
� A Mathematica Tutorial for Combinatorica Users

The function below takes a graph g and a vertex start and performs a breadth first search of g starting
at start. The function returns three lists (i) bfi, which contains breadth first search numbers, (ii) parent, which contains
parent pointers representing the breadth first search tree, and (iii) lvl, which contains the distances of vertices from start.

In[2]:= BFS g_Graph, start_Integer : �
Module e � ToAdjacencyLists g , bfi � Table 0, V g , cnt � 1, queue � start ,

parent � Table i, i, V g , lvl � Table Infinity, V g ,
bfi start � cnt � � ;
lvl start � 0;
While queue � ,
v, queue � First queue , Rest queue ;
Scan If bfi # � 0, bfi # � cnt � � ;

parent # � v;
lvl # � lvl v � 1;
AppendTo queue, # &, e v

;
bfi, parent, lvl ; 1 � start && start � V g

To show how the BFS function works,we define g as a wheel with 7 vertices and run BFS on it.

In[3]:= g � Wheel 7

Out[3]= Graph 12, 7, Undirected

In[4]:= ShowGraph g, VertexNumber � On

12

3

4 5

67

Out[4]= � Graphics �

In[5]:= BFS g, 1

Out[5]= 1, 2, 5, 7, 6, 3, 4 , 1, 1, 2, 7, 6, 1, 1 , 0, 1, 2, 2, 2, 1, 1

tutorial.nb 1

� Function Definition

A function definition that defines a function F has the syntax

 F[sequence of arguments] := body of function

Each argument in the sequence of arguments is a pattern that is matched when the function is called. For example, the first
input below defines a single argument function F and the second input calls it with argument 10. The argument 10 in the
function call matches x_ in the function definition with the result that x acquires the value 10 and this is used when the right
handside x^2 is evaluated.

In[6]:= F x_ : � x^2

In[7]:= F 10

Out[7]= 100

Restrictions can be placed on what matches a pattern, thereby forcing arguments of only certain types (or forms) in the call
to match arguments in the definition. For example,

In[8]:= G y_Integer : � y^2

In[9]:= G 10

Out[9]= 100

In[10]:= G 10.1

Out[10]= G 10.1

In[11]:= F 10.1

Out[11]= 102.01

In this example, only an integer argument in the function call to G can match y_Integer. This is the kind of pattern matching
used in the definition of BFS. Only a graph object can match the first argument and only an integer can match the second
argument. Here are examples in which the matching fails amd the function call fails to evaluate BFS.

In[12]:= BFS 10, 10

Out[12]= BFS 10, 10

In[13]:= BFS g, 10.1

Out[13]= BFS Graph 12, 7, Undirected , 10.1

Pattern matching is an extremely important topic inMathematicaand one can say a lot more about it than what has been said
here.But,we’ll now move on to the next item in the code that is worth discussing.

tutorial.nb 2

� Defining Local Variables

As the help string below tells us, a Module is a way to define local variables. The first argument of Module is a list of
variables (some of which may be accompanied by initializations) and the second argument is the code to which these
definitions apply.

I use Module in BFS to define the variables e, bfi, cnt, queue, parent, lvl. I initialize all of these variables as I define
them.

An alternative to Module is Block. We will not discuss the distinction between these two constructs here.

?Module

Module x, y, ... , expr specifies that occurrences of the symbols x, y, ... in expr should
be treated as local. Module x 	 x0, ... , expr defines initial values for x,

As the following example shows, the variables i and j have no existence outside Module.

In[14]:= Module i, j , i � 10; j � 20

Out[14]= 20

In[15]:= i

Out[15]= i

In[16]:= j

Out[16]= j

� List Manipulation

In BFS the variable bfi is initialized as bfi=Table[0,{V[g]}]. Here I use one of the most common Mathematica constructs,
Table.

In[17]:= ?Table

Table expr, imax generates a list of imax copies of expr. Table
expr, i, imax generates a list of the values of expr when i runs from 1 to
imax. Table expr, i, imin, imax starts with i 	 imin. Table expr, i, imin,
imax, di uses steps di. Table expr, i, imin, imax , j, jmin, jmax , ...
gives a nested list. The list associated with i is outermost. Help Browser

As the above help strings tells us, Table can be used to generate single dimensional or multiple dimensional table (lists). For
example,

In[18]:= Table 1, 10

Out[18]= 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

In[19]:= Table 1, i, 10

Out[19]= 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

tutorial.nb 3

In[20]:= Table i, i, 10

Out[20]= 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

In[21]:= Table i, i, 3, 10

Out[21]= 3, 4, 5, 6, 7, 8, 9, 10

In[22]:= Table i
 j, i, 10 , j, 10

Out[22]= 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 , 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 ,
3, 6, 9, 12, 15, 18, 21, 24, 27, 30 , 4, 8, 12, 16, 20, 24, 28, 32, 36, 40 ,
5, 10, 15, 20, 25, 30, 35, 40, 45, 50 , 6, 12, 18, 24, 30, 36, 42, 48, 54, 60 ,
7, 14, 21, 28, 35, 42, 49, 56, 63, 70 , 8, 16, 24, 32, 40, 48, 56, 64, 72, 80 ,
9, 18, 27, 36, 45, 54, 63, 72, 81, 90 , 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

