
Lecture Notes CS:5350 Design and Analysis of Algorithms
Lecture 3: September 3, 2019

Scribe: Anthony Cantor

1 Formulating the LP example in Standard Form

Previously we examined a Linear Programming example from Wikipedia involving parameters
determined by farming for wheat and barley. We have choice variables xw and xb that represent
the amount (in km2) of wheat and barley planted, respectively. Our objective function depends
on the prices Sw and Sb of wheat and barley (measured in $/km2), respectively. We are limited
to the quantity L (in km2) of land, F (in kg) of fertilizer, and P (in kg) of pesticide. Finally, we
have parameters that specify the required amounts of fertilizer and pesticide needed by the crops:

• Fw and Fb of fertilizer (in kg/km2) is needed for wheat and barley, respectively

• Pw and Pb of pesticide (in kg/km2) is needed for wheat and barley, respectively

We wanted to maximize our objective function Swxw + Sbxb subject to our constraints

xw + xb ≤ L

Pwxw + Pbxb ≤ P

Fwxw + Fbxb ≤ F

xw, xb ≥ 0

We can translate this into vector form, as follows. We want to maximize[
Sw

Sb

]T [
xw
xb

]
subject to  1 1

Pw Pb

Fw Fb

[xw
xb

]
≤

LP
F


and [

xw
xb

]
≥ 0

This is now in the standard form for an LP problem, which is:

maximize cTx
subject to Ax ≤ b

and x ≥ 0

where c and x are n-dimensional vectors, b is an m-dimensional vector of constraints, and A is an
m× n matrix.

LP could have a minimization objective function. It could also have a ≤, ≥, or = constraint,
and all of these variants can be transformed into the standard form, without loss of generality. The
only requirement for an LP is that the objective function and constraints are all linear.

1

Figure 1: This diagram hints at a visual intuition for the definition of the capacity ||S, T || of the
(s, t)-cut: the example edges shown (solid black arrows) cross the “cut line” (indicated by the
dashed line) determined by the partition elements S and T .

2 LP Formulation of MaxFlow

We formulate MaxFlow as an LP problem as follows. We have choice variables fu→v for each
u→ v ∈ E. We want to maximize

∑
u fs→u −

∑
w fw→s subject to

• Flow conservation:
∑

u fv→u =
∑

w fw→v for each v ∈ V \ {s, t}

• Feasibility: 0 ≤ fu→v and fu→v ≤ cu→v for every edge u→ v ∈ E

So in a graph with n vertices and m edges:

• we have (n− 2) + 2m constraints

• we have m variables

This tells us the “size” of the LP instance.
We will consider combinatorial algorithms for the MaxFlow problem despite the fact that

MaxFlow can be reduced to LP and we know that LP can be solved in polynomial time. Some of
our combinatorial algorithms have better performance than general LP algorithms, and will also
provide more insights into the structure of the problem.

3 The MinCut Problem

In order to define the MinCut problem we must first define an (s, t)-cut:

Definition 1 An (s, t)-cut is a set partition of V into sets S and T such that s ∈ S and t ∈ T .
The capacity of an (s, t)-cut, denoted ||S, T ||, is equal to

∑
u∈S,v∈T c(u→ v)

See Figure 1 for a better understanding of how various edges are treated by this definition.

Definition 2 The MinCut problem is defined by its input and output specifications as follows.
The Input is a directed special capacity graph G = (V,E), vertices s, t ∈ V , and function c : E →
R≥0. The Output is an (s, t)-cut with minimum capacity.

2

Figure 2: A depiction of the relationship between (S, T) and the edges a→ b, p→ q, and x→ y

4 MaxFlow-MinCut Theorem (weak version)

Now we show an important relationship between feasible flows and cuts.

Theorem 3 Let f be an arbitrary feasible (s, t)-flow and (S, T) be an arbitrary (s, t)-cut. Then
|f | ≤ ||S, T ||.

Proof: The net outflow from s is

|f | =
∑
u

fs→u −
∑
w

fw→s

= (
∑
u

fs→u −
∑
w

fw→s)

+ (
∑

v∈S\{s}

(
∑
u

fv→u −
∑
w

fw→v)) (by flow conservation)

= ?

To understand the next step in the equations below, take note of how each particular edge con-
tributes to the sum according to its relationship with the partition elements S and T :

• For all edges a → b ∈ E with a, b ∈ S (as in Figure 2), the net contribution of a → b to the
sum is 0.

• For all edges p→ q ∈ E with p ∈ S, q ∈ T (as in Figure 2), we get a positive fp→q contribution
to the sum.

• For all edges x→ y ∈ E, x ∈ T , y ∈ S (as in Figure 2), we get a negative contribution to the
sum.

3

Figure 3: a depiction of the “duality” view obtained from theorems 3 and 4.

Therefore we have:

? =
∑

p→q∈E,p∈S,q∈T
fp→q −

∑
x→y∈E,x∈T,y∈S

fx→y

≤
∑

p→q∈E,p∈S,q∈T
fp→q (fx→y ≥ 0 by feasibility of f)

≤
∑

p→q∈E,p∈S,q∈T
cp→q (fp→q ≤ cp→q by feasibility of f)

5 The MaxFlow-MinCut Theorem

We now know that a MinCut solution is an upper bound of a MaxFlow solution: given a feasible
(s, t)-flow f∗ with maximum value and an (s, t)-cut (S∗, T ∗) with minimum capacity, Theorem 3
implies that we have |f∗| ≤ ||S∗, T ∗||. But is it possible that we have |f∗| < ||S∗, T ∗||? The strong
version of the theorem proves that this is impossible, and that there is a correspondence between
MaxFlow solutions and MinCut solutions in the sense that a solution to one induces a solution to
the other.

Theorem 4 Let f∗ be a flow with maximum value and (S∗, T ∗) be a cut with minimum capacity.
Then |f∗| = ||S∗, T ∗||.

Figure 4 diagrammatically summarizes the proof strategy that we will use to prove Theorem 4.
For any arbitrary (s, t)-flow f , we will construct an object called a residual graph that possibly
induces the existence of another object called an augmenting path. We can use any augmenting
path to increase the value of the flow f , and so an augmenting path exists if/only if f is not
maximum. Finally, we show that in the case where no augmenting path exists, we can obtain a
minimum (s, t)-cut from the residual graph.

This theorem is usually attributed to Ford & Fulkerson (1954), and the proof leads to the Ford
Fulkerson algorithm for MaxFlow/MinCut. We will also look at the Edmonds-Karp algorithm,
which employs a better method for computing a choice of augmenting path. We will see that these
algorithms depend on the capacities of the graph being integral, and that in some cases non-integer
capacities can prevent them from terminating.

4

Figure 4: The proof strategy we will use to prove the strong version of the theorem

5

