domatic number.
SIAM J. Comput., 32(1):172–195, 2002.

[5] Anupam Gupta, Robert Krauthgamer, and James R. Lee. Bounded geometries, fractals, and low-
distortion embeddings. In FOCS ’03: Proceedings of the 44th Annual IEEE Symposium on Foun-
dations of Computer Science, pages 534–543, 2003.

[6] H Kaplan and R Shamir. The domatic number problem on some perfect graph families. Inform.
Process. Lett., 49:51–56, 1994.

11

[7] S. Kim, D. Culler, J. Demmel, G. Fenves, S. Glaser andT. Oberhein, and S. Pakzad. Structural
health monitering of the golden gate bridge. UC Berkeley, NEST Retreat Presentation, Jan 15,
2004.

[8] J Kleinberg, A Slivkins, and T Wexler. Triangulation and embedding using small sets of beacons. In
FOCS ’04: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science,
pages 444–453, 2004.

[9] F Kuhn, T Moscibroda, T Nieberg, and R Wattenhofer. Fast deterministic distributed maximal
independent set computation on growth-bounded graphs. In Proceedings of the 19th International
Symposium on Distributed Computing (DISC), 2005.

[10] F Kuhn, T Moscibroda, and R Wattenhofer. On the locality of bounded growth. In Proceedings of
24th. Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, 2005.

[11] Nathan Linial. Locality in distributed graph algorithms. SIAM J. Comput., 21(1):193–201, 1992.

[12] A. Mainwaring, J. Polastre, R. Szewczyk, , and D. Culler. Wireless sensor networks for habitat
monitoring. Technical Report IRB-TR-02-006, Intel Research Laboratory at Berkeley, 2002.

[13] M V Marathe, H B Hunt III, and S S Ravi. Efficient approximation algorithms for domatic partition
and on-line coloring of circular arc graphs. Discrete Appl. Math., 64:135–149, 1996.

[14] Gianluca De Marco and Andrzej Pelc. Fast distributed graph coloring with o(&dgr;) colors. In
SODA ’01: Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms, pages
630–635, 2001.

[15] T Moscibroda and R Wattenhofer. Maximizing the lifetime of dominating sets. In Proceedings
of the 5th. IEEE International Workshop on Algorithms for Wireless, Mobile, Ad Hoc and Sensor
Networks, 2005.

[16] A S Rao and C P Rangan. Linear algorithm for domatic number problem on interval graphs. Inform.
Process. Lett., 33:29–33, 1989.

12

