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1 Max Flow - Min Cut

1.1 Example

Figure 1: Graph showing the relation between min-cut and max-flow.

Fig 1 shows an example graph with maximum flow achieved from source s to target t and a
minimum cut S = {s, a, c, d} and T = {b, t}.

Value of flow = fs→a + fs→c = 10 + 13 = 23
Capacity of cut (S, T ) = sum of total capacities of its edges going from S to T

= 12a→b + 7d→b + 4d→t = 23

Note: Edge b to c is not part of cut because it is not in the direction of S → T

Because the value of flow is equal to the capacity of cut so it is a min-cut and flow through the
graph from s to t has been maximized. i.e. all edges going from s to t will be saturated and all
edges from t to s will be 0.

1.2 Applications

Fig 2 shows different categories of problems which can be reduced to Maxflow. Each of these
problems can be reduced to maxflow by constructing a directed graph G = (V,E) with appropriate
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Figure 2: Applications which can be reduced to Max flow

capacities for that problem and call a Maxflow subroutine to solve it. Many of these problems are
not just reduced to simple version of MaxFlow. Sometimes they are reduced to more complicated
variants of MaxFlow (e.g. MaxFlow with both a lower bound and an upper bound on the amount
of flow across each edge.) You can learn more about these applications of Maxflow in Chapter 11
from Jeff Erickson notes.

2 Baseball Elimination Problem

“Every year millions of American baseball fans eagerly watch their favorite team, hoping they will
win a spot in the playoffs, and ultimately the World Series. Sadly, most teams are mathematically
eliminated days or even weeks before the regular season ends. Often, it is easy to spot when a team
is eliminated - they cannot win enough games to catch up to the current leader in their division.
In the mid - 1960s, Benjamin Schwartz observed that this question can be modeled as a max-flow
problem.” [?]

To model the baseball elimiation problem to maxflow, lets say there are n teams numbered 1, 2, ..., n
and the season is partially completed.

QUESTION: Can team n end the season with the most wins (possibly tied with other teams)?

This is a question of mathematical possibility. It doesn’t depend on how good the team is or what
form its players are in.
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• w[i], 1 ≤ i ≤ n : represents number of wins of team i

• r[i], 1 ≤ i ≤ n : represents number of remaining games of team i

• r[i, j], 1 ≤ i, j ≤ n : represents number of remaining games between team i and team j
Note: r[i, j] = 0
=⇒ r[i] =

∑n
j=1 r[i, j]

INPUT: Given what are the outcomes of games already happened, can team n end up at top.

Problem: Can we find an arrangement of remaining games’ outcomes so that team n end up at
top. This problem can be reduced to maxflow.

Without Loss of Generality: Assume team n wins all its remaining games. (Another assumption
could be that all teams don’t win their remaining matches but it is not possible in baseball.)

2.1 Reduction

Since assumption is that team n has already won all games so in our graph, we won’t have any
nodes representing games that involve team n so the graph will be of teams from 1 to n− 1.

Figure 3: Graphical representation of baseball elimination problem
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Figure 3 is the graphical representation of the baseball elimination problem. The capacity of
an edge going from s to gi,j represents the number of remaining matches between team i and team
j. A flow from s → gii, j represents remaining games which are to be played between team i and
team j. The outcome of each game is mapped on an edge going from game node to team node
therefore the edge from gi,j to ti represents the games won by team i against team j and the edge
from gi,j to tj represents the games won by team j against team i. Finally, the flow that arrives
into t1 represents all games that t1 has won. By flow conservation, this is also the amount of flow
travelling from t1 to t. Suppose that this quantity is x.

Since we want Team 1’s wins ≤ Team n’s wins
w[1] + x ≤ w[n] + r[n]

Therefore,
x ≤ w[n] + r[n]− w[1]

The above equation implies that placing a capacity w[n]+r[n]−w[i] on each edge ti → t ensures
that the number of wins of Team i doesn’t exceed the number of wins of Team n.

If a flow saturates all edges coming out of s then this would mean that all teams have played
all their remaining matches. So we will know we have reached end of season with team n finishing
on top. On the other hand if there is no flow that can saturate all edges leaving s, it means there
is no way to complete the season while ensuring that team n ends up on top.

CLAIM: The graph has a maxflow with value
∑n−2

i=1

∑n−1
j=i+1 r[i, j] iff team n has the mathematical

possibility of ending at 1st place.
The proof of this claim can be found in Jeff Erickson notes. In this way we can reduce baseball
elimination problem to maxflow.

3 Example of a Linear Program

In order to solve a maxflow problem efficiently, formulate it as a linear program. To better under-
stand a linear program, lets look at an example.

Consider a farmer who wants to plant wheat and barley on a L km2 of land with a certain
budget for fertilizer and pesticides.

• Plant - Wheat(w) and Barley(b)
• Land - L km2

• Budget - Fertilizer F Kg, Pesticide P Kg
• Amount of fertilizer and pesticide required to plant Wheat

– Fertilizer Fw kg/km2

– Pesticide Pw kg/km2

• Amount of fertilizer and pesticide required to plant Barley

– Fertilizer Fb kg/km2

– Pesticide Pb kg/km2

• Price of planting Wheat and Barley

– Wheat Sw $/km2
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– Barley Sb $/km2

Choice: How much of L km2 of land should farmer use for wheat and how much for barley? So
the farmer’s choice variables are

xw = km2 of wheat planted
xb = km2 of barley planted

Optimization Problem: Maximize the objective function

maxxb,xw Swxw + Sbxb

with the following constraints
Fwxw + Fbxb ≤ F
Pwxw + Pbxb ≤ P

xw + xb ≤ L
xw, xb ≥ 0

This is an example of a linear program in 2 variables with a linear objective function and linear
constraints.

3.1 Geometric View of a Linear Program

Figure 4 shows an example geometric representation of linear problem that we formulated. To
maximize the objective function, we look at all vertices of the feasible region and find the one that
maximizes our objective function. In the above example, the feasible region has 5 vertices.

Figure 4: Example geometric representation of Farmer’s linear program
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3.2 History

Evaluating each vertex of the feasible region could result in an exponential time algorithm because
the number of vertices can be exponential in number of variables and constraints. So there was to
need to solve these LP problems efficiently

• Dantzig (1940) came up with Simplex method but Simplex method is not polynomial-time
in the worst case.

• Khachiyan (1979) came up with first polynomial-time algorithm for linear programs, but his
contribution was mostly theoretical.

• Karmakar (1984) designed interior point method which is both practical and runs in worst-
case polynomial time.
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