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1 Minimum Vertex Cover (MVC)

Input: A graph G = (V,E)
Output: A vertex subset S of smallest size such that for all {u, v} ∈ E, at least one of u or v is
in S.

Minimum Vertex Cover is one of 21 problems shown to be NP-Complete by Karp in 1972.

A simple algorithm for approximating MVC is as follows,

(i) Find a maximal matching M for the input graph G. Recall that set M is the maximal subset
of edges such that no two edges in M do share a common vertex.

(ii) For every edge {u, v} ∈M , add both u and v to vertex cover S.

(iii) Output the computed vertex cover S.

It is easy to see that this algorithm runs in O(m + n) time.

Theorem. The algorithm described above is a 2-approximation algorithm for MVC.

Example: Consider the graph shown in Figure 1.

Figure 1: Example graph G, and a max-
imal matching M , where bold edges be-
long to M

Figure 2: Highlighted vertices belonging
to the computed vertex cover S

Figure 1 shows edges (in bold) of M , which is some maximal matching computed by our algorithm
in step 1. Based on this matching, the algorithm outputs the set S = {B,C,E, F,A,G}. This is
shown in Figure 2.
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Proof. Given an optimal MVC S∗ for G, we prove that our algorithm produces a vertex cover S
such that |S| ≤ 2.|S∗|. We do this by first stating and proving two lemmas related to our algorithm,
and the general relationship between matchings and vertex covers.

Lemma 1. S is a vertex cover

Proof. We prove this by contradiction. Suppose some edge e = {u, v} ∈ E is not covered by
S, i.e., both u /∈ S and v /∈ S. As both u and v are not in S, any edges incident on u and
v, including e, are not part of our matching M , which means that we can add e = {u, v}
to M without violating the matching property. However, in doing this, we are violating the
maximality of the matching, which means that no such edge e exists, hence S is indeed a
vertex cover.

Lemma 2. For any matching M and any vertex cover S of graph G, |M | ≤ |S|.

Proof. Since M by definition is set of disjoint edges, i.e., no two edges share a common vertex,
and a vertex cover S touches all edges at least once, for each edge e = {u, v} ∈ M , at least
one of u and v has to be included in S. Therefore, size of S is at least as much as the size of
M .

From Lemma 2, for a graph G we can also say that any arbitrary matching M computed by our
algorithm, and S∗ a Minimum Vertex Cover of G satisfies the property

|M | ≤ |S∗| (1)

The following results from how our algorithm works and equation 1,

|S| = 2|M | ≤ 2|S∗|

This means that our algorithm produces a 2-approximation of MVC.

For decades, no improvement has been made to improve the factor of 2 approximation for MVC.
This has indirectly led the research community to conjecture that no improvement beyond 2 is
indeed possible. This conjecture which is related to the Unique Games Problem, in one form states
that if the Unique Games Problems is shown to be NP-complete, then we cannot get a better
approximation factor for MVC than 2.

2 Linear Programming view of MVC

An Integer Program for MVC (MVC-IP)

With choice variables as xv ∈ {0, 1}∀v ∈ V , the objective is to minimize the cost function subject
to conditions as follows,

cost function: minimize
∑
v∈V

xv

subject to xu + xv ≥ 1 for each edge {u, v} ∈ E

and xv ∈ {0, 1} for each v ∈ V
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LP-relaxation of MVC-IP (MVC-LP)

Relaxing the integrality constraint on choice variables in MVC-IP to non-zero constraints,

cost function: minimize
∑
v∈V

xv

subject to xu + xv ≥ 1 for each edge {u, v} ∈ E

and xv ≥ 0 for each v ∈ V

Dual of MVC-LP

With choice variables as ye for each e ∈ E we get the following cost function subject to constraints
shown below:

cost function: maximize
∑
e∈E

ye

subject to
∑

e: e incident on v

ye ≤ 1 for each v ∈ V

and ye ≥ 0 for each e ∈ E

Now, for some graph G = (V,E), any matching M is a feasible solution for the Dual MVC-LP, and
any vertex cover S is a feasible solution to the MVC-LP.

Therefore, by LP weak duality theorem, we obtain the same result as Lemma 2, as follows:

|M | ≤ |S|

2.1 Primal-dual method for finding a vertex cover

Simply stated, the algorithm is as follows,

(1) Find a feasible solution for Dual MVC-LP.

(2) Extract from this a feasible integral primal solution, i.e., a solution for MVC-IP, not too much
larger in cost than the cost of the solution in (1). (This is motivated by the fact that the cost
of any feasible dual solution is a lower bound on the optimal integral primal solution.)

A dual of MVC-IP with matching set M would produce a vertex cover S such that |S| = 2|M |
(which is the 2-approximation theorem for MVC). Visually, this looks like Figure 3 shown below.
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Figure 3: A cost-line view of sets M and S obtained from the primal-dual method

2.2 LP-rounding approximation for MVC

This algorithm is as follows,

(i) Solve MVC-LP to obtain solution {xv|v ∈ V }

(ii) for each v ∈ V : if xv ≥ 1/2, set zv ← 1

if xv ≤ 1/2, set zv ← 0

(iii) Output S = {v|zv = 1}

Lemma 3. The set S output by the LP-rounding alorithm is a vertex cover.

Proof. Feasibility of the MVC-LP solution tells us that for every edge {u, v} ∈ E, either xu ≥ 1/2
or xv ≥ 1/2. Therefore, for every edge {u, v} ∈ E either zu = 1 or zv = 1. In other words either
u ∈ S or v ∈ S.

Lemma 4. Let S be the output of LP-rounding, and S∗ be a minimum vertex cover. Then,

|S| ≤ 2|S∗|.

Proof. Note that,
∑

v∈V xv ≤ |S∗|

since {xv|v ∈ V } is an optimal solution to MVC-LP, which is a relaxation of the integer program
MVC-IP.

Also, zv ≤ 2xv. Therefore, ∑
v∈V

zv ≤ 2
∑
v∈V

xv ≤ 2|S∗|

Hence, |S| ≤ |S∗|.
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