
CS:5350 Midterm Exam, Spring 2016

Your answers will be graded primarily for correctness, but as in the homeworks, clarity, precision,
and conciseness will also be important. Problem 1 is worth 70 points, and the remaining three
problems are worth 60 points each.

1. You are presented three different “divide-and-conquer” algorithms for the same problem.
Let us call these algorithms A, B, and C. Here are “high-level” descriptions of these
algorithms:

Algorithm A: In the divide step, Algorithm A starts by doing some work that results
in five subproblems, each having size one-half of the size of the original problem.
Algorithm A then recursively solves the five subproblems (in the conquer step) and
combines the solutions of these subproblems to get a solution to the original problem.
The divide and combine steps of Algorithm A run in O(log n) time, where n is the
input size of the problem.

Algorithm B: Given an input of size n, in the divide step, Algorithm B does some work
to produce two subproblems, one of size n−1 and one of size n−2. It then recursively
solves the two subproblems (in the conquer step) and combines the obtained solutions
into a solution for the original problem. The divide and combine steps of Algorithm
B take O(1) time.

Algorithm C: In the divide step, Algorithm C does some work to produce seven sub-
problems, each having size one-eighth of the size of the original problem. Algorithm
C then recursively solves the seven subproblems (in the conquer step) and combines
the solutions of these subproblems to get a solution to the original problem. The
divide and combine steps of Algorithm C run in O(n) time.

Assume that there are constants cA, cB , and cC (for each algorithm, respectively) such
that, when the input size n (to Algorithm X ) falls below cX , then Algorithm X abandons
recursion and solves the problem directly in some other manner, taking O(1) time to solve
the problem. (Here X can refer to either A, B, or C.) Thus n < cA, n < cB , and n < cC
correspond to the base cases of the three algorithms.

(a) Write down the recurrence for Algorithm C and then solve it to obtain the running
time of the algorithm. Express your answer as O(f(n)), where f(·) is a function of
the input size n. Show all your work.

(b) Algorithms are considered “efficient” if their running time is bounded above by poly-
nomial function of the input size. Are all three algorithms described above “efficient”
in this sense? (Yes or No) Justify your answer.

(c) How many function calls to base cases will result from a call to Algorithm A on an
input of size n?

(d) Based on your answers to parts (a)-(c), which algorithm would you pick to implement
assuming that asymptotic running time is your only criteria? Briefly (in 1-2 sentences)
justify your choice.

2. Suppose we are given an array A[1..n] with the boundary conditions that A[1] ≥ A[2] and
A[n − 1] ≤ A[n]. We say that an element A[x] is a local minimum if it is less than or
equal to both its neighbors, or more formally, if A[x− 1] ≥ A[x] and A[x] ≤ A[x + 1]. For
example, there are six local minima in the following array:

9 7 7 2 1 3 7 5 4 7 3 3 4 8 6 9

We can obviously find a local minimum in O(n) time by scanning through the array. This
problem leads you to a faster algorithm.

1



(a) Describe a divide-and-conquer algorithm that, given an array A[1..n] with the bound-
ary conditions mentioned above, finds and returns a local minimum in O(log n) time.
You can assume that n ≥ 3.
Hint: With the given boundary conditions, the array must have at least one local
minimum. Why?

(b) Prove the correctness of your algorithm.

(c) Write down a recurrence for the running time of your algorithm. You do not have to
solve this recurrence.

3. You are given an array A[1..n] containing numbers (not necessarily integers), which can
be positive or negative or zero. This problem has you construct a dynamic programming
algorithm, running in O(n) time, that finds indices q and p, n ≥ p > q ≥ 1 such that
A[p] −A[q] is maximum. Assume n ≥ 2.

(a) Let OPT (j) denote the maximum difference A[p]−A[q], where j ≥ p > q ≥ 1. Write
a recurrence expressing OPT (j) in terms of OPT (·) for smaller subproblems.
Hint: As we have seen in some examples of dynamic programming solutions, you
may need to define another (related) problem, whose solution may also participate in
the recurrence. Make sure you write the recurrence relation for this related problem
as well.

(b) Using your recurrence explain (in pseudocode or in plain English) how one can solve
the above problem in O(n) time.

4. You are given matrices A1, A2, . . . , An and you want to compute the matrix product

A1 ×A2 × · · · ×An.

Each matrix Ai has dimensions mi−1×mi. Note that the product is a matrix of dimensions
m0 ×mn.

Because matrix multiplication is associative, one can perform the multiplications in any
order. However, different multiplication orders can have very different costs. Recall that
multiplying an a × b matrix and a b × c matrix in the elementary fashion takes a · b · c
multiplications and we will use this as a measure of the cost of multiplying the matrices.
For example, suppose that A1 has dimensions 50 × 20, A2 has dimensions 20 × 1, and
A3 has dimensions 1 × 10. Then multiplying in the order (A1 × A2) × A3 will have cost
50 ·20 ·1+50 ·1 ·10 = 1000+500 = 1500. This is because we first multiply A1×A2 and this
has cost 50 · 20 · 1 = 1000. Then we multiply a 50 × 1 matrix (the product of A1 and A2)
with a 1 × 10 matrix (A3) and this has an additional cost 50 · 1 · 10 = 500. Now note that
multiplying in the other order, i.e., A1× (A2×A3) has cost 20 · 1 · 10 + 50 · 20 · 10 = 10200.
From this example it should be clear that performing A1 × A2 first, before the other
multiplication, is much cheaper than the other option of multiplying A2 ×A3 first.

This problem has you construct a dynamic programing algorithm that takes as input
the matrix dimensions m0,m1, . . . ,mn and finds the cost of a cheapest ordering of the
multiplications. Note that your algorithm is not actually multiplying the matrices, just
figuring out the order in which the matrices are to be multiplied.

(a) Carefully define your subproblems.

(b) Express the cost of a cheapest ordering of the multiplications in a subproblem in terms
of costs of cheapest multiplication orderings for smaller subproblems.
Hint: This should seem similar to a homework problem.

(c) Write pseudocode for a dynamic programming algorithm (based on your recurrence(s)
in (b)) to solve the problem of computing the cost of a cheapest multiplication order-
ing.

(d) What is the running time of your algorithm?

2


