
Lecture Notes CS:5350 Design and Analysis of Algorithms
Lecture 9: September 24, 2019

Scribe: Kowsar Hossain

1 Overview

In the previous lecture, we have talked about LP duality and the primal LP for maxflow and its
dual LP. In this lecture, We’ll talk about the interpretation of the dual LP as a mincut relaxation.

2 LP Formulation Based on Flow Decomposition Theorem

To interpret the dual LP in an easier way we presented in the last class an alternate LP formulation
based on the flow decomposition theorem.

MaxFlow/Primal LP (A):

maximize
∑

P : P is an s t path

xP

subject to
∑

P : P contains e

xP ≤ ce, for each edge e ∈ E

xP ≥ 0, for each s t path P

Dual LP (B):

minimize
∑
e∈E

ce.ye

subject to
∑
e∈P

ye ≥ 1, for each s t path P

ye ≥ 0

It may be worth mentioning here that (A) has exponentially many variables (in size of input graph)
and (B) has exponentially many constraints.

Observation: OPT(A) = OPT(B), by strong LP duality

Let us denote the optimal value of primal LP (A) by OPT (A) and the optimal value of dual LP
(B) by OPT (B). The observation says you can find optimal solution in both cases and therefore
the values are identical.

3 Connection Between LP Duality and Maxflow-Mincut Theorem

We are trying to make the connection between LP duality and maxflow-mincut theorem. We will
see that the maxflow-mincut theorem is basically a special case of more general notion of duality.
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To understand the interpretation of the LP duality as a cut problem let us consider a simple
example which is shown in Figure 1.

Figure 1: Flow graph with capacities ce

Based on the Figure 1, the constraints of (B) are:

ys→a + ya→t ≥ 1

ys→a + ya→b + yb→t ≥ 1

ys→b + yb→t ≥ 1

To get a feasible solution we can consider ys→a = 1/2, ya→b = 0, yb→t = 1/2, ys→b = 1/2, ya→t = 1/2
which is shown in Figure 2.

Figure 2: Graph with ce and ye

The cost of this solution is:

cs→a.ys→a + cs→b.ys→b + ca→b.ya→b + ca→t.ya→t + cb→t.yb→t

= 100× 1/2 + 100× 1/2 + 0× 1 + 100× 1/2 + 100× 1/2 = 200

Note that since the maxflow in this network has value 200, this is optimal by observation. (i.e.,
strong LP duality)

To get an integral solution of (B), we can consider ys→a = 1, ya→b = 0, yb→t = 1, ys→b = 0, ya→t = 0,
which is shown in Figure 3.
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Figure 3: Graph with ce and integral ye

The cost of this solution is:

100× 1 + 100× 0 + 1× 0 + 100× 0 + 100× 1 = 200

This solution is optimal as well.

We can interpret this integral solution as defining an (s− t) cut. We can interpret ye = 1 as saying
e is being selected for removal so as to separate s from t. We have selected edges s→ a and b→ t
so as to cut all possible paths from s to t, as shown in Figure 4.

Figure 4: Graph with ce and ye, showing
only the edges e with ye = 0

From a feasible assignment ye ∈ {0, 1} we can define a cut (S, T ) as follows:

• S = {v ∈ V | there is a path from s to v only containing edges e with ye = 0}

• T = V \ S

In the above example, S = {s, b} and T = {a, t}. Note that in general since
∑
e∈P

ye ≥ 1 for every

s  t path P , S does not contain t. So, we can interpret the solution of (B) as a cut if we place
the additional restriction that ye ∈ {0, 1} for all e.

3.1 Formalizing the Connection Between Integer Program and Mincut Problem

To make some of these ideas more precise let us define an integer program by replacing the non-
negativity constraints in (B) with integrality constraints ye ∈ {0, 1}. Let us call this integer

3



program: (C) and argue that (C) models the mincut problem. An integer program (IP) refers to a
mathematical program with linear objective function, linear constraints, and integrality constraints.
We formalize the connection between integer program (C) and the mincut problem as follows:

Lemma 1 Let (S∗, T ∗) be a cut with minimum capacity then OPT (C) = ||S∗, T ∗||.

Proof: (a) First, let us prove OPT (C) ≤ ||S∗, T ∗||. From the cut (S∗, T ∗), let us define the
following assignment of values to ye which is shown graphically in Figure 5:

• ye = 0, if both endpoints of e are in S∗ or both endpoints of e are in T ∗ or e goes from T ∗ to
S∗

• otherwise, ye=1

Figure 5: Assignment of values to ye

It is easy to check that this solution satisfies the constraints and is therefore a feasible solution
to (C). It is also easy to check that the objective function value for this feasible solution is∑
e∈E∩(S∗×T ∗)

ce = ||S∗, T ∗||. Therefore, by definition OPT (C) ≤ ||S∗, T ∗||.

(b) Now, let us prove OPT (C) ≥ ||S∗, T ∗||. Consider an optimal solution y∗e ∈ {0, 1} of (C). Let
us define S and T :

• S = {v|v is reachable from s only using edges e : y∗e = 0}

• T = V \ S

It is easy to check that (S, T ) is an (s, t)-cut, i.e., a cut that separates s from t. Since (S∗, T ∗)
by definition is a mincut so ||S∗, T ∗|| ≤ ||S, T ||. We also know that for every edge e going from S
to T , y∗e = 1; otherwise the endpoint of e in T would have been in S. Therefore, we know that

||S, T || ≤
∑
e∈E

ce.y
∗
e = OPT (C). Therefore ||S∗, T ∗|| ≤ OPT (C). So, we can conclude OPT (C) ≥

||S∗, T ∗||.
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3.2 OPT(C)=OPT(B)

Figure 6: Graphical representation of OPT (C) ≥
OPT (B)

Figure 6 represents graphically, what we have really discussed till now. Here, |f∗| is the maxflow
value and there is an LP corresponds to this. Then, we wrote the dual (B) of this LP. By strong
duality, we get |f∗| = OPT (B). After that, we wrote integer program (C) of this LP. Since,
feasible solutions of (B) is a superset of feasible solutions of (C) and (B) and (C) are minimization
problems, we can say OPT (C) ≥ OPT (B). We already know the maxflow-mincut theorem which
shows that |f∗| = ||S∗, T ∗|| and we know that OPT (C) = ||S∗, T ∗|| by earlier lemma. This implies
that OPT (B) = OPT (C) as shown in Figure 7.

Figure 7: Graphical representation of OPT (C) =
OPT (B)

In otherwords, we have shown that the LP (B) has an integral optimal solution. We state this as
a theorem.

Theorem 2 The LP (B) has an integral solution , i.e., a solution ye ∈ {0, 1}, that is optimal.
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