Lecture Notes CS:5360 Randomized Algorithms
Lecture 1: Aug 21, 2018
Scribe: Geoff Converse

1 What is a Randomized Algorithm?

These are algorithms that make coin tosses during their execution and take actions that depend
on outcomes of these coin tosses. In other words, these algorithms have access to random bits.
Notice that we are not talking about inputs being generated randomly from some probabalistic
distribution. The randomness is internal to the algorithm.

2 Classifying Random Algorithms

e Las Vegas algorithms: these make no errors, however, the running time of the algorithm is a
random variable. We are typically interested in the expected runtime of these algorithms.

e Monte Carlo algorithms: these algorithms make errors, but with some probability that can be
controlled. For example, we can say that a certain algorithm has a % or maybe a 1—(1)0 proba-
bility of making an error. The runtime of Monte Carlo algorithms can either be deterministic
or a random variable.

2.1 Example: Balanced Partition

INPUT: a list L of distinct numbers
OUTPUT: Lists L1 and Lo that partition L and satisfy:

1. Every element in L; is less than every element in Ls.
L 2|L
2. W<, <2

In order to solve this problem, we can try to find an approximate median of L by using a randomized
step.

FUNCTION: randomizedPartition(L=[1..n])
p <- index chosen uniformly at random from {1,2,...,n}
for i<- 1 to n do:
if L[i] <= L[pl:
L_1 <- L_1 append L[i]
else:
L_2 <~ L_2 append L[i]
return (L_1, L_2)

Notice that this does not always return a partition that satisfies both requirements above. In fact,
it has a % chance of error.

Lemma 1 The function randomizedPartition runs in O(n) time with an error probability of 2/3.

Using randomizedPartition as a subroutine we can design a Las Vegas algorithm for the
BALANCEDPARTITION problem and we can also design a Monte Carlo algorithm with a much
smaller error probability. First, we state the Las Vegas algorithm.

FUNCTION: randomizedPartitionLV(L[1..n])
repeat:
(L_1,L_2) <- randomizedPartition(L)
until: |L|/3 <= |L_1| <= 2|L|/3
return (L_1, L_2)

This algorithm will not make any errors, but its runtime is a random variable. This is because
with probability 1/3, the algorithm performs one iteration of the repeat-until loop, with probability
(2/3)(1/3) the algorithm performs two iterations of the repeat-until loop, etc.

FUNCTION: randomizedPartitionMC(L[1..n])
for i <- 1 to k do:
(L_1, L_2) <- randomizedPartition(L)
if (IL1/3 <= |L_1| <= 2|L|/3) then:
return (L_1, L_2)
endfor
return "Failed"

Notice that we are independently repeating the randomizedPartition algorithm k& times. This
process of increasing the probability of correctness is called probability amplification.

Theorem 2 BALANCEDPARTITION can be solved by a Las Vegas algorithm in expected O(n) time.

Theorem 3 BALANCEDPARTITION can be solved by a Monte Carlo algorithm in O(kn) time with
k
probability 1 — (%) .

3 Why use randomization in algorithms?

e To improve efficiency with faster runtimes. For example, we could use a randomized quicksort
algorithm instead of the deterministic quicksort. Deterministic quicksort can be quite slow
on certain worst case inputs (e.g., input that is almost sorted), but randomized quicksort is
fast on all inputs.

e To improve memory usage. Random sampling as a way to sparsifying input and then working
with this smaller input is a common technique.

e To make algorithms simpler. For example, see Karger’s min-cut algorithm in the next lecture.

e In parallel/distributed /streaming models of computation, randomization plays an even more
critical role. In distributed computing, each machine only has a part of the data, but still has
to make decisions that affect global outcomes. Randomization plays a key role in informing
these decisions.

