
Lecture Notes CS:5360 Randomized Algorithms
Lectures 16 and 17: Oct 16 and Oct 18, 2018

Scribe: Shreyas Pai

1 Permutation Routing on a Hypercube

Last class we discussed the permutation routing problem in n-dimensional hypercube networks
having N = 2n nodes. We analyzed the following deterministic algorithm which we called the bit
fixing algorithm. Algorithm 1 describes the execution of this algorithm for each packet that is
received and processed at a particular node.

Algorithm 1: Bit Fixing Algorithm(n: dimension, ~a: packet source, ~b: packet destination)

1 for i← 1 to n do
2 if ai 6= bi then
3 send packet along edge in dimension i
4 end
5 end

Figure 1 illustrates an example of how a packet is routed using the bit fixing algorithm. We
also discussed the following randomized routing protocol for the permutation routing problem on a
hypercube network.

• Phase 1: For each packet we pick an intermediate destination independently and uniformly
at random. Packets are sent to their intermediate destination using the bit fixing protocol
(Algorithm 1)

• Phase 2: Packets are sent from their intermediate destination to their actual destination
using the bit fixing protocol (Algorithm 1)

01101 11101 1101111001 11010

Source Destination

Figure 1: This figure shows the bit fixing path take by a packet with source 01101 and destination
11010 on a 5 dimensional hypercube network. The underlined portion of the ID indicates the bits
that still need to be fixed by the bit fixing algorithm.

1

1.1 Digression: Lower Tail Chernoff Bounds

During the analysis we will require lower tail Chernoff bounds. We haven’t seen the lower tail
versions of Chernoff bounds so we make a digression to discuss lower tail Chernoff bounds before
we launch into the analysis. The proof is similar to upper tail Chernoff bounds so we just state the
different lower tail versions here without proof.

Let X1, X2, . . . , Xn be mutually independent binary random variables and let Pr[Xi = 1] =
pi ∀i ∈ {1, . . . , n}. Let X =

∑
iXi and denote E[X] by µ (Note: µ =

∑
i pi). For 0 < δ < 1

(a) Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)(1−δ)

)µ
(b) Pr[X ≤ (1− δ)µ] ≤ e−

δ2

2
·µ

Note that there is no equivalent of the upper tail form (c) in the lower tail regime because X
takes on non-negative integer values.

Using form (b) of both upper abd lower tail bounds we get –

Pr[|X − µ| ≤ δµ] ≤ 2e−
δ2

3
·µ

1.2 Analysis

We analyze the two phases separately. The main assumption we will make in the analysis is that
the nodes finish executing Phase 1 before moving on to Phase 2. This is because we don’t want the
Phase 2 packets causing congestion and delaying Phase 1 further than it should. This assumption
does not hold in the algorithm but we will see how to relax it when we finish the analysis.

Let M be a packet (or Message) that travels along a bit fixing path P in Phase 1. Let T1(M)
be the number of steps it takes for M to reach its Phase 1 destination, and let X(e) be the number
of packets that traverse edge e in Phase 1.

Observation 1
T1(M) ≤

∑
e∈P

X(e)

This is true because the packet can get unlucky and be placed at the end of the queue for every
edge e it wants to traverse, therefore being delayed by X(e) steps at edge e.

Our focus will now be on this upper bound of T1(M\). Note that the upper bound does not
depend on M at all so we define for every bit fixing path P –

T1(P) =
∑
e∈P

X(e)

And we now focus our attention on a particular path P .

2

High Level Idea
In order to achieve our goal, we will proceed as follows.

(1) We first show that the number of packets that are candidates for traversing an edge e ∈ P is
less than 6n with high probability.

(2) Conditioning on (1), we show that T1(P) ≤ 30n with high probability.

Definition 2 Let P = (v0, v1, . . . , vm−1, vm) be a path with m+1 vertices (and therefore m edges).
Suppose that traversing the edge (vi−1, vi) fixes the jth bit of a packet. We say that a packet M is
active at node vi−1 id it reaches vi−1 before its jth bit is fixed.

