
Quiz 2
22C:80 Programming for Informatics

Tuesday, April 7th, 2009

Notes: The quiz is worth 6 points total. To get partial credit you must show your work.

1. Consider the following binary search function:

def binarySearch(C, x):
first = 0
last = len(C)-1

while(first <= last):
mid = (first + last)/2
if(x == C[mid]):
return True # 1b) return mid

if(x < C[mid]):
last = mid - 1
else:
first = mid + 1

#The sublist has shrunk to size 0 and so x is not in the list
return False # 1b) return first

(a) Suppose that C is [3, 5, 5, 11, 20, 21, 50, 57]. How many times will the body of the while-loop
execute when binarySearch(C, 12) is called?

Solution: 3 times
1st time: f = 0, l = 7, m = 3

2nd time: f = 4, l = 7, m = 5
3rd time: f = 4, l = 4, m = 4

(b) Sometimes binarySearch is more useful if it returns an index, rather than just a True or False.
Modify binarySearch so that (i) if x is found in C, the function should return the index of a slot that
x is in; (ii) otherwise, it should return the index of the slot that x would inserted into, if C were to
remain sorted after the insertion. For example, binarySearch(C, 12) should return 4 because if 12
were to be inserted into C, it would go into the slot currently occupied by 20, and the index of that
slot is 4. You don’t have to rewrite binarySearch, just list the modifications you will make.

Solution:

Modifications noted in the code above (as comments).

1

2. The code for the functions partition and recursiveQuickSort are given below:

def partition(C, left, right):
p = left
for i in range(p+1, right+1):
if(C[i] < C[p]):
swap(C, i, p+1)
swap(C, p, p+1)
p = p + 1

return p

def recursiveQuickSort(C, left, right):
if(left < right):
p = partition(C, left, right)
recursiveQuickSort(C, left, p-1)
recursiveQuickSort(C, p+1, right)

(a) Suppose C is the list [11, 7, 2, 4, 8, 1, 17, 5] and you call partition(C, 1, 5). How does C
change as a result of this call? What is the value returned by partition(C, 1, 5)?

Solution: [11, 2, 4, 1, 7, 8, 17, 5]
The value returned by partition(C, 1, 5) is 4

[The values of C after iteration i are:

i=2 C=[11, 2, 7, 4, 8, 1, 17, 5]
i=3 C=[11, 2, 4, 7, 8, 1, 17, 5]
i=4 C=[11, 2, 4, 7, 8, 1, 17, 5]
i=5 C=[11, 2, 4, 1, 7, 8, 17, 5]

]

(b) Suppose that we inserted a “print statement” that prints (in one line) C, left, and right, just before
the call to the partition function in recursiveQuickSort. What are the first three lines of output
you will see when you call recursiveQuickSort(C, 0, 7), with C being the list [11, 7, 2, 4, 8,
1, 17, 5].

Solution:

C left right
[11, 7, 2, 4, 8, 1, 17, 5] 0 7
[7, 2, 4, 8, 1, 5, 11, 17] 0 5
[2, 4, 1, 5, 7, 8, 11, 17] 0 3

]

2

3. Consider the variant of job scheduling problem in which you have two conference rooms, instead of just
one. You still want to maximize the total number of accepted requests, since you get paid a fixed amount
per request. One natural algorithm for this variant is the following. Let I be the input set of requests.
Consider one room (picked arbitrarily) and choose from I the maximum possible number of non-overlapping
requests, to schedule in that room. Let S be the set of requests scheduled in the first room. Then take the
unscheduled requests, i.e., I −S, and choose from I −S the maximum possible number of non-overlapping
requests to schedule into the second room. Note that you can use the “ends first” algorithm to solve the
subproblem for each room.

(a) Run the above algorithm for the input
[3, 7], [2, 9], [4, 8], [5, 7], [6, 11], [8, 10], [9, 15], [11, 17]

Clearly, show the requests that are scheduled in each room and also the unscheduled intervals. Recall
our convention that intervals such as [4, 8] and [8, 10] do not overlap. Solution:

Room 1: [3, 7], [8, 10], [11, 17]
Room 2: [5, 7], [9, 15]
[We sum the ”ends first” algorithm for Room 1 & then sum the ”ends first” algorithm on the
unscheduled intervals for Room 2.]

(b) Do you think this algorithm always yields an optimal solution? If so, justify your claim with an
informal 1-2 sentence argument. If not, construct a counterexample showing that it is possible to do
better than the algorithm described above.

Solution:
A: [0,3]
B: [6,7]
C: [1,5]
D: [4,8]
Consider the above input. The ”ends first” algorithm will schedule intervals A & B in one room and
then can only schedule C in the other room.
A better solution is to schedul A & D in the 1st room and B & C in the 2nd room.

3