4 Classification of Problems Based on Randomization

e P = the class of decision problems (problems with boolean answers) that can be solved in
polynomial time. We typically say that these can be solved efficiently.

e RP (randomized polynomial) = the class of decision problems L such that L can be solved
by a polynomial time algorithm A with the property:
— If z € L (zis a “yes” instance of L), then Pr(A(xz)=1)>1/2.
— Ifx ¢ L (z is a “no” instance of L), then Pr(A(x) =0) = 1.
Note that in this definition the algorithm A has one-sided error, only for “yes” instances.
Also, we clearly see that P C RP. Finally, the choice of the constant 1/2 in the above

definition is somewhat arbitrary. By using probability amplification (see below), we can
drive the error probability down quite efficiently.

FUNCTION: amplifiedA(x)
for i <- 1 to k do
if A(x) = 1, then
return 1
return 0O

In this use of probability amplification, when we input a “yes” instance, the probability of
the output begin incorrect is 27%. So then Pr(amplifiedA(z) =1) > 1 — 27,

e CoRP = {L|L € RP} = the class of decision problems such that L can be solved by a
polynomial time algorithm A with the property:

— If x € L, then Pr(A(z) =1) = 1.
— If x ¢ L, then Pr(A(z) =0) > 1/2.

e BPP (bounded error probabalistic polynomial) = the class of decision problems L such that
L has a polynomial time algorithm A with the property:

— If x € L, then Pr(A(z) =1) > 2/3.
— If x ¢ L, then Pr(A(z) =0) > 2/3.

Notice that for problems in BPP, we can make errors for both positive and negative instances
of L.

Not much is known about the relationship between P, RP, coRP, and BPP. However — maybe
somewhat surprisingly at first glance — many theoretical computer scientists believe the following
conjecture.

Conjecture 4 BPP = P.

BPP

Figure 1: A venn diagram detailing various complexity classes.

The point here is that randomization is not expected to help in a “gross” sense, i.e., it will not help
us solve in polynomial time a problem that cannot be solved in polynomial time by deterministic
means. However, it can improve a running time that is a high degree polynomial, e.g., O(n®), to a
running time that is a low degree polynomial, e.g., O(n?). This conjecture is a major open problem
in theoretical computer science.

There are at least one well known problem that is not known to be in P, but is in coRP. This
is the Polynomial Identity Testing problem.

Lecture Notes CS:5360 Randomized Algorithms
Lecture 2: Aug 23, 2018
Scribe: Geoff Converse

5 Polynomial Identity Testing (PIT)

INPUT: multivariate polynomials P(x1,xa, ..., Zm) and Q(x1, X2, ..., Tm)
QUESTION: is P = Q7
For example, with m = 3, we may be given

P(l’l,iL'Q, xg) = (3:B1 — 7)(4.TU2 — .733)(3.1‘2 — 4$1)

Q(x1,x9,23) = 361‘130% +1—2129 — 25x%m3 + Tx12003

Obviously, we can easily check whether or not the two polynomials are the same by multiplying
everything out. But, multiplying out the terms could lead to a polynomial that has an exponential
number (in m) of terms. It is also possible that even though the final coefficients are small, some
of the intermediate numbers generated by multiplications/additions can be quite huge. These are
some of the reasons why PIT does not have a (deterministic) polynomial-time algorithm yet.

5.1 “Baby version” of PIT

To simplify this problem, let’s just consider the case with m = 1, so that we are only given single
variable polynomials. Further, assume that both polynomials P(z) and Q(z) are given as a product
of monomials (for example, (3z—7)(9z+1)---). We also will assume that each arithmetic operation
take O(1) constant time.

Consider the following simple deterministic algorithm: multiply out both polynomials and
express in standard form. It can be checked that the runtime of this algorithm is O(d?), where d
is the degree of the polynomials P and Q.

Now we solve PIT using randomization.