A packet M is active for a path P is it is active for some node vi−1 in P .

00000 00010 00011

4th bit 5th bit

vi−1 vi vi+1

S = 11110

01110

00110

D = 00001

Figure 2: Example of active and non-active packets in a 5-dimensional hypercube network. In bold
are two edges of the bit fixing path P where (vi−1, vi) fixes the 4th bit and (vi, vi+1) fixes the 5th

bit. The packet M (trajectory indicated by dashed lines) is not active for vi−1 because it reaches
there after its 4th bit is fixed but it is active for vi because it reaches there before its 5th bit is fixed.
Therefore M is active for the path P

A packet is a candidate for traversing an edge in a path (as in (1)) if it is active for the path.
Note that active packets may or may not travel along the path but inactive packets will definitely

3

not travel along the path. Therefore, counting the number of active packets gives us an upper
bound on the number of packets that travers a path P . So let H denote the number of packets that
are active for path P .

Using this new notation, we can rewrite our high level idea mathematically. Recall our goal is to
show that Pr[T1(P) ≥ 30n] is very small. Therefore we can write using the law of total probability
–

Pr[T1(P) ≥ 30n] = Pr[T1(P) ≥ 30n | H < 6n] · Pr[H < 6n] + Pr[T1(P) ≥ 30n | H ≥ 6n] · Pr[H ≥ 6n]

≤ 1 · Pr[H < 6n] + Pr[T1(P) ≥ 30n | H ≥ 6n] · 1
= Pr[H < 6n] + Pr[T1(P) ≥ 30n | H ≥ 6n]

Therefore, our goal now is to bound Pr[H < 6n]. We wish to use Chernoff bounds and therefore
need to express H as a sum of independent binary random variables. For i = 1, . . . , N let,

Hi =

{
1 if packet with source i is active for P
0 otherwise

It is easy to see that H =
∑

iHi. Whether a packet is active or not depends entirely on its
source and destination and since the destinations are picked independently for each packet, the H ′is
are mutually independent. We now calculate E[H].

Suppose vi−1 = (a1, a2, . . . , aj−1, bj , bj+1, . . . , bn) and vi = (a1, a2, . . . , aj−1, aj , bj+1, . . . , bn)
Packets that are active for vi−1 have sources of the form – (∗, ∗, . . . , ∗, bj , bj+1, . . . , bn). Therefore

there are at most 2j−1 such packets. Each of these packets will have a destination of the form
(a1, a2, . . . , aj−1, ∗, ∗, . . . , ∗). The probability that a packet has destination of such a form is 1/2j−1.

Therefore, the expected number of packets active at vi−1 is 1. Note that H is just the sum of
active packets at each node in the path and we have

E[H] =
m−1∑
i=0

E[of packets at vi] = m ≤ n

Using form (c) of the upper tail Chernoff bounds with R = 6n ≥ 6E[H], we get–

Pr[H ≥ 6n] ≤ 2−6n =
1

N6

Therefore we have –

Pr[T1(P) ≥ 30n] ≤ 1

N6
+ Pr[T1(P) ≥ 30n | H ≥ 6n]

Now we wish to bound Pr[T1(P) ≥ 30n | H ≥ 6n].

Observation 3 Let M be an active for P . If M leaves P , then it does not return back to P

This is because the bit fixing algorithm does not touch the bits that it has already fixed. If M
leaves the path P when the jth bit is fixed then the jth bit of M ’s trajectory will be different from
the jth bit of all the subsequent nodes in the path P . Note that M can also leave P without ever
traversing along an edge in P .

4

Consider the following randomized trial as a thought experiment: For each active packet M of
P , when M is at a node in P , we toss a biased coin and decide whether M traverses the next edge
of P or leaves P based on the coin toss. A success or heads imples the packet leaves the path (to
never come back) and a failure or tails implies the packet stays on the path.

