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Randomized Algorithms.

The idea that a process can be “random” is not a modern one; we can trace
the notion far back into the history of human thought and certainly see its
reflections in gambling and the insurance business, each of which reach into
ancient times. Yet, while similarly intuitive subjects like geometry and logic
have been treated mathematically for several thousand years, the mathematical
study of probability is surprisingly young; the first known attempts to seriously
formalize it came about in the 1600s. Of course, the history of computer science

plays out on a much shorter time scale, and the idea of randomization has been
with it since its early days.

Randomization and probabilistic analysis are themes that cut across many
areas of computer science, including algorithm design, and when one thinks
about random processes in the context of computation, it is usually in one of
two distinct ways. One view is to consider the world as behaving randomly:
One can consider traditional algorithms that confront randomly generated
input. This approach is often termed average-case analysis, since we are
studying the behavior of an algorithm on an “average” input (subject to some
underlying random process), rather than a worst-case input:

A second view is to consider algorithms that behave randomly: The world
provides the same worst-case input as always, but we allow our algorithm to
make random decisions as it processes the input. Thus the role of randomiza-
tion in this approach is purely internal to the algorithm and does not require
new assumptions about the nature of the input. It is this notion of a randomized
algorithm that we will be considering in this chapter.
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Why might it be useful to design an algorithm that is allowed to make
random decisions? A first answer would be to observe that by allowing ran-
domization, we've made our underlying model more powerful. Efficient de-
terministic algorithms that always yield the correct answer are a special case
of efficient randomized algorithms that only need to yield the correct answer
with high probability; they are also a special case of randomized algorithms
that are always correct, and run efficiently in expectation. Even in a worst-
case world, an algorithm that does its own «internal” randomization may be
able to offset certain worst-case phenomena. SO problems that may not have
been solvable by efficient deterministic algorithms may still be amenable to
randomized algorithms.

But this is not the whole story, and in fact we’ll be looking at randomized
algorithms for a number of problems where there exist comparably efficient de-
terministic algorithms. Even in such situations, a randomized approach often
exhibits considerable power for further reasons: It may be conceptually much
simpler; or it may allow the algorithm to function while maintaining very little
internal state or memory of the past. The advantages of randomization seem
to increase further as one considers larger computer systems and networks,
with many loosely interacting processes—in other words, a distributed sys-
tern. Here random behavior on the part of individual processes can reduce the
amount of explicit communication or synchronization that is required; it is
often valuable as a tool for symmetry-breaking among processes, reducing the
danger of coniention and “hot spots.” A number of our examples will come
from settings like this: regulating access t0 a shared resource, balancing load

on multiple processors, Of routing packets through a network. Even a small
level of comfort with randomized heuristics can give one considerable leverage
in thinking about large systems.

A natural worTy in approaching the topic of randomized algorithms 18 that
it requires an extensive knowledge of probability. Of course, it’s always befter
to know more rather than less, and some algorithms are indeed based.on
complex probabilistic ideas. But one further goal of this chapter is to illustrate
how little underlying probability is really needed in order to understand many
of the well-known algorithms in this area. We will see that there is a small set
of useful probabilistic tools that recur frequently, and this chapter will try to
develop the tools alongside the algorithms. Ultimately, facility with these tools
is as valuable as an understanding of the specific algorithms themselves.

13.1 A First Application: Contention Resolution

We begin with a first application of randomized algon'thms»-—contention res-
olution in a distributed system—that illustrates the general style of analysis
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Defining Some Basic Events When confronted with a probabilistic system
Jike this, a good first step is 0 write down some basic events and think about
their probabilities. Here’s a first event to consider. For a given process P;and a
givenround t, let Ali, t]denote the event that P; attempts to access the database
in round t. We know that each process attempts an access in each round with
probability p, s0 the probability of this event, for any i and t, is Pr [A [i, t]] =D.
For every event, there is also a complementary evernt, indicating that the event
did not occur; here we have the complementary event AT, t] that P; does not
attempt to access the database in round ¢, with probability

pr AT o] =1-prlAld]=1-P-

Our real concern is whether a process succeeds in accessing the databasein
a given round. Let $[i, t] denote this event. Clearly, the process P; must attempt
an access in round t in order to succeed. Indeed, succeeding is equivalent 10
the following: Process P; attemnpts to access the database in round t, and each
other process does not attempt to access the database in round t. Thus 8{i, t]is
equal to the intersection of the event Ali, t] with all the complementary events

