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1 Derandomization

We have a 1
2 -approximation(in expectation) for MaxSet. (We do, also have better approximation

for sure. Say (1− 1
e ) and 3

4 approximation. And they can all be derandomized but not we just use
this 1

2 -approximation as an example).
Recall how do we get the 1

2 -approximation? We use {”flip coins method. We can de-randomization
this algorithm, that means, make it deterministic while it still achieving a 1

2 -approximation.
Remark:

• There are lots of problems we do not know if they can derandomized or not. Even we are
allowed to lose runtime, still there are problems we don’t know how to derandomized.

• One big open question : Can all problems that can be solved in polynomial time using
randomization that also can be solved in polynomial time without randomization? This is a
open question. we do not know the answer.

The method we will use us called the method of conditional expectations.
Problem Notations:

• X1, X2, X3. . . Xn denote the Boolean variables

• C1, C2. . . Cn denote the clauses

• Yj is the indicator variable indicating if the clause Cj is satisfied.

• Y random variable the number of satisfied clauses.

Theorem: E[Y ] >= m/2 (showed in previous lecture). Here, m/2 is the number of clauses.
Process of the derandomization:

Consider the variables in order, for example, X1, X2, X3. . . Xn (the order doesn’t matter, just
arbitrary). And we assign value to Xi deterministically. First we assign a value to X1 , we calculate
E[Y |X1 = T ], then calculate E[Y |X1 = F ] Pick X1 equal to T or X1 equal to F depending on
which value maximum this conditional expectation. if E[Y |X1 = T ] is as larger as E[Y |X1 = F ]
then we can set X1 to True, otherwise we can set it to False.
Remark:

• This is different from other algorithm, here we do not have backtracking. We are doing it in
greedy way. We only cares about this one step and pick the larger one to set Xi keep going
to setting next Xi+1.

E[Y |X1 = T ] is the Expectation of Y condition on setting X1 to True. Therefore E[Y |X1 = T ]
equals to Number of satisfied Clauses + remain Expectation(problitically, same way to calculate
expectation as before).

1



Figure 1: Example of assign value to X1 = True

Figure 2: Example of Cj has X̄1

In Figure 1, what if X1 in C3, C3 is satisfied if X1 is setting to True. Now for this C3, there is
no randomize anymore. In Figure 2, let’s say C1 has X̄1,thenC1is false. Then we can remove X̄1,
since it has no influence to this C1. So X1 is gone and some is satisfied,
Remark:

• How do we calculate this E[Y |X1 = T ]? Just as before , Let’s consider Cj below. We set
X1 to True. we want to know what is the probability of Cj is satisfied? It is equal to Prob
(Cj) = 1 - Prob(not to be satisfied). Prob(satisfied) = 1

2 ×
1
2 → Prob (Cj not satisfied) =

1− 1
2 ×

1
2 .

E[Y ] can be written as : E[Y ] = E[Y |X1 = T ]× Prob(X1 = T ) + E[Y |X1 = F ]× Prob(X1 = F ) =
1
2 ×E[Y |X1 = T ] + 1

2 ×E[Y |X1 = F ] (as we can see this is just average, but it also can be weighted
in other ways)
For example: max{E[Y |X1 = T ],E[Y |X1 = F ]} ≥ E[Y ] we will take the one as large as E[Y ].
So, when we pick X1 = T or X1 = F to maximize the conditional expectation, we are guaranteed
that the conditional expectation E[Y |X1] ≥ E[Y ] ≥ m/2. so what is left in expectation is sufficiently
high.
Now we will continue assign a value to X2. To make exposition clearer, suppose that X1 was set
to T in the previous step, E[Y |X1 = T,X2 = T ], E[Y |X1 = T,X2 = F ]. Pick a value for X is the
larger of these Two. we calculated in the exactly the same way. Observe:

E[Y |X1 = T ] = E[Y |X1 = T,X2 = T ]× Prob(X2 = T ) + E[Y |X1 = T,X2 = F ]× Prob(X2 = F )

= 1/2× E[Y |X1 = T,X2 = F ] + 1/2× E[Y |X1 = T,X2 = F ]

So max{E[Y |X1 = T,X2 = F ],E[Y |X1 = T, Y2 = T ]} ≥ E[Y |X1 = T ] continue to preserve the
lower bound. By the reasoning for step 1,E[Y |X1 = T ] ≥ E[Y ] ≥ m/2. So the larger of these two
conditional expectations ≥ m/2.
For the last Node, What it should be?
As shown in Figure 3, E[Y |X1 = b1, X2 = b2. . . Xn = bn] = Y (Y is number of clauses satisfied
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Figure 3: Intuition of derandomization

depending on setting). As a result, the random variable Y is changed from completely random
to completely depend on variables node and keep guarantee E[Y ] ≥ m/2. Therefore we can see
from Step1 to Step2, Y is not as randomized as before, it is partial disposed. In each step, the
Y is becoming less randomized. And in the last Step Y is completely deterministic and no longer
randomized anymore since all the Xi is assigned we can now know what Y is based on the value
of Xi.
Remark: If the two E[Y |X = T ] and E[Y |X = F ] are same, then we just arbitrary pick one from
them to break the tie. This method is quite popular. We also have 1

2 approximation in MaxCut
problem. And we can also apply the exactly same idea to de-randomize MaxCut.

2 Practice problem:

Now we start to go over some problems as practice problems.
Problem 1 : 1.5 (Might different in pdf file) The problem is about Vertax Cover We will not do

the part a here, but just list part a as a fact here.

(a) Fact: The Vertax Cover LP relaxation has the half-integrality property, for example: there
is an optimal solution for which Xi0,

1
2 , 1 for all vertices i, such an half-integral solution can

be computed in polynomial-time.
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(b) Design a 3/2-approximation (much better) for MVC on planar graphs, use part(a) and use
the fact that planar graph can be 4-colored in polynomial time

For example: Here we have a planar graphs (Figure 4 with color and value assigned:

Figure 4: Example of a planar graph

We will cover this problem in next class.
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