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1 Generals of LP Rounding

LP rounding to design approximation algorithms is typically used in context of 0-1 optimization
problem. Since many combinatorial problems can be encoded as integer programs (IP), solving
those IP is in general NP-hard, so we generally relax the integrality constraint into a linear con-
straint, e.g. non-negativity constraint, then solve the corresponding LP and round the result to
integer to get the result of original IP. Here is the overview of LP relaxation and rounding methods:

1. Formulate an optimization problem as an integer program (IP)
2. Relax the integral constraints to turn the IP to an LP
3. Solve LP to obtain an optimal solution x*

4. Construct a feasible solution z to IP by rounding from z* integers

Rounding can be done deterministically or probabilistically, i.e. randomized rounding. As we
discussed, the 2-approx algorithm for minimum vertex cover (MVC) is an example of deterministic
rounding. What we will discuss today is an example of randomized rounding to SetCover problem
by a approximiation factor of O(logn), other examples include MaxSAT, MaxCut, etc.

Reference: 1, 2, 3, 4.

2 SetCover

As we discussed previously, here is the definition of the problem SetCover.
Input: A ground set X (|]X| = m), a collection Si, Sa, Ss3, ..., Sy of subsets of X. Assuming
n
U si=X.
i=1
Output: A cover C C 1,2,3,...,n with smallest size such that |J S; = X.
:C
2.1 1IP of SetCover

Let x; € {0,1} indicates whether S; is picked by an algorithm, 1 indicates S; is picked, otherwise
is 0:

n

min Z:cl (la)
i=1

s.t. Z x; > 1 for each e € X, (1b)

i:e€S;
z; €{0,1} fori=1,2, ....,n (1c)



2.2 LP of SetCover

From what we have in IP for SetCover, to have LP for SetCover, let relax the integrality constraint
x; € {0,1} in IP to non-negativity constrains, z; > 0. Still, let z; € {0, 1} indicates whether S; is
picked by an algorithm.

n
min Z T; (2a)
i=1

s.t. Z x; > 1 for each e € X, (2b)
i:e€S;
z;>0fori=1,2,...,n (2¢)

2.3 Deterministic LP rounding

For each element e € X, let f(e) denote number of sets S; that contains e, i.e. the frequency or
counting of S; covering e. Let f = max.cx f(e), here we will discuss a simple f-approx algorithm
for SetCover by deterministic rounding. (As an analogy, in MVC, the ground set X would be all
the edges, the vertices would be the chosen subset S; to cover all the edges.)

1: Solve LP relaxation of SetCover to get solution {z}|i =1,2,...,n}
2: for i <~ 1 ton do
3 if ] > % then

4 zi +— 1

5:  else

6: z; 0

7: Output the solution C' = {i|z; = 1}

Algorithm 1: Approximation Algorithm by Deterministic LP Rounding

Lemma 1. Solution C is a valid SetCover

Proof Outline: Let take below graph as an example to illustrate, e is an element in ground
set X, S1, 57,59, 511 are the sets covering e. Thus, f(e) =4 < f. After solving the LP for this
problem, the constraint for e is satisfied as such: x1 + 7 + x9 + 1 > 1. Together, it is easy
to conclude at least one of S; € [S1, S7, Sg, Si1] > ﬁ = % > % (Reminder: f is the global
maximum frequency/counting of sets S; covering element e.) Following above algorithm line 3, at
least one set among [S1, S7, Sy, S11] covers element e and set z; to be 1. Similarly, in general for
any element in the ground set X, at least one of the set covers such element and set z; to be 1.

Therefore, C' is a valid SetCover.




Lemma 2. Let OPT be the size of optimized solution to original SetCover problem, then |C| <
f-OPT

Proof. Since {z}|i = 1,2,...,n} is an optimal solution to the LP relaxation SetCover problem, we
have:
n

> a;<OPT

i=1
(Reminder: because this is a minimization problem and LP has a larger solution domain than IP
counterpart, the optimal solution from LP would be at least as good as optimal solution from IP.)
Now, note that, following above algorithm line 3 - 6, it is easy to get:

zi < f-xf

znzzz* Sf-zn:ﬂc;‘ < f-OPT
i=1 i=1

Following above algorithm line 7, C' = {i|Z; = 1}, we can conclude:

IC| ="z < f-OPT

=1

2.4 Randomized LP rounding

Now, let’s design a LP randomized rounding algorithm that gives an O(logn)-approximation.
Here is a randomized LP rounding algorithm, surprisingly using the LP solution as the probability
in randomized rounding.



1: Solve LP relaxation of SetCover to get solution {z}|i =1,2,...,n}
2: for i < 1 ton do

3:  z < 1 with probability x}

4:  z; < 0 with probability 1 — z

5. Output the solution C' = {i|z; = 1}

Algorithm 2: Approximation Algorithm by Randomized LP Rounding

Lemma 3. Let OPT be the size of optimized solution to original SetCover problem, then

E(|C|| =) af <OPT
=1

Proof.

n

E[C|| = E[) _ =]

i=1

n
= Z E[z], by linearity of expectation
i=1
n
= Z Prob[z; = 1]
i=1

=1
< OPT
O

Following above proof, we can ”surprisingly” see that the expected size of the randomized round-
ing solution from LP solution is less than the size of optimal solution, though by such randomized
rounding, Further, we know that C' may not be a feasible solution to the original SetCover problem,
i.e. C may only be a partial cover. Thus, naturally we can augment the result by repeating this
algorithm ¢ times, getting partial covers C1, Co, Cs, ..., Cy, then returning U;Zl Cj.

2.5 Analysis of augmented randomized LP rounding

Let us first focus on one iteration in the augmented LP rounding algorithm. Let e € X be an
arbitrary element in ground set X.

Proble is covered] = 1 — Proble is NOT covered by any of the set S; containing e]

=1- H Proble is not covered by S;], by independence rounding of Z;
i:e€S; (4)

=1- [l a-a

i:e€S;




Using (1 + z) < exp(z) (Use exp() to denote natural exponential function to prevent confusion
with element e), we get

Proble is covered] > 1 — H exp(—x;)

i:e€S;
=1—exp(— Z x;), by property of exponential function (5)
i:e€S;
> 1—exp(—1), by constraints of LP, i.e. Z x; > 1

i:e€S;

Thus, we proved for one iteration of augmenting randomized LP rounding, the probability of an
arbitrary element e being covered is at least a constant. In the next class, we will continue to see
with after ¢ iterations (¢ will be substituted by a specific expression), the augmented randomized
LP rounding leading to a feasible solution would be with high probability.
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