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1 Generals of LP Rounding

LP rounding to design approximation algorithms is typically used in context of 0-1 optimization
problem. Since many combinatorial problems can be encoded as integer programs (IP), solving
those IP is in general NP-hard, so we generally relax the integrality constraint into a linear con-
straint, e.g. non-negativity constraint, then solve the corresponding LP and round the result to
integer to get the result of original IP. Here is the overview of LP relaxation and rounding methods:

1. Formulate an optimization problem as an integer program (IP)

2. Relax the integral constraints to turn the IP to an LP

3. Solve LP to obtain an optimal solution x∗

4. Construct a feasible solution x
′

to IP by rounding from x∗ integers

Rounding can be done deterministically or probabilistically, i.e. randomized rounding. As we
discussed, the 2-approx algorithm for minimum vertex cover (MVC) is an example of deterministic
rounding. What we will discuss today is an example of randomized rounding to SetCover problem
by a approximiation factor of O(log n), other examples include MaxSAT, MaxCut, etc.
Reference: 1, 2, 3, 4.

2 SetCover

As we discussed previously, here is the definition of the problem SetCover.
Input: A ground set X (|X| = m), a collection S1, S2, S3, ..., Sn of subsets of X. Assuming
n⋃

i=1
Si = X.

Output: A cover C ⊆ 1, 2, 3, ..., n with smallest size such that
⋃
i:C

Si = X.

2.1 IP of SetCover

Let xi ∈ {0, 1} indicates whether Si is picked by an algorithm, 1 indicates Si is picked, otherwise
is 0:

min

n∑
i=1

xi (1a)

s.t.
∑
i:e∈Si

xi ≥ 1 for each e ∈ X, (1b)

xi ∈ {0, 1} for i = 1, 2, ..., n (1c)
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2.2 LP of SetCover

From what we have in IP for SetCover, to have LP for SetCover, let relax the integrality constraint
xi ∈ {0, 1} in IP to non-negativity constrains, xi ≥ 0. Still, let xi ∈ {0, 1} indicates whether Si is
picked by an algorithm.

min
n∑

i=1

xi (2a)

s.t.
∑
i:e∈Si

xi ≥ 1 for each e ∈ X, (2b)

xi ≥ 0 for i = 1, 2, ..., n (2c)

2.3 Deterministic LP rounding

For each element e ∈ X, let f(e) denote number of sets Si that contains e, i.e. the frequency or
counting of Si covering e. Let f = maxe∈X f(e), here we will discuss a simple f -approx algorithm
for SetCover by deterministic rounding. (As an analogy, in MVC, the ground set X would be all
the edges, the vertices would be the chosen subset Si to cover all the edges.)

1: Solve LP relaxation of SetCover to get solution {x∗i |i = 1, 2, ..., n}
2: for i ← 1 to n do
3: if x∗i ≥ 1

f then
4: zi ← 1
5: else
6: zi ← 0
7: Output the solution C = {i|zi = 1}

Algorithm 1: Approximation Algorithm by Deterministic LP Rounding

Lemma 1. Solution C is a valid SetCover

Proof Outline: Let take below graph as an example to illustrate, e is an element in ground
set X, S1, S7, S9, S11 are the sets covering e. Thus, f(e) = 4 ≤ f . After solving the LP for this
problem, the constraint for e is satisfied as such: x1 + x7 + x9 + x1 ≥ 1. Together, it is easy
to conclude at least one of Si ∈ [S1, S7, S9, S11] ≥ 1

f(e) = 1
4 ≥

1
f . (Reminder: f is the global

maximum frequency/counting of sets Si covering element e.) Following above algorithm line 3, at
least one set among [S1, S7, S9, S11] covers element e and set zi to be 1. Similarly, in general for
any element in the ground set X, at least one of the set covers such element and set zi to be 1.
Therefore, C is a valid SetCover.
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Lemma 2. Let OPT be the size of optimized solution to original SetCover problem, then |C| ≤
f ·OPT

Proof. Since {x∗i |i = 1, 2, ..., n} is an optimal solution to the LP relaxation SetCover problem, we
have:

n∑
i=1

x∗i ≤ OPT

(Reminder: because this is a minimization problem and LP has a larger solution domain than IP
counterpart, the optimal solution from LP would be at least as good as optimal solution from IP.)
Now, note that, following above algorithm line 3 - 6, it is easy to get:

zi ≤ f · x∗i

∴
n∑

i=1

z∗i ≤ f ·
n∑

i=1

x∗i ≤ f ·OPT

Following above algorithm line 7, C = {i|Zi = 1}, we can conclude:

|C| =
n∑

i=1

z∗i ≤ f ·OPT

2.4 Randomized LP rounding

Now, let’s design a LP randomized rounding algorithm that gives an O(log n)-approximation.
Here is a randomized LP rounding algorithm, surprisingly using the LP solution as the probability
in randomized rounding.
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1: Solve LP relaxation of SetCover to get solution {x∗i |i = 1, 2, ..., n}
2: for i ← 1 to n do
3: zi ← 1 with probability x∗i
4: zi ← 0 with probability 1− x∗i
5: Output the solution C = {i|zi = 1}

Algorithm 2: Approximation Algorithm by Randomized LP Rounding

Lemma 3. Let OPT be the size of optimized solution to original SetCover problem, then

IE[|C|] =
n∑

i=1

x∗i ≤ OPT

Proof.

IE[|C|] = IE[

n∑
i=1

zi]

=

n∑
i=1

IE[zi], by linearity of expectation

=

n∑
i=1

Prob[zi = 1]

=

n∑
i=1

x∗i

≤ OPT

(3)

Following above proof, we can ”surprisingly” see that the expected size of the randomized round-
ing solution from LP solution is less than the size of optimal solution, though by such randomized
rounding, Further, we know that C may not be a feasible solution to the original SetCover problem,
i.e. C may only be a partial cover. Thus, naturally we can augment the result by repeating this
algorithm t times, getting partial covers C1, C2, C3, ..., Ct, then returning

⋃t
j=1Cj .

2.5 Analysis of augmented randomized LP rounding

Let us first focus on one iteration in the augmented LP rounding algorithm. Let e ∈ X be an
arbitrary element in ground set X.

Prob[e is covered] = 1− Prob[e is NOT covered by any of the set Si containing e]

= 1−
∏

i:e∈Si

Prob[e is not covered by Si], by independence rounding of Zi

= 1−
∏

i:e∈Si

(1− x∗i )

(4)
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Using (1 + x) ≤ exp(x) (Use exp() to denote natural exponential function to prevent confusion
with element e), we get

Prob[e is covered] ≥ 1−
∏

i:e∈Si

exp(−x∗i )

= 1− exp(−
∑
i:e∈Si

x∗i ), by property of exponential function

≥ 1− exp(−1), by constraints of LP, i.e.
∑
i:e∈Si

x∗i ≥ 1

(5)

Thus, we proved for one iteration of augmenting randomized LP rounding, the probability of an
arbitrary element e being covered is at least a constant. In the next class, we will continue to see
with after t iterations (t will be substituted by a specific expression), the augmented randomized
LP rounding leading to a feasible solution would be with high probability.
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