Alj, t], for j# 1

sfi, t1=Al,tin | (AU 1] -
j#
All the events in this intersection are independent, by the definition of the
contention-resolution protocol. Thus, 10 get the probability of $[i, t], we can

multiply the probabilities of all the events in the intersection:

pr [s(7, t] =Pr[Ali. ] - ] [ r [AG.11]| =p0- p"
i

We now have a nice, closed-form expression for the probability that P;
succeeds in accessing the database in round t; we can nOW ask how to set p
so that this success probability is maximized. Observe first that the success
probability is 0 for the extreme cases p =0 and p=1 (these correspond to the
extreme case in which processes never bother attempting, and the opposite
extreme case in which every process tries accessing the database in every
round, so that everyone is locked out). The function f@) =p1— p)”*1 is
positive for values of p strictly between 0 and 1, and its derivative f'(p) =
(1-p*t—@—DHpd— p)"~2 has a single zero at the value p = 1/n, where
the maximum is achieved. Thus we can maximize the success probability by
setting p = 1/n. (Notice thatp=1/nisa natural intuitive choice as well, if one
wants exactly one process 0 attempt an access in any round.)
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ful asymptotic statement: The probability
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we'Te trying to avoid, and we want a bound on its probability in terms of
constituent “bad events” on the right-hand side.

For the case at hand, recall that ¥, = %, %[, t], and so

Pr(F] <Y Pro[,].
i=1

The expression on the right-hand side is a sum of 2 terms, each with the same
value; so to make the probability of F, small, we need to make each of the
terms on the right significantly smaller than 1/n. From our earlier discussion,
we see that choosing t = ©(n) will not be good enough, since then each term
on the right is only bounded by a constant. If we choose t = [en] - (cIn n),

then we have Pr [3’ i, t]] <n~* for each i, which is what we want. Thus, in
particular, taking t = 2[en] In nn gives us

n
PrF]<) Pr(Flitll<n-n?=n"",
i=1
and so we have shown the following.

(13.3) With probability at least 1 — n~, all processes succeed in accessing
the database at least once within t = 2[en] In n rounds.

An interesting observation here is that if we had chosen a value of t equal
to gnInn for a very small value of g (rather than the coefficient 2e that we
actually used), then we would have gotten an upper bound for Pr [F[i, t]] that
was larger than n™!, and hence a corresponding upper bound for the overall
failure probability Pr [Cﬂ] that was larger than 1—in other words, a completely
worthless bound. Yet, as we saw, by choosing larger and larger values for
the coefficient g, we can drive the upper bound on Pr [52] down to n~¢ for
any constant ¢ we want; and this is really a very tiny upper bound. So, ina
sense, all the “action” in the Union Bound takes place rapidly in the period
when t = @(n1n n); as we vary the hidden constant inside the ®(+), the Union

Bound goes from providing no information to giving an extremely strong upper
bound on the probability.

We can ask whether this is simply an artifact of usirg the Union Bound
for our upper bound, or whether it’s intrinsic to the process we’re observing.
Although we won’t do the (somewhat messy) calculations here, one can show
that when ¢ is a small constant times n In n, there really is a sizable probability
that some process has not yet succeeded in accessing the database. So a
rapid falling-off in the value of Pr [53] genuinely does happen over the range
t=0(nlnn). For this problem, as in many problems of this flavor, we're
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really identifying the asymptotically “correct” value of t despite our use of the
seemingly weak Union Bound.

13.2 Finding the Global Minimum Cut

Randomization naturally suggested itself in the prevlilcl)cLlls exzélinphtel, S(I:l(’)lce vlvle
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is now undirected and there is no source or sink.