In[23]:= t � Table i
 j, i, 10 , j, 1, i

Out[23]= 1 , 2, 4 , 3, 6, 9 , 4, 8, 12, 16 , 5, 10, 15, 20, 25 ,
6, 12, 18, 24, 30, 36 , 7, 14, 21, 28, 35, 42, 49 , 8, 16, 24, 32, 40, 48, 56, 64 ,
9, 18, 27, 36, 45, 54, 63, 72, 81 , 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

In[24]:= t ColumnForm

Out[24]= 1
2, 4
3, 6, 9
4, 8, 12, 16
5, 10, 15, 20, 25
6, 12, 18, 24, 30, 36
7, 14, 21, 28, 35, 42, 49
8, 16, 24, 32, 40, 48, 56, 64
9, 18, 27, 36, 45, 54, 63, 72, 81
10, 20, 30, 40, 50, 60, 70, 80, 90, 100

Though there are many other Mathematica constructs that can be used as alternatives to Table, they will probably be slower
and not as elegant.

In BFS the variable e is initialized to the adjacency list representation of the graph g. Converting the graph into its adjacency
list representation before doing anything else is common feature in many Combinatorica functions that work with graphs.
Below, I show what is assigned to e when g is a 7−vertex Wheel .

In[25]:= e � ToAdjacencyLists g

Out[25]= 2, 6, 7 , 1, 3, 7 , 2, 4, 7 , 3, 5, 7 , 4, 6, 7 , 1, 5, 7 , 1, 2, 3, 4, 5, 6

The body of BFS starts after the variables are defined and the first statement in the body is
bfi[[start]] = cnt++;

When bfi is defined, it is initialized to a list of 0’s via the Table function. In the above statement the slot in bfi indexed by
start is assigned the value of cnt. So [[..]] plays the same role of as [..] does in languages such as C or C++. The second
statement in BFS is a very similar initialization

lvl[[start]] = 0;
An arbitrary subset of the slots in a list can be assigned values using one statement, as the following example shows. After
the variable l is assigned to {1, 2, ..., 10}, l[[2]], l[[5]], and l[[6]] are assigned 3 new values in one statement.

tutorial.nb 4

In[26]:= l � Range 10

Out[26]= 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

In[27]:= l 2, 5, 6 � � 1, � 2, � 3

Out[27]= � 1, � 2, � 3

In[28]:= l

Out[28]= 1, � 1, 3, 4, � 2, � 3, 7, 8, 9, 10

In Mathematica the List object is amazingly versatile.For example,elements from a List can be extracted using any of the
following operations:Part,First,Last,Head,Extract,Take,Drop,Rest,Select,and Cases. Under the heading "List Operations"
Mathematica aprovides: Append, Prepend, Insert, Delete, DeleteCases, ReplacePart, Join, Union, Intersection, Complement,
Sort, Reverse, RotateLeft, RotateRight, PadLeft, PadRight. There are many other operations related to Lists under the
heading of "List Construction," "List Testing," and "Structure Manipulation." Most objects in Combinatorica are repre-
sented as lists and therefore the amazing array of list manipulation functions thatMathematicaprovides leads to compact and
elegant programs.

� Loops

The next construct used in BFS is the While construct. As the help string below tells us, the While construct takes in two
arguments and the semantics are similar to those associated with while−loops in C or C++.

In[29]:= ? While

While test, body evaluates test, then body, repetitively, until test first fails to give True.
Help Browser

The example below shows that unlike a function like Table, While does not produce any output and therefore its importance
is in the side effects it causes.

In[38]:= sum � 0

Out[38]= 0

In[39]:= i � 0

Out[39]= 0

In[40]:= While i 10, sum � sum � 10; i � �

In[41]:= sum

Out[41]= 100

Other iteration constructs in Mathematica are provided by the Do−construct and the For−construct.

In[42]:= ?Do

Do expr, imax evaluates expr imax times. Do expr, i, imax evaluates
expr with the variable i successively taking on the values 1 through imax in
steps of 1 . Do expr, i, imin, imax starts with i 	 imin. Do expr, i, imin,
imax, di uses steps di. Do expr, i, imin, imax , j, jmin, jmax , ...
evaluates expr looping over different values of j, etc. for each i. Help Browser

tutorial.nb 5

In[43]:= ?For

For start, test, incr, body executes start, then repeatedly
evaluates body and incr until test fails to give True. Help Browser

The first statement in the body of the while−loop in BFS is
 { v, queue } = { First[queue], Rest[queue] };

and this is yet another evidence of the versatility of the List data structure in Mathematica. First[queue] evaluates to the first
(top) element in the queue. Rest[queue] evaluates to a list obtained by dropping the first element from queue. These two
quantities are simultaneously assigned to v and queue respectively, having the effect of dequeuing an element from queue
and assigning it to v.