Observation 4 Pr[success] ≥ 1/2

To see this, consider an equivalent version of the algorithm where the destination bits are
computed “on the fly” as opposed to being determined at the source. In particular, when a node
vi−1 receives a packet whose j − 1 destination bits are determined (or fixed), it computes the jth

bit by tossing a coin. Therefore, in order for the packet to stay on the path, vi−1 needs to get the
correct outcome that sends the packet along the edge (vi−1, vi). And the success probability will
be at least 1/2 because the active packets that vi−1 receives need not have all j − 1 bits fixed, so it
has to make more coin tosses first that allow the packet to stay at vi−1 before the jth bit is fixed.

Note that T1(P) is the total number of failures and the total number of successes is ≤ H < 6n.
But we don’t know the total number of trials so we can’t directly bound Pr[T1(P) ≥ 30n | H < 6n].

Let Z = number of successes when an unbiased coin is tossed 36n times.

Claim 5 Pr[T1(P) ≥ 30n|H < 6n] ≤ Pr[Z < 6n]

We skipped the proof in class and noted that it can be proved using induction.
So now we focus on upper bounding Pr[Z < 6n]. Note that E[Z] = 18n, therefore by form (b)

of lower tail Chernoff bound we get –

Pr[Z < 6n] ≤ Pr[Z ≤ (1− 2/3)18n]

≤ e−
(2/3)2

2
·18n

= e−4n =
1

N4

Therefore, Pr[T1(P) ≥ 30n|H < 6n] ≤ N−4 which implies Pr[T1(P) ≥ 30n] ≤ N−6 +N−4

Now consider all possible bit fixing paths P : there are N ×N = N2 different bit fixing paths.
Therefore, by the union bound –

Pr[∃P : T1(P) ≥ 30n] ≤ N2(N−6 +N−4) ≤ 2

N2
≤ 1

N

Notice that for Phase 2, the same analysis will go through but the only thing we would need
to change is that the sources are picked independently and uniformly at random instead of the
destinations. Therefore we get

Pr[∃P : T2(P) ≥ 30n] ≤ 1

N
We had assumed that Phase 2 starts after Phase 1 has completed. Note that T1(P)+T2(P) ≥ 60n

implies either T1(P) ≥ 30n or T2(P) ≥ 30n. Therefore –

Pr[∃P : T1(P) + T2(P) ≥ 60n] ≤ max{Pr[∃P : T1(P) ≥ 30n],Pr[∃P : T2(P) ≥ 30n]} ≤ 1

N

Therefore, we get a probabilistic bound on the running time of the randomized routing algorithm.
This result is encapsulated in the following theorem –

Theorem 6 With high probability, the randomized routing algorithm delivers all packets to their
destination in O(n) time steps.

5

2 Randomized Data Structures: Skip Lists

We would like to design a data structure that takes O(log n) time for insert, delete, and search
operations. There are many deterministic data structures that provide such guarantees. Examples
are variants of balanced binary search trees like AVL and Red-Black trees.

Skip lists are a simple1 alternative. The idea is to create different levels of linked lists. The list
at level 0 (L0) contains all elements in sorted order. The list at level i (Li) is a sublist of the list at
level i− 1. The lists at higher levels serve as “highways” for the query to “skip” significant portions
of the lists at lower levels.

There are many ways to implement skip lists. Figure ?? illustrates an implementation where
Li is created by picking every other element from the list Li−1. Having this invariant allows us
to perform search in O(log n) time but it is difficult to efficiently maintain the invariant under
insertions and deletetions.

−∞

−∞

−∞

−∞

117 91 221812 15

1 9 1812

9 18

18

Figure 3: Example of a deterministic skip list where the higher level is created by picking alternate
elements from the lower level. The bold arrows show the path taken by a search query for element
14 (since 14 is not in the list, we return the closest smaller element 12). The −∞ elements are
added at the beginning for convenience and to give the search algorithm a concrete starting point
irrespective of the changes in the data structure.

In the next lecture we will look at the performance of a randomized variant of skip lists where
we create the list Li by picking each element from Li−1 independently with probability 1/2.

1The reader can (and should) decide for themselves whether this data structure is really that simple.

6

	Permutation Routing on a Hypercube
	Digression: Lower Tail Chernoff Bounds
	Analysis

	Randomized Data Structures: Skip Lists

