
Lecture Notes CS:5360 Introduction to max flow problem
Lecture 1: Aug 27, 2017
Scribe: Yumna Anwar

1 Course Overview

The course assumes that students have basic knowledge of algorithms topics, such as:

• Dynamic programming

• Divide and conquer

• Greedy algorithms

• NP-completeness

These topics will not be covered in the class, so it might be a good idea to brush up on
them. If you lack some of these concepts you might also consider taking the course design and
implementation of algorithms. In this course we will cover four topics:

1. Combinatorial Optimization

2. Randomized Algorithms

3. Approximation Algorithms

4. Streaming and Parallel Algorithms

Throughout the course we will emphasize two themes:

• Interplay between a combinatorial view and a math programming view of problems

• Methods for probabilistic analysis.

1.1 Combinatorial Optimization

In this course, combinatorial optimization consists of three inter-related topics: Flows, Cuts, and
Matching. Though all these are graph problems, they have interesting math programming models.
Linear program is one example of a math programming problem. Another thing to note when using
math programming approaches is the notion of duality. Notion of duality means that there are
two paired problems, one maximization and one minimization problem. For instance, the max-flow
problem and the min-cut problem are duals of each other. We will show that the value of max-flow
is same as the cost of the min-cut.

1

1.2 Graph problems

Graph problems can be categorized based on the complexities. The “Easiest”problems includes
the traversals, like breath first search and depth first search and their applications to connected
components and strongly connected components, etc . All of these problems can be solved in linear
time, that is O(m + n), where n is the number of vertices and m is the number of edges.

Slightly harder problems include minimum spanning tree (e.g; Kruskal’s or Prim’s algorithm),
single source shortest paths (e.g; Dijkstra algorithm). These are super-linear time algorithms and
are more sophisticated. The complexity of these graph problems is O((m + n) log n), where n is
the number of vertices and m is the number of edges.

Even harder problems are problems with flows, cuts, matchings. These can be solved in poly-
nomial time, but the running time may be as high as O(n3) where n is the number of vertices.
And these algorithms require a lot more machinery.

1.2.1 Polynomial time reduction

Polynomial time reduction are helpful in two ways, building efficient algorithms for new problems
and in showing that some problems can not be solved efficiently.

A problem is defined as NP-hard if it is at least as hard as any nondeterministic polynomial
time problem (NP-problem). To show that some problem is NP-hard you take a known NP-hard
problem and reduce it to our current problem in polynomial time. The direction of the reduction
is very important in these reductions.

2 Max flow problem

Imagine you have a network of pipes of different capacities. In this network there is a source that
produces some fluid (water, for instance) and there is a sink that processes the fluid it receives.

What is the maximum amount of flow we can set from source to sink? Keep in mind that some
pipes are thinner and some are thicker so they they have different capacities. The input to this
problem is the network and capacities of the pipe. The output is the maximum amount of fluid
one can send through.

More formally,

• Let G = (V,E) donate a directed graph

• Let s and t be two special vertices donating source and target (sink) respectively.

• Let C : E → IR>=0 donate the capacity function on edges of E

These are the pieces that constitutes the input to the Max flow problem.

2

A flow in a directed graph G = (V,E) is a function f : E → IR satisfying the following flow
conservation constraint for every vertex v except s and t :

∑
u∈OutNbr(v)

f(v → u) =
∑

w∈InNbr(v)

f(w → v), for each v ∈ V \ {s, t}

Meaning, for every v ∈ V that is not a source or target the outflow from v should be equal to
the in flow into v. For directed graph we will use u → v to donate an edge from u to v. Without
loss of generality (WLOG) f(u→ v) = 0 , for u→ v /∈ E. So the above constraint can be simplified
to:

∑
u∈V

f(v → u) =
∑
w∈V

f(w → v), for each v ∈ V \ {s, t}

Therefore, a flow is just a function that satisfies flow conservation.

The value of a flow f, denoted as |f |, is the outflow from s minus the inflow into s:

∑
u∈V

f(s→ u)−
∑
w∈V

f(w → s).

The value of the flow is the net outflow from the source. The net outflow from any vertices that
is not the source is 0. Another important things to note is that we are assuming that “pipes”have
an upper bound on the flow.

A flow f is feasible if it is non negative and is bounded by the capacities:

0 ≤ f(u→ v) ≤ c(u→ v), for u→ v ∈ E

The input consists of a directed graph G = (V,E), a capacity function C : E → IR and special
vertices s, t ∈ V

The output is a feasible flow with maximum value.

3

2.0.1 Example of max flow problem

Consider the following network of pipes represented as a directed graph in figure 1 below:

Figure 1: Network of pipes represented as a directed graph

One possible flow from source to target is: s→ c (10), c→ d (10), d→ t (10). This has a value
of 10. Another flow that can be considered is: s→ a (15), a→ b (5), a→ c (10), c→ d (10), b→ t
(5), d → t (10). This has a total value of 15. Which is also the maximum flow possible through
our network. Figure 2 below shows the min capacity cut in reference to our example:

Figure 2: Network of pipes and its min capacity cut

This is the cut that is saturated so we know we can not push anything more than 15. Hence
our maxflow value in this case is 15. The capacity of a cut is the sum of the capacities of edges
from the s-side to the t-side, which in our case is 5 + 10 = 15.

4

Observations
From this example we can make an observation that net outflow from s equals net inflow into

t, represented by the equation below:

∑
u∈V

f(s→ u)−
∑
w∈V

f(w → s) =
∑
u∈V

f(u→ t)−
∑
w∈V

f(t→ w)

net outflow from s = net inflow into t

5