In[44]:= l � 1, 3, 8, � 1, 11, 12

Out[44]= 1, 3, 8, � 1, 11, 12

In[45]:= v, l � First l , Rest l

Out[45]= 1, 3, 8, � 1, 11, 12

In[52]:= v, l

Out[52]= 1, 3, 8, � 1, 11, 12

� Functional Operations

The rest of the while−loop in BFS is taken up by a call to the Scan function. Scan, along with relatives such as Map and
Apply and extremely important functions in Mathematica. These are called functional operations because they work by
applying functions to elements of lists.

In[53]:= ?Scan

Scan f, expr evaluates f applied to each element of expr in turn. Scan f, expr,
levelspec applies f to parts of expr specified by levelspec. Help Browser

Scan, like the While−function produces no output. It is useful only for the side−effects it produces. In BFS, Scan produces
side−effects on bvi, parent, and lvl.

In the following example, I define a single argument function Acc that increases a quantity m by the given argument.
Scan[Acc, l] evaluates Acc by providing it with each element of l in turn. This results in each element in l being added to m.
If m is initialized to 0 and then Scan[Acc, l] is called then m ends up being the sum of the values in l. Note that Scan[Acc,
l] produces no output and the this function call is useful only in the effect it has on m.

In[84]:= Acc x_ : � m � m � x

In[85]:= l

Out[85]= 3, 8, � 1, 11, 12

In[86]:= m � 0

Out[86]= 0

In[87]:= Scan Acc, l

tutorial.nb 6

In[88]:= m

Out[88]= 33

In the above example, Acc was explicitly named. Mathematica provides a way of specifying functions without explicitly
naming them. This mechanism, demonstrated below is called a "pure function." In the example below, we do not use Acc;
instead, within the call to Scan, we specify an equivalent pure function

Function[x, m = m + x]
that takes a single formal argument x and adds it to the quantity m.

In[89]:= m � 0

Out[89]= 0

In[90]:= Scan Function x, m � m � x , l

In[91]:= m

Out[91]= 33

In[92]:= ?Function

Function body or body& is a pure function. The formal parameters are # or #1 , #2, etc.
Function x, body is a pure function with a single formal parameter x. Function x1,
x2, ... , body is a pure function with a list of formal parameters. Help Browser

The help string for Function above tells us that there is a shortform we can use for pure functions in which the formal
arguments are also not explicitly named. The example below shows this. In this example,

(m = m + #)&
is used to specify a pure function with a single argument, specified by #.

In[105]:= m � 0

Out[105]= 0

In[106]:= Scan m � m � # &, l

In[107]:= m

Out[107]= 33

Below is yet another example of Scan and pure functions.The pure function
If [PrimeQ[#], s++]&

increments s if the argument provided to the function is a prime. Using this, the following example discovers that the
number of primes no greater than 1000 is 168.

In[108]:= l � Range 1000 ;

In[109]:= ?PrimeQ

PrimeQ expr yields True if expr is a prime number, and yields False otherwise. Help Browser

In[110]:= s � 0

Out[110]= 0

In[111]:= Scan If PrimeQ # , s � � &, l

tutorial.nb 7

In[112]:= s

Out[112]= 168

As a final example of Scan, consider the function call to Scan in BFS. The appropriate code fragment is reproduced below.
The second argument to this function call is e[[v]], which is the list of all neighbors of v. So Scan processes each neighbor,
say u, of v in turn, checking to see the bfi−value of u is 0. If bfi[[u]] is then it means that u has not yet been visited and the
values of bfi[[u]], parent[[u]], and lvl[[u]] are all appropriately updated.

 Scan[(If[bfi[[#]] � 0,bfi[[#]]=cnt++;
 parent[[#]]=v;
 lvl[[#]]=lvl[[v]]+1;
 AppendTo[queue,#]])&, e[[v]]
]

Map is a Mathematica function that is closely related to Scan and is probably more useful than Scan. The big difference
between Scan and Map is that Map returns output and therefore can be used as an argument to other functions. Anything
Scan can do, Map can also do. But calling Map when Scan suffices, as in the BFS example leads to inefficient code.

In[113]:= ?Map

Map f, expr or f � expr applies f to each element on the first level in expr. Map f,
expr, levelspec applies f to parts of expr specified by levelspec. Help Browser

In[114]:= l � 1, 2, 10, 4

Out[114]= 1, 2, 10, 4

In[115]:= Map #^2 &, l

Out[115]= 1, 4, 100, 16

In[116]:= Map f, 1, 3, 4

Out[116]= f 1 , f 3 , f 4

Map is important enough that Mathematica contains several variants: MapAll, MapAt, MapIndexed, and MapThread.

� Final Words

After the end of the definition of BFS, the reader will notice
 /; (1 � start) && (start � V[g])

As the following help string tells us, this is a boolean condition that has to evaluate to True for the function
definition to help. So this condition ensures that unless start is a valid vertex (an integer in the range 1 through the number
of vertices) BFS will not be defined.

In[117]:= ?/;

patt ; test is a pattern which matches only if the evaluation of test yields True. lhs : �
rhs ; test represents a rule which applies only if the evaluation of test yields True.
lhs : 	 rhs ; test is a definition to be used only if test yields True. Help Browser

tutorial.nb 8

