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1 Analysis of the Edmonds-Karp “fewest pipes” heuristic

In last lecture, we have learned the Edmonds-Karp ”fewest pipes” heuristic, which is: in each
iteration, an augmenting path is chosen such that it has fewest edges.

Theorem 1 This heuristic runs in O(m2n) time, even if the capacities are not integral.

To prove this theorem, we will show that an edge in residual graph can disappear and reappear
at most n/2 times.

Let f0, f1, ... be the sequence of flows constructed by the algorithm. Note that f0 in the initial
flow which is an all-zero flow. Let Gi be a shorthand for Gfi . Let leveli(v) be the shortest path
distance from s to v in Gi (we only consider the number of edges in the path, i.e., the edges are
unweighted).

Lemma 2 For all v ∈ V and all i ≥ 1, leveli(v) ≥ leveli−1(v).

Proof Sketch. There are two special kinds of vertices: (1) v = s, then leveli(v) = 0 for all i;
(2) v is unreachable for s in Gi, then leveli(v) =∞. In both cases, leveli(v) ≥ leveli−1(v).

Figure 1: A shortest path from s to v in Gi, u is the vertex previous to v in this path.

Figure 1 shows a shortest path from s to v in Gi, and u is the previous vertex to v. Therefore,
leveli(u) + 1 = leveli(v) since we know that a shortest path to v is also a shortest path to every
vertex earlier in the path.

Induction hypothesis (IH): leveli−1(u) ≤ leveli(u) for all u such that leveli(u) < leveli(v). (The
base case is for vertex s.)

There are two possible cases: (1) u→ v in Gi; (2) u→ v not in Gi−1.

(1) u→ v in Gi:

leveli−1(v) ≤ leveli−1(u) + 1 since it is possible to reach v via u in Gi−1.

≤ leveli(u) + 1 by induction hypothesis

= leveli(v)− 1 + 1 because u→ v is in the shortest path in Gi

= leveli(v)

(1)
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Figure 2: Illustration of case (2). When u→ v is not in Gi−1, but in Gi. So the augmenting path
P includes v → u

(2) u → v not in Gi−1: We want to know why u → v is in Gi but not in Gi−1. There can be
two scenarios. The first one is that u → v is an edge in the original graph G. Then u → v
disappears in Gi−1 because it is saturated in flow fi−1. Then by the shortest pipe heuristic, a
path P has been picked up for the flow fi−1 as an augmenting path such that P is a shortest
s  t path in Gi−1. u → v reappears in Gi because that v → u is in P (i.e., some flow has
been pushed back from v to u, and hence, u→ v is not saturated anymore).

The second scenario is that v → u is an edge in G. Then u→ v is not in Gi−1 because there
is no flow from v to u in fi−1. Again, by the shortest pipe heuristic, a path P has been picked
up for the flow fi−1 as an augmenting path such that P is a shortest s  t path in Gi−1.
u→ v appears in Gi because that v → u is in P , i.e., there is some flow from v to u in fi.

Therefore, in both scenarios, v → u is included in the augmenting P which is a shortest s t
path in Gi−1.

leveli−1(v) = leveli−1(u)− 1, since v → u is in P and P is a shortests t path in Gi−1

≤ leveli(u)− 1, by induction hypothesis

= leveli(v)− 1− 1, since u→ v is in shortest path in Gi

= leveli(v)− 2

(2)

�

Lemma 3 An edge u→ v can reappear in the residual graph sequence G0, G1, ... at most n
2 times.

Proof Sketch.
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Figure 3: Illustration of the disappear once and reappear once of an edge u→ v.

Since u→ v is in Gi but disappears in Gi+1, we know that u→ v is in the augmenting path Pi

which is a shortest s  t path in Gi. To see this, we can again consider two scenarios. The first
one is that u → v is in the original graph G. u → v exists in Gi but not in Gi+1. Then we know
it is not saturated in fi but saturated in fi+1. Thus, u→ v is in the augmenting path Pi which is
a shortest s  t path in Gi (i.e., Pi pushes more flow from u to v in to make it saturated). The
second scenario is that v → u is in the original graph G. Then we know there is some flow from
v to u in fi and no flow from v to u in Gi+1 (i.e., all the flow from v to u is pushed back by Pi).
Thus, u → v is in the augmenting path Pi which is a shortest s  t path in Gi. Thus, in both
scenarios, we have leveli(v) = leveli(u) + 1.

Since u → v is not in Gj but in Gj+1, we know that v → u is in the augmenting path Pj

which is a shortest s  t path in Gj . The analysis of this is similar to the above. Thus we have
levelj(u) = levelj(v) + 1.

levelj(v) = levelj(u)− 1

≥ leveli(u)− 1, by Lemma 2

= leveli(v)− 2

(3)

Level of v increase by at least 2 when u→ v disappears and reappear. Thus, u→ v can reappear
at most n

2 times since the level of v, which is the shortest length from s to v, cannot be larger than
the number of vertices (The level of v can achieve this number only when the path go through all
the other vertices and then finally reaches v). Because each edge disappears at most n/2 times,
there are at most mn/2 edge disappearances overall. We also know that in each iteration, the value
of the augmenting path is taken to saturate the edge that requires least flow to be saturated (the
minimum residual capacity of the edges in the augmenting path). So we saturated at least one edge
in each iteration. That means, at least one edge disappears on each iteration, so the algorithm
must halt after at most mn/2 iterations. Finally, looking for the shortest path in each iteration
requires O(m) time, so the overall algorithm runs in O(m2n) time. �

2 Introduction to LP duality

The MaxFlow-MinCut theorem is a special case of an important duality result in LP. In MaxFlow-
MinCut problem, the value of any arbitrary feasible flow is always upper bounded by an arbitrary
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capacity of a cut. And the maximum value of the flow is equal to the minimum capacity of the
cut. Generally, a primal objective value is always upper bounded by a dual objective value (weak
duality). And the maximum primal objective value is equal to the the minimum dual objective
value (strong duality).

Example:

max
x1,x2,x3,x4

x1 + 2x2 + x3 + x4

x1 + 2x2 + x3 ≤ 2 (i)

x2 + x4 ≤ 1 (ii)

x1 + 2x3 ≤ 1 (iii)

x1, x2, x3, x4 ≥ 0

(4)

Suppose we are given a solution is given x1 = 1, x2 = 1
2 , x3 = 0, x4 = 1

2 . The corresponding
objective function value is 2.5. Now we want to check if the this is optimal without solving LP.

(1) We consider (i) + (ii), then we have a constraint: x1 + 3x2 + x3 + x4 ≤ 3. Since we also
have x1 + 2x2 +x3 +x4 ≤ x1 + 3x2 +x3 +x4 for all x1, x2, x3, x4 ≥ 0, we know 3 is an upper bound
of the objective value.

(2) We consider 1
2(i) + (ii) + 1

2(iii), then we have a constraint: x1 + 2x2 + 1.5x3 + x4 ≤ 2.5.
Since we also have x1 + 2x2 +x3 +x4 ≤ x1 + 2x2 + 1.5x3 +x4, we know that 2.5 is an upper bound
of the objective value. Thus the given solution set x1 = 1, x2 = 1

2 , x3 = 0, x4 = 1
2 can achieve the

objective value of 2.5, and we know this set of solution is optimal.
Thus, to check whether a given set of solution is optimal or not, we want to find the tightest

bound. That is, we need to find a set of multipliers (y) for the constraints to get the best upper
bound.
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