Randomized PIT
(1) Pick a number t uniformly at random from {1,...,100d4}
(2) Evaluate P(t), Q(t)
(3) If P(t) = Q(t)
return YES
else
return NO

The runtime of this algorithm is O(d) because it takes O(d) to evaluate P(t) and Q(t). Note that
t can be generated by looking at O(logy(100d)) = O(logd) bits. If we assume that each random
bit can be generated in O(1) time, then Step (1) takes only O(logd) time.

To analyze the error probability of this algorithm, just look at the two possible cases.

o If P = (@), then the algorithm returns YES with probability 1.

o If P # @, the analysis is slightly more involved. Note that P(t) = Q(t) iff ¢ is a root of
P(z) — Q(x) = 0. Since P(x) — Q(z) has degree at most d, by the Fundamental Theorem
of Algebra, P(z) — Q(z) has at most d roots. Then Pr(P(t) = Q(t)) < 4 L. So for

100d — 100°
P # @), the algorithm returns NO with a probability > %.

6 Independence and Conditional Probabilities
Definition 5 Events Ey and Ey are independent iff Pr(E; N Ey) = Pr(Ey)Pr(Es).

Definition 6 FEvents En, ..., By, are mutually independent iff for any subset I C {1,2,....k}, Pr((N;er Ei) =
[Lier Pr(E:).

We have already used the notion of mutual independence in analyzing algorithms that amplify cor-
rectness probability by independent repititions. In some situations, requiring or expecting mutual
independence is too much and a weaker notion of independence suffices.

Definition 7 Events F1, ..., E}, exhibit p-wise independence iff for any subset I C {1,2,...,k} such
that |I| < p, Pr(MNier Ei) = Ilier Pr(E:).

When p = 2, the independence we get is called pairwise independence. We will encounter this later.

Definition 8 Conditional probabilitiy:

PT’(El N Eg)

P’I“(E1|E2) = P?“(Eg)

if Pr(Ey) #0

This implies that if Pr(E2) # 0, then Pr(Ey N Ey) = Pr(E1|E2) - Pr(Es). More generally,
k k
Pr(ExNEyN---NEy) =Pr | E|()E; | Pr|Eal()E;| - Pr(Ex1|E) - Pr(E)
Jj=2 j=3

We will now use the above formula in the analysis of Karger’s min-cut algorithm. There are many
ways of solving the min-cut problem in polynomial time, but Karger’s algorithm showcases the
simplicity and elegance one gets by using randomization.

7 Karger’s Min-cut Algorithm

INPUT: An undirected multigraph G = (V, E)
OUTPUT: A partition (5,7") of V such that the number of edges with one endpoint in S and the
other in T' is minimized.

In order to understand how Karger’s algorithm works, we first need to understand how the
contract operation works on a graph. This operation takes a graph G and an edge e = {u, v} in
G and outputs a new graph which “contracts” u and v into a “super-vertex” uwv. If a vertex w
had an edge to u and an edge to v in G, then after the contract operation w has two edges to the
super-vertex uv. See Figure 3 for an illustration.

Figure 2: An example of partition which solves the mincut problem. Here the size of the mincut
is 2. Notice that the size of the mincut is always < the minimum degree, as we can always choose
S to contain just one vertex.

7.1 Karger’s Mincut Algorithm

G_0 <- G

for i <- 1 to n-2 do:
pick an edge e_i uniformly at random from G_{i-1}
G_i <- contract(G_{i-1}, e_i)

return number of edges between two remaining vertices

Note that after each contract operation, the number of vertices decreases by 1. Therefore, the final
graph G, _o only has two vertices. This algorithm does not always return the optimal solution, as
demonstrated in Figure 4.

B contract(G, {B,D})

|:ll> BD

Figure 3: An example of the contract operation in action. Notice that contracting a simple graph
can return a multigraph.

BC
contract(G, {B,C})

——— 4

Figure 4: Karger’s Mincut Algorithm is not always correct. The original graph has a mincut size
equal to 2, but after one iteration, the min-cut size equals 3.

