
Lecture Notes CS:5350 Design and Analysis of Algorithms
Lecture 17: October 22, 2019

Scribe: Jeehan Malik

1 Randomized Quicksort

In this lecture, the quicksort algorithm is analyzed and its expected runtime is proved by using
the probabilistic concepts of random variables and linearity of expectation.

A key part of the randomized quicksort algorithm (from last class) was:

i <- index chosen uniformly at random from [1...|L|]

swap(L, 1, i)

for j <- 2 to |L| do:

if L[j] <= L[i]:

append L[j] to L1

else:

append L[j] to L2

Observation 1 RANDOMIZED QUICKSORT The running time of this algorithm is proportional to the
number of comparisons we make because every iteration of the loop makes one comparison and the rest of
the code runs in constant time. Therefore, when we are thinking about running time for quicksort, it suffices
to count the number of comparisons made.

Let X = random variable denoting the number of comparisons. We will now prove the following
theorem.

Theorem 1 RANDOMIZED QUICKSORT can be solved with expected O(n log n) comparisons. That is,
E[X] = O(n log n)

Main Idea: To prove this, we will express the random variable X as a sum of some decomposed,
simpler random variables. It will be easier to figure out the expectations of those random vari-
ables. Then, we will use linearity of expectation to find the expectation for X.

1.1 Decomposition of X

Let the input list be (x1, x2 , ... , xn) and let the sequence (y1, y2 , ... , yn) be a sorted version of L.
For our analysis we will consider the sorted sequence.

Let Xij for 1 ≤ i < j ≤ n denote indicator random variables, where i and j refer to indices in

1

the sorted array. Indicator random variables refer to binary (having values 0 or 1) random vari-
ables indicating whether an event has occurred or not. So, Xij indicates whether yi and yj have
been compared.

Xij =

{
1 if yi and yj are compared
0 otherwise

Note that yi and yj can only be compared once during the course of the algorithm. This means
that Xij is also the sum of the number of comparisons between yi and yj.

We can now decompose X into many indicator random variables, because the total number of
comparisons made by the algorithm is the sum of indicator variables across all possible values of
yi and yj

The main decomposition step is:

X =
n−1

∑
i=1

n

∑
j=i+1

Xij

1.2 Using Linearity of Expectation

E[X] = E[
n−1

∑
i=1

n

∑
j=i+1

Xij]

By linearity of expectation:

=
n−1

∑
i=1

n

∑
j=i+1

E[Xij]

By definition of expectation:

E[Xij] = 1 · Pr(Xij = 1) + 0 · Pr(Xij = 0)

= Pr(Xij = 1)

∴ E[X] =
n−1

∑
i=1

n

∑
j=i+1

Pr(Xij = 1)

Now we have to determine what Pr(Xij = 1) is, in order to figure out the expectation of X.

1.3 Determining Probability

In order for yi and yj to be compared, one of them has to be pivot. Alternately, what would pre-
vent them from being compared is if they end up in different lists. yi and yj would end up in
different lists if a random pivot is picked with index between i and j. Figure 1 shows a visualiza-
tion of this.

2

From the figure, we can see that if the pivot is picked from the area indicated as k, the situa-
tion of whether or not yi and yj are compared, would be resolved.
At some point in the algorithm, a pivot will be chosen from the area between yi and yj. We can
therefore see that:

Picture:

Figure 1: A visual showing the indexes of yi and yj in an array.

Pr(Xij = 1) =
2

j− i + 1

So,

E[X] =
n−1

∑
i=1

n

∑
j=i+1

2
j− i + 1

Let k = j− i + 1 (the length of sequence between yi and yj)

3

=
n−1

∑
i=1

n−i+1

∑
k=2

2
k

=
n

∑
k=2

n−k+1

∑
i=1

2
k

=
n

∑
k=2

2
k
· (n− k + 1)

= 2n
n

∑
k=2

1
k
−

n

∑
k=2

2 +
n

∑
k=2

2
k

= 2n(Hn − 1)− 2(n− 1) + 2(Hn − 1)

where Hn is the nth Harmonic Number in the sequence 1 +
1
2
+

1
3
+ ... +

1
n

We know that Hn = Θ(log n)

∴ E[X] = O(n log n)

1.4 Other ways of analyzing randomized quicksort

This is one way to analyze randomized quicksort. The traditional way to analyze quicksort is in
terms of recurrences. Since partitioning of a list is randomized, we can apply expectation over
recurrence.

T(|L|) = T(L1) + T(L2) + O(n)

When we take the expectation over both sides of this equation, with some work we can show that
this reduces to:

E[T(n)] = 2 ·E[T(n)] + O(n)

After this, we can solve this equation as usual.

1.5 Final Note

Think about the following modification in our algorithm: Replace a randomized choice of pivot
by the Balanced Partition Monte Carlo Algorithm. For example, take L1 and L2 and if they are
unbalanced, the algorithm gives up. This modification would guarantee that our running time is
not a random variable, it is deterministic. But, now the algorithm will sometimes return ”error”
and so we need to analyze the error probability of this algorithm.

4

2 Coupon Collector’s Problem

This is another problem that provides an illustration of the linearity of expectation. We have ce-
real boxes, each of which has one of n coupons (1, 2,. . . , n) chosen uniformly at random.

Problem: How many cereal boxes do you need to buy in order to have all n coupons?

Let X = random variable denoting the number of cereal boxes purchased to get n coupons.
We are interested in what E[X] is. We can use the same approach of decomposing X into simpler
random variables followed by using the linearity of expectation, as we did with quicksort.

Picture:

Figure 2: A pictorial representation of the decomposition of coupons in the Coupon Collector’s
problem.

Let Xi denote the number of cereal boxes purchased to get the ith coupon after i-1 coupons have
been obtained. So X1 = 1 and X2, X3 , ... , Xn are illustrated in Figure 2. Now note that:

X =
n

∑
i=1

Xi

We will proceed by finding expectations of each of these sequences.

5

