
CS:5350 Homework 5, Spring 2016
Due at exam time on Thu, Mar 3

Collaboration: You are welcome to form groups of size 2 and work on your homeworks in
groups. Of course, you are not required to work in groups. Every group should make one
submission and names of both group members should appear on the submission and both students
in a group will receive the same score. Other than the TA and the professor, you can only discuss
homework problems with your group partner. Collaboration can be positive because talking to
someone else about these problems can help to clarify your ideas and you will also (hopefully) get
to hear about different ways of thinking about the problem. On the other hand, collaboration
can be negative if one member of the group rides on work being done by the other member –
please avoid this situation. If your solutions are (even partly) based on material other than what
has been posted on the course website, you should clearly acknowledge your outside sources.
Late submissions: No late submissions are permitted. You will receive no points for your
submission if your submission is not turned in at the beginning of class on the due date.
Evaluation: Your submissions will be evaluated on correctness and clarity. Correctness is of
course crucial, but how clearly you communicate your ideas is also quite important.

1. A dominating set of a graph G = (V,E) is a vertex subset D ⊆ V such that every vertex
v ∈ V is either in D or has a neighbor in D. A minimum dominating set (MDS) of a graph
G is a dominating set of G with fewest number of vertices. No one knows how to solve
the problem of computing an MDS on arbitrary graphs in polynomial time. (In fact, since
MDS is NP-complete, it is expected that MDS cannot be solved in polynomial time.) But,
for trees there is a simple and efficient dynamic programming algorithm for MDS. This
algorithm is similar to the polynomial-time maximum independent set problem on trees
that we discussed in class on Tue, 2/23.

In this problem you don’t have to describe the complete algorithm. Simply state the
problems you will solve for a rooted tree (rooted at a vertex v) and then state recurrence
relations that express these problems in terms of problems on subtrees rooted at children
of v. Just like in the maximum independent set solution, you may have to define problems
closely related to MDS.

2. (This problem is from “Algorithm Design” by Kleinberg and Tardos.) Each month, you
can run your business out of an office in New York (NY) or out of an office in San Francisco
(SF). In month i, you’ll incur a cost of Ni if you operate out of NY and a cost Si if you
operate out of SF. However, if you run your business out of one city in month i and then
out of the other city in month i + 1, you incur a moving cost of M for switching offices.
Given a sequence of n months, a plan is a sequence of n locations – each one equal to NY

or SF – such that the ith location indicates the city you’ll be based in in the ith month.
The cost of a plan is the sum of the operating costs for each of the n months, plus a moving
cost of M each time you switch cities. The plan can begin in either city.

Problem: Given a value for the moving cost M , and sequences of operating costs N1, N2, . . . , Nn

and S1, S2, . . . , Sn, find a plan of minimum cost. You can assume that all costs (moving
and operating) are positive.

Example: Suppose n = 4, M = 10, and the operating costs are given by the following
table:

NY 1 3 20 30
SF 50 20 2 4

Then the plan of minimum cost would be the sequence of locations (NY,NY, SF, SF ),
with total cost 1 + 3 + 10 + 2 + 4 = 20. Note that the 10 appears in the above expression
because we switch locations once.
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(a) Suppose that we produce a plan by simply picking, for each month i, 1 ≤ i ≤ n, a
location (NY or SF) that has cheaper operating cost that month. (If the operating
costs are the same for the two cities in a month, then the location for that month is
chosen arbitrarily.) Show that this algorithm does not produce a plan of minimum
cost, by constructing an input for which it returns a plan that has greater cost than
an optimal plan.

(b) Give an efficient algorithm that takes values n, M , and sequences of operating costs
N1, N2, . . . , Nn and S1, S2, . . . , Sn and returns the cost of an optimal plan.
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