For a cut (A, B) in an undirected graph G, the size of‘(f‘&, B)isthe (nwrnbl((e;3 (;f
edges with one end in A and the other in B. A global mzmmumlctLllt o.rS fn el
min-cut” for short) is a cut of minimum size. The term 'globa ere i mean
to connote that any cut of the graph is allowed”; there is n‘o.s?utrﬁe Somanes‘.[
Thus the global min-cut is a natural “robustness” parameter; 1tﬁlst eh e
number of edges whose deletion disconnects the'graph. We st C :
network flow techniques are indeed sufficient to find a global min-cut.

(13.4) There is a polynomial-time algorithm to find a global min-cut in an
undirected graph G.

Proof. We start from the similarity between cuts in undirected gfga;c)lh;l arllgtf;
cuts in directed graphs, and with the fact that we know how to find the
optimally. '

So given an undirected graph G = (V,E), we nged to tra:msform1 1tc esc:e ‘2?;
there are directed edges and there is a source a.r%d smk..We hrsé;eptad e
undirected edge e = (u,v) € E with two opposﬁely oriented t;c eresufmg,
¢ = (u,v) and e” = (v, u), each of capacity 1. Let G’ denote the
directed graph. . N

Now suppose we pick two arbitrary nodes_ s,t e V,'agd find tkie' mglﬁl;ll
st cut in G'. It is easy to check that if (A, B) is this minimum cu 1nte 5 o
(A, B) is also a cut of minimum size in G among all those that separa gt
t. But we know that the global min-cut in G must separate s from some ;
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since both sides A and B are nonempty, and s belongs to only one of them.
So we fix any s € V and compute the minimum s-t cut in G’ for every other
node t € V—{s}. This is n — 1 directed minimum-cut computations, and the
best among these will be a global min-cut of G. =

The algorithm in (13.4) gives the strong impression that finding a global
min-cut in an undirected graph is in some sense a harder problem than finding
a minimum s-t cut in a flow network, as we had to invoke a subroutine for the
latter problem n —'1 times in our method for solving the former. But it turns out
that this is just an illusion. A sequence of increasingly simple algorithms in the
late 1980s and early 1990s showed that global min-cuts in undirected graphs
could actually be computed just as efficiently as s-t cuts or even more so, and by
techniques that didn’t require augmenting paths or even & notion of flow. The
high point of this line of work came with David Karger’s discovery in 1992 of
the Contraction Algorithm, a randomized method that is qualitatively simpler
than all previous algorithms for global min-cuts. Indeed, it is sufficiently simple
that, on a first impression, it is very hard to believe that it actually works.

~¥ Designing the Algorithm
Here we describe the Contraction Algorithm in its simplest form. This version,

while it runs in polynomial time, is not among the most efficient algorithms

for global min-cuts. However, subsequent optimizations to the algorithm have
given it a much better running time.

The Contraction Algorithm works with a connected multigraph G = (V, E);
this is an undirected graph that is allowed to have multiple “parallel” edges
between the same pair of nodes. It begins by choosing an edge e = (u, v) of G
uniformly at random and contracting it, as shown in Figure 13.1. This means
we produce a new graph G’ in which 1 and v have been identified into a single
new node w; all other nodes keep their identity. Edges that had one end equal
to u and the other equal to v are deleted from G'. Each other edge e is preserved
in G', but if one of its ends was equal to u or v, then this end is updated to be
equal to the new node w. Note that, even if G had at most one edge between
any two nodes, G’ may end up with parallel edges.

The Contraction Algorithm then continues recursively on G’, choosing
an edge uniformly at random and contracting it. As these recursive calls
proceed, the constituent vertices of G’ should be viewed as supernodes: Each
supernode w corresponds to the subset Sw) C V that has been “swallowed
up” in the contractions that produced w. The algorithm terminates when
it reaches a graph G’ that has only two supernodes v; and v, (presumably
with a number of parallel edges between them). Each of these super-nodes v;
has a corresponding subset S(v;) € V consisting of the nodes that have been



