
CS:5350 Homework 3, Spring 2016
Due in class on Thu, Feb 11

Collaboration: You are welcome to form groups of size 2 and work on your homeworks in
groups. Of course, you are not required to work in groups. Every group should make one
submission and names of both group members should appear on the submission and both students
in a group will receive the same score. Other than the TA and the professor, you can only discuss
homework problems with your group partner. Collaboration can be positive because talking to
someone else about these problems can help to clarify your ideas and you will also (hopefully) get
to hear about different ways of thinking about the problem. On the other hand, collaboration
can be negative if one member of the group rides on work being done by the other member –
please avoid this situation. If your solutions are (even partly) based on material other than what
has been posted on the course website, you should clearly acknowledge your outside sources.
Late submissions: No late submissions are permitted. You will receive no points for your
submission if your submission is not turned in at the beginning of class on the due date.
Evaluation: Your submissions will be evaluated on correctness and clarity. Correctness is of
course crucial, but how clearly you communicate your ideas is also quite important.

1. Given a sequence A = (a1, a2, . . . , an) and an element t, let us now consider the following
procedure. Here t is either an element in A or is null.

pairupAndRemove(A, t)
Pair up elements of A arbitrarily, to get bn/2c pairs
Note: If n is odd, one element in A is not in any pair – call this t′

Let A′ be the empty sequence
for each pair (x, y) do

if x = y
add x to A′

if n is odd
return (A′, t′)

else
return (A′, t)

(a) Just so that you understand what the above procedure does, suppose that A =
(1, 0, 1, 1, 0, 1, 0) and t = null. Write down all possible outputs when the above
procedure is called with arguments A and t. Note that the step in the algorithm that
pairs up elements is under specified, i.e., you can pair up elements in different ways
and these differing choices could lead to different outputs. For this problem you are
being asked to consider all possible pairings that the procedure could perform and
write down all possible outputs this could lead to.

(b) A sequence A = (a1, a2, . . . , an) is said to have a majority element x if more than
half the entries are identical and equal to x. We now extend this definition to a pair
(A, t) as follows. Give each element in A one vote and give the element t one-tenth of
a vote. Count the number of votes received by each element and if an element in A
receives more than n/2 votes then it is the majority; otherwise there is no majority.
For example, if A = (5, 4, 5, 4) and t = 5 then the element 5 receives 2.1 votes and 4
receives 2 votes and 5 is the majority element of the pair (A, t). From this example,
it should be clear that t serves a sort of a “tie breaker,” but with less than one vote.
Now consider the following claim:

Claim: Suppose that n > 0 and the pair (A, t) has a majority element x then
the pair returned by pairupAndRemove(A, t) to also has x as the majority
element.

1



Prove this claim for odd n. (The claim is true for even n also, but you don’t have to
prove it for even n.) To get started let m be the number of instances of x in A and
let u be the number of instances of all elements in A that are different from x. Let
e = m− u denote the “excess” number of instances of x in A. Think about possible
values of e and what could happen to e as a result of the pairupAndRemove procedure.

(c) Now consider the following problem:

Majority
Input: A sequence A = (a1, a2, . . . , an).
Output: The majority element in A, if A has one; otherwise, a message indicat-
ing that A does not have a majority element.

Use the claim in part (b) to design an O(n)-time divide-and-conquer algorithm for
the Majority problem. Make sure you think about (i) how the algorithm is first
called, (ii) the bases case(s) and (iii) about the situation in which there is no majority.
Describe your algorithm clearly in pseudocode.
Note: This seems to be a popular interview question! As a result, there is a lot of
discussion about this problem on the internet. Feel free to use internet resources, but
make sure your answer is in your own language and that you correctly acknowledge
any resources you use.

(d) Write down the recurrence relation for the running time of your algorithm. (You
don’t have to solve it.)

2. Study Section 1.8 from Jeff Erickson’s notes on Karastuba’s algorithm for fast multiplica-
tion. Then answer Problem 28(e) (on Page 26) in Chapter 1 from these notes.

3. On Slide 10 in the posted notes on the Closest Point Pair problem there is the following
recurrence:

U(n, d) = 2U(n/2, d) + U(n, d− 1) + O(n)

for the running time of the divide-and-conquer algorithm to solve the All Close Point Pairs
(ACPP) problem. It is then claimed that this solves to U(n, d) = O(n(log n)d−1).

This claim is not quite accurate because for d = 1, the claim would translate to U(n, 1) =
O(n), but every known algorithm for the 1-dimensional ACPP problem requires Ω(n log n).
Furthermore, if we use U(n, 1) = O(n log n) in the recurrence for d = 2, we get that
U(n, 2) = O(n log2 n), again contradicting the claim in this slide.

To understand what is going on, let us focus on the 2-dimensional ACPP problem and
show that it is possible to improve the running time from O(n log2 n) to O(n log n) by
pre-sorting the points (by x-coordinate and separately by y-coordinate) and then sending
in the sorted lists into the recursive calls.

Your answer should consist of a plain English description of this modified algorithm (no
pseudocode necessary) followed by the correct recurrence relation for U(n, 2).
Note: Once we show that U(n, 2) = O(n log n), it is easy to use the recurrence in the
posted notes to show that U(n, d) = O(n(log n)d−1).